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Fluids in porous media: The case of neutral walls
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The bulk phase behavior of a fluid is typically altered when the fluid is brought into confinement by the walls
of a random porous medium. Inside the porous medium, phase-transition points are shifted, or may disappear
altogether. A crucial determinant is how the walls interact with the fluid particles. In this work, we consider
the situation whereby the walls are neutral with respect to the liquid and vapor phases. In order to realize the
condition of strict neutrality, we use a symmetric binary mixture inside a porous medium that interacts identically
with mixture species. Monte Carlo simulations are then used to obtain the phase behavior. Our main finding
is that, in the presence of the porous medium, a liquid-vapor critical point still exists. At the critical point, the
distribution of the order parameter remains scale invariant, but self-averaging is violated. These findings provide
further evidence that random confinement by neutral walls induces critical behavior of the random Ising model
(i.e., Ising models with dilution type disorder, where the disorder couples to the energy).
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I. INTRODUCTION

The confinement of a fluid to the voids of a porous
material generally influences the critical behavior of the
fluid. For example, lutidine-water mixtures in Vycor [1],
or 4He [2], nitrogen [3], and carbon dioxide [4] in silica
aerogel yield critical exponents of their associated liquid-vapor
transitions that differ profoundly from bulk values (the bulk
exponents typically being those of the three-dimensional
Ising model). One line of thought is that the random pore
structure induces quenched spatial fluctuations in the chemical
potential [5]. This conjecture, originally put forward by de
Gennes [6], implies that the critical behavior of the fluid
inside the pores should be that of the random-field Ising model
(RFIM) [7–9]. Recent simulations of fluids inside porous
media have indeed uncovered critical behavior characteristic
of the RFIM [10–13]. In order for RFIM universality to arise,
it is crucial that the pore walls feature a preferred attraction to
one of the fluid phases. This condition is typically fulfilled in
experiments, as one of the phases, i.e., the liquid or the vapor,
is frequently seen to wet the pore walls [1,3,4].

Nevertheless, for our fundamental understanding of fluid-
phase behavior, the situation of “neutral” pore walls which
do not preferentially attract is of interest also. A different
universality class is then expected to come into play [14,15],
namely the one of the random Ising model (RIM). The defining
feature of the RIM is that the quenched randomness of the
porous medium couples to the energy (as opposed to the
order parameter in the RFIM). Typical lattice models that
belong to the universality class of the RIM are the site-diluted
Ising model [16,17], the bond-diluted Ising model [17,18], and
the random-bond Ising model [19]. In d = 3 dimensions, the
Harris criterion [20] implies that the RIM should still feature a
liquid-vapor critical point, but with critical exponents different
from those of the bulk Ising model (by “bulk” we mean in the
absence of the porous medium). In a heuristic derivation of
this criterion one assumes that, in the presence of quenched

disorder, the critical temperature Tc varies between regions (of
linear size ξ ) in the sample. Hence, following the central limit
theorem, there is a fluctuation �T ∝ ξ−d/2 in the observed
critical temperatures, where d is the spatial dimension. A
prerequisite for the universality class to remain unchanged
is that �T be smaller than the distance from the critical
temperature t = |T − Tc|. Since ξ ∝ t−ν (t � 1), with ν the
(bulk) correlation length critical exponent, dν > 2 is implied;
by using hyperscaling, dν = 2 − α, this becomes equivalent
to α < 0, where α is the specific heat critical exponent. For
the bulk Ising model in d = 3 dimensions α is positive,
which implies that the universality class of the RIM should
be different.

Note, however, that the differences between the universality
classes of the bulk Ising model and the RIM are very small,
and therefore challenging to detect numerically [18]. One
problem is that the critical exponent ratios are very similar
in both classes, which greatly complicates finite-size scaling,
unless extremely accurate data is available. In fact, for the
random-bond Ising model, such data have only recently
been published [19]. Clearly, for the off-lattice fluid model
considered presently, we cannot expect to reach the accuracy
of that latter study (which is required if critical exponents are to
be meaningfully measured). Fortunately, following Ref. [18],
the difference in universality can also be probed qualitatively
by considering the violations of self-averaging. It is this latter
approach that will be adopted in this paper.

Regarding the case of a fluid confined to a neutral porous
medium, the question of whether this system exhibits RIM
universality was first addressed in the simulations of Ref. [15].
As expected for the RIM, these simulations revealed a critical
point, located at an increased density as compared to the
bulk. By carefully measuring the critical amplitude ratio of
the susceptibility, these simulations also uncovered deviations
from bulk Ising behavior, and toward that of the RIM. The
aim of this work is to corroborate these findings, using
a more sophisticated (grand-canonical) simulation scheme,
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larger system sizes, as well as additional finite-size scaling
methods. In particular, as mentioned above, we will address
the question of self-averaging.

The outline of this paper is as follows. In Sec. II, we
introduce the model for the fluid mixture and for the porous
medium with neutral walls, and we describe the simulation
method. The results are presented in Sec. III, and we end with
a discussion in Sec. IV.

II. MODEL AND METHODS

A. Model: Fluid inside neutral porous medium

We consider the same model as in Ref. [15], which is a
fluid confined to a neutral porous medium in d = 3 spatial
dimensions. It belongs to the family of “quenched-annealed”
mixtures [21,22], which are routinely used to model fluids
inside pores [10,14,23–32]. The fluid is a nonadditive binary
mixture of spheres, species A and B, of equal diameter σ .
In what follows, σ will be our unit of length. The particles
interact via hard-sphere pair potentials

uAA(r) = uBB(r) =
{

∞, r < σ,

0 otherwise,
(1)

uAB(r) =
{

∞, r < (1 + �)σ,

0 otherwise,

with r the center-to-center distance between a pair of particles,
and � the nonadditivity parameter. The porous medium is a
fixed configuration of nonoverlapping spheres, species M , also
of diameter σ . These spheres are distributed randomly at the
start of the simulation, with density ρM , but remain immobile
(quenched) thereafter. Only after the porous medium has been
generated are the (mobile) fluid particles inserted. Note that
Eq. (1) is symmetric under the exchange of particle labels
A ↔ B. In order to retain this symmetry, the medium particles
M interact symmetrically with the mobile fluid particles:
uAM (r) = uBM (r) ≡ uAA(r). In this way, we ensure that the
porous medium remains neutral, i.e., does not preferentially
attract one of the fluid species. As a consequence, we do not
expect the critical behavior of the RFIM for this system.

For � > 0, the model of Eq. (1) exhibits a liquid-vapor type
transition [33]. To analyze this transition, we introduce the
overall fluid density ρ = (NA + NB)/V , and the composition
(order parameter)

m = (NA − NB)/V, (2)

where Nα is the number of particles of species α, and V the
volume of the system. Provided ρ > ρcr, two fluid phases are
observed, I and II, characterized by a positive and negative
composition, mI and mII , respectively (due to symmetry
mI = −mII ). Precisely for ρ = ρcr, the system becomes
critical, where mI = mII = 0. We emphasize that ρcr is not
trivially known beforehand (its value depends on � and ρM ).
For ρ < ρcr, the system exhibits only one phase. Of course,
this behavior is analogous to that of the Ising model, if one
identifies m in Eq. (2) with the magnetization per spin [34,35].

Our model is thus defined by the nonadditivity parameter �,
and by the density of the porous medium ρM . In the following
we set � = 0.2, while for the porous medium ρM = 0.1

and 0.2 will be considered, as well as the bulk situation
ρM = 0. These values were chosen to facilitate the comparison
to previous studies [10,15,33].

B. Method: Grand-canonical Monte Carlo

Our simulations are performed in the grand-canonical (GC)
ensemble, where the volume V is constant, while the particle
numbers Nα can fluctuate freely, as governed by the fugacity
zα . Here, α ∈ {A,B} strictly refers to the mobile fluid, since
the porous medium is quenched. Due to the symmetry of
the model, it follows that NA = NB at criticality, and so
we set the particle fugacities equal: zA = zB ≡ z. The corre-
sponding Boltzmann weight of a given particle configuration
w ∝ zNA+NB e−E/kBT , with E the potential energy given by
Eq. (1), T the temperature, and kB the Boltzmann constant. Of
course, for hard spheres, T does not affect static equilibrium
properties, and thus is irrelevant. The sole control parameter
in our simulations is therefore the fugacity z. In this work,
we use standard single-particle Monte Carlo moves [36] to
generate particle configurations that conform to the weight
w. To enhance efficiency, histogram reweighting is used to
extrapolate data obtained for one value of z to different
(nearby) values [37]. The simulations are performed in a cubic
box of edge L with periodic boundaries.

The principal output of the simulations is the (normalized)
distribution

P (m) ≡ P (m|z,L,ρM ),
∫ ∞

−∞
P (m)dm = 1, (3)

defined as the probability to observe the system in a state
with composition m, with m given by Eq. (2). We emphasize
that P (m) depends on all the system parameters, in particular
the fugacity z, and the system size L. Note also that, due
to symmetry, P (m) = P (−m), and that this symmetry holds
irrespective of whether a porous medium is present.

To facilitate a finite-size scaling analysis (both for the
bulk system, and inside the porous medium) four different
system sizes were simulated. The smallest system has volume
(L/σ )3 = 2500, corresponding to L/σ ≈ 13.57; the linear
sizes L of the other systems increase in steps of 3.5σ ,
i.e., L/σ ≈ 17.07; 20.57; 24.07 (in the figure legends, we
report the system size rounded down to the nearest integer;
our analysis uses the exact values, of course). For these
system sizes, the total number of mobile particles ranged
approximately between 1200 and 6000. The simulations were
equilibrated for at least 105 GC cycles, and averages were
obtained following production runs of 106–107 GC cycles
(longer runs were performed for state points close to the critical
point). A GC cycle consists of a number of attempted MC steps
equal to the average total number of particles in the system.

For the fluid mixture inside the porous medium, ρM > 0,
results were additionally averaged over M = 100 different
configurations of the porous medium. The medium config-
urations were generated by equilibrating a system of hard
spheres at fixed density ρM using canonical Monte Carlo
moves for at least 106 cycles (here a cycle is defined as one
attempted move per particle; as a canonical move we used
random displacements of single particles). After equilibration,
M configurations were collected and stored at intervals of
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FIG. 1. (Color online) Binder cumulant U4 as a function of the
fugacity z for different system sizes L. The upper panel (a) shows
the bulk result. Panels (b) and (c) show the result obtained in the
presence of the porous medium, at medium densities ρM = 0.1 and
0.2, respectively. The intersection of the curves for different values
of L yields the critical fugacity zcr (Table I).

105 cycles. Then, the mobile AB particles of the fluid binary
mixture were randomly inserted in the hollow cavities of the
porous medium, and the distribution P (m) of Eq. (3) was
obtained in production runs lasting 106–107 GC cycles.

III. RESULTS

A. Locating the critical point

Our first aim is to locate the critical point of the transition.
To this end, it is convenient to consider how the shape of
the distribution P (m) changes with the fugacity. In the bulk,
we recover the behavior typical of a critical transition. At
high fugacity, P (m) is bimodal with two well-resolved peaks,

TABLE I. Critical-point properties of the fluid mixture confined
to a neutral porous medium of density ρM as obtained in this work.
Listed are the critical fugacity zcr, and the critical density ρcr, both
with uncertainty.

ρM zcr ρcr

0 15.41 (15.37; 15.49) 0.4302(5)
0.1 34.3 (34.1; 34.4) 0.4032(5)
0.2 106.1 (104.8; 107.5) 0.380(1)

indicating two-phase coexistence. At low fugacity, P (m) is a
single peak centered around m = 0. At intermediate fugacities,
the system becomes critical, where P (m) remains bimodal, but
with overlapping peaks. The critical fugacity zcr is obtained
via the Binder cumulant

U4 = 1 − 〈m4〉
3〈m2〉2

, 〈mp〉 =
∫ ∞

−∞
mpP (m)dm, (4)

which becomes L independent at the critical point [38]. In
Fig. 1(a), we plot U4 as a function of z, for various system
sizes L. In agreement with the existence of a critical point,
we observe a regime of fugacities where the curves intersect.
For each pair of system sizes, the fugacity at the cumulant
intersection was determined, and subsequently averaged over
all pairs. The latter serves as our estimate of the critical fugacity
zcr and is reported in Table I; the numbers in the brackets are
the lowest and highest fugacities that were observed between
all intersections, which reflects the uncertainty of our estimate.

At the critical point, not only the cumulant is scale invariant,
but in fact the entire distribution P (m) [38,39]

z = zcr : P (m) ∝ P �(amLβ/νm), (5)

with β (ν) the critical exponent of the order parameter
(correlation length), P �(x) a scaling function that does not
depend on system size, and constant am. The critical exponents,
as well as P �(x), are characteristic of the universality class.
We provide numerical estimates of the critical exponents for
bulk Ising and RIM universality in Table II. In Fig. 2(a), we
plot P (m) obtained at criticality, but with the horizontal axis
scaled to conform to Eq. (5), using bulk Ising exponents. We
observe that the data for different L collapse, consistent with
a bulk Ising critical point. However, one should take these
observations with some caution, as the critical properties of the
RIM are very similar. Note that, in Fig. 2, only the exponent
ratio β/ν enters as a parameter which is, in fact, essentially
identical for both universality classes (and the same holds for
γ /ν, with γ the susceptibility critical exponent). Therefore,
while the data clearly show the presence of a critical point,
they do not unambiguously identify the universality class

TABLE II. Selected critical properties of the bulk Ising model,
and of the random Ising model (RIM) taken from various references
[17,41]; the uncertainty reflects the typical range of reported values.
The spatial dimension d = 3.

β/ν γ /ν ν

Ising 0.517(3) 1.966(3) 0.6304(13)
RIM 0.519(3) 1.963(5) 0.6837(53)
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FIG. 2. (Color online) Distribution P (m) obtained at the critical
fugacity z = zcr for various system sizes L and scaled conform
Eq. (5). The upper panel (a) shows the bulk result (ρM = 0) using bulk
Ising critical exponents. Panels (b) and (c) show the result obtained
in the presence of the porous medium, at medium density ρM = 0.1
and 0.2, respectively, where RIM critical exponents were used. Note
that, in all panels, the distributions were explicitly symmetrized “by
hand” after the simulation was completed.

(although, for the bulk case, there is no reason to doubt Ising
universality [33,35,40].

In the presence of the porous medium, the behavior of P (m)
is similar, and a critical point can still be identified. The only
complication is that results must be meaningfully averaged
over the M = 100 medium configurations. In contrast to the
RFIM [8,11], we observed that the peak positions in P (m)

did not fluctuate much between different configurations of
the porous medium. For this reason, the probability distri-
butions were simply averaged to yield the disorder averaged
distribution

[P (m)] ≡ 1

M

M∑
i=1

P (i)(m), (6)

where i labels the medium configurations. The cumulant
analysis of [P (m)] is presented in Fig. 1, panels (b) and (c), for
ρM = 0.1 and 0.2, respectively. We again observe that curves
for different values of L intersect, enabling rather accurate
estimates of zcr (Table I). The scaling of [P (m)] at criticality
is confirmed in the corresponding panels of Fig. 2, where the
critical exponents of the RIM were used. Again, we emphasize
that this analysis accurately locates the critical point, but
it does not warrant conclusions concerning the universality
class.

We also estimated the critical density ρcr. To this end, we
monitored how the density ρL varied with the system size L,
with ρL obtained in the finite system at the critical fugacity
z = zcr of Table I. The latter were subsequently extrapolated
to the thermodynamic limit using ρcr − ρL ∝ 1/L. We thus
ignore any singular behavior in ρcr, which is justified for
our purposes since the shift ρcr − ρL is typically small. The
resulting estimates of ρcr are reported in Table I. The listed
uncertainties reflect the scatter due to the uncertainty in zcr.
Our estimate of the bulk critical density compares well to ρcr =
0.4299 obtained in semigrand canonical simulations [33].
Note that, while zcr increases with ρM , ρcr decreases. The
increase of zcr conforms to a “kelvin-like” behavior, i.e.,
a suppression of the transition temperature upon increasing
confinement. The decrease of ρcr most likely reflects the fact
that an increasing fraction of space is occupied by the quenched
particles.

B. Correlation length critical exponent

We now attempt to measure the critical exponent ν of
the correlation length, using the finite-size scaling approach
of Ref. [42]. To this end, we select two of our data sets,
corresponding to different system sizes, L1 and L2. We then
vary the fugacity, and plot the cumulant y = U4(L2) of the
system with size L2 versus x = U4(L1) of the system with
size L1 (the curve is thus parametrized by the fugacity z). An
example is provided in Fig. 3. The critical point corresponds
to the fixed-point condition U4(L1) = U4(L2), i.e., where the
curve y(x) intersects the line y = x (indicated by the dot). The
correlation length critical exponent is determined by the slope
s = y ′(x) evaluated at the fixed point

ν = ln b/ ln s, b = L2/L1. (7)

Since y(x) is essentially linear around the fixed point, the slope
s can be determined rather accurately.

In Fig. 4, we plot the resulting estimates of ν versus ρM .
Since, for each value of ρM , we have data for four different
system sizes, a total of six measurements could be made
each time. The dots in Fig. 4 show the average of these
measurements, while the error bars reflect the root-mean-
square deviation. Clearly, the errors are rather large. However,
we do observe that ν inside the porous medium exceeds the
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FIG. 3. (Color online) Demonstration of the method of Ref. [42]
to determine the correlation length critical exponent ν (data refer to
the bulk system). The solid curve shows the cumulant of the system
with size L2, versus the cumulant of the system with size L1. The
intersection of this curve with the line y = x (dashed) marks the
critical point (dot). The slope s of the solid curve at the critical point
is related to ν via Eq. (7).

bulk value, a trend which is at least qualitatively consistent
with RIM universality.

C. Distribution of pseudotransition points

We now consider the distribution of pseudotransition
points; the latter are frequently encountered in systems
containing quenched disorder, and their analysis has attracted
much attention [43–47]. To be more specific, in a finite
system of size L, the fugacity zL,i where the system becomes
pseudocritical fluctuates between the i = 1, . . . ,M realiza-
tions of the porous medium (the term pseudocritical is used
because a finite system never becomes truly critical). The
pseudocritical fugacity zL,i may be defined as the fugacity

FIG. 4. (Color online) Correlation length critical exponent ν

plotted versus the density of the porous medium ρM , as obtained
using the method of Ref. [42]. The data reveal that ν inside the
porous medium exceeds the bulk value, in qualitative agreement with
RIM universality.

No. of samples M

No. of samples M

FIG. 5. (Color online) (a) “Running average” of the disorder av-
eraged pseudotransition fugacity [zL] versus the number of quenched
disorder samples M , for various system sizes L. (b) The same,
but for the fluctuation σL. All data refer to porous medium density
ρM = 0.1.

where the susceptibility

χL,i = V (〈m2〉 − 〈|m|〉2), (8)

reaches its maximum, as measured in the ith realization of the
porous medium, with m given by Eq. (2).

The key question is how the disorder fluctuation

σ 2
L = [

z2
L

] − [zL]2,
[
X

p

L

] = 1

M

M∑
i=1

X
p

L,i, (9)

decays with the system size L. In general, one expects a
power-law decay: σL ∝ 1/Lk , with k > 0. According to the
Brout argument k = d/2, with d the spatial dimension [48].
The Brout argument is correct, provided the correlation length
is finite, such that the system will eventually self-average.
However, at a critical point, the correlation length is infinite,
and self-averaging is violated. In that case, the fluctuations
decay slower, k = 1/ν, with ν the critical exponent of the
correlation length [45,46]. Note that, since fluctuations may
never decay faster than self-averaging, an interesting inequality
ν > 2/d is implied, which we immediately recognize to be the
Harris criterion [20,49,50].

For this analysis, it is important to use a sufficiently large
number of quenched disorder samples. In comparison to lattice
models of the RIM universality class, our off-lattice fluid
simulations are at a disadvantage here, since the number of
samples that could be simulated was restricted to M = 100.
In Fig. 5, we show typical “running averages” of [zL] and σL
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FIG. 6. (Color online) Decay of the fluctuation ln σL in the pseu-
dotransition points (defined via the maximum of the susceptibility)
as a function of ln L, for porous medium densities ρM = 0.1 (a)
and ρM = 0.2 (b). The data are approximately linear, indicating a
power-law decay σ ∝ 1/Lk , with k ∼ 0.9 obtained by fitting (dashed
lines).

plotted versus the number of samples M for various system
sizes. It appears that the running averages are close to reaching
their plateau values, but a larger value of M is clearly desirable.
In Fig. 6, we show how σL decays with L, for both densities
of the porous medium. Note that a double-logarithmic scale
is used. The data are compatible with a power-law decay. In
addition, the exponent of the decay, k ∼ 0.9, is smaller than
d/2 = 1.5, showing that self-averaging is violated, which is
indeed expected for RIM universality. However, the actual
exponent values are rather far removed from the RIM values
(as were our ν estimates of Fig. 4). We believe the most
likely explanation is the limited number of porous medium
realizations that we could simulate, which suggests that σL

could not be determined very accurately.
The fact that σL ∝ 1/L1/ν is also interesting in relation

to the average pseudotransition point [zL], whose shift from
its thermodynamic limit value zcr is given by the same form:
zcr − [zL] ∝ 1/L1/ν . Consequently, a graph of [zL] versus σL

should be linear, with the intercept corresponding to zcr. The
result is shown in Fig. 7, for both densities of the porous
medium. In both cases, the intercept is within the range of the
cumulant intersections of Table I.

D. Distribution of magnetization and susceptibility

Finally, we consider the disorder fluctuation in the actual
value of the susceptibility χL,i between the quenched disorder

FIG. 7. (Color online) Variation of [zL] with σL, for ρM = 0.1 (a)
and ρM = 0.2 (b). The dashed lines are linear fits, whose intercepts
correspond to zcr.

samples. To this end, we introduce the normalized squared
fluctuation

Rχ =
[
χ2

L

] − [χL]2

[χL]2
, (10)

with the disorder average [·] defined as in Eq. (9). Similarly,
we also introduce Rm to probe the disorder fluctuation in the
“magnetization”〈|m|〉L,i between samples. For each sample
of quenched disorder, we thus locate the fugacity zL,i of
the susceptibility maximum, then record the corresponding
values of χL,i and 〈|m|〉L,i , which are subsequently averaged
to yield Rχ and Rm. In this way, we follow the approach
of Ref. [43]. Alternatively, one might consider each sample
at the same fugacity, say at [zL], as was done in Ref. [18].
Independent of which method we used, Rm and Rχ increased
with the system size, as shown in Fig. 8(a) and Fig. 8(b),
respectively. The fact that Rχ and Rm remain finite, as
opposed to approaching zero with increasing L, is another
signature of self-averaging violation [45,46]. In Fig. 8(c), we
plot the ratio Rm/Rχ versus 1/L. Interestingly, it is very
close to the value 1/4 predicted by renormalization-group
theory [18].

Note that, in Fig. 8, only results for ρM = 0.1 are presented.
For ρM = 0.2, we also observe that Rχ and Rm remain finite,
but with significant scatter. This likely reflects a similar issue
in these data as in Fig. 7(b), where the data of the largest two
systems appear to be systematically off.

042131-6



FLUIDS IN POROUS MEDIA: THE CASE OF NEUTRAL WALLS PHYSICAL REVIEW E 88, 042131 (2013)

FIG. 8. (Color online) Variation of (a) Rm, and (b) Rχ versus 1/L,
as well as (c) the ratio Rm/Rχ . The lines in (a) and (b) are linear fits
meant to guide the eye. The horizontal line in (c) marks the value
1/4 of renormalization-group theory. All data refer to density of the
porous medium ρM = 0.1.

IV. DISCUSSION

In this work, we have considered the critical behavior
of a fluid confined to a random porous medium consisting of
neutral walls. Our aim was to confirm the universality class of
the corresponding liquid-vapor transition, expected to be the
one of the random Ising model. While it remains extremely
difficult to obtain accurate critical exponents for this off-lattice
system, evidence of random Ising behavior is revealed by
the disorder fluctuations. By monitoring the fluctuations in
the pseudotransition temperatures, the magnetization, and the
susceptibility between different realizations of the porous
medium, clear violations of self-averaging are observed.
Within the limitations of our data, these disorder fluctuations
scale with the system size as one would expect for the
random Ising model. Nevertheless, it is clear that much more
computer power would be needed to reach the accuracy levels
attainable in lattice spin models [19]. We surmise that for
such a high-resolution study the disorder averages should be
calculated over several thousands realizations of the quenched
disorder, whereas the present study adopted M = 100 samples
only.

For such a potential future study, it is advisable to restrict
ρM ∼ 0.1 or so. This value is large enough to induce random
Ising effects, yet small enough to avoid the severe equilibration
problems that set in at higher medium densities. Another
quantity that would be interesting to monitor is the coexistence
diameter [51]. Following the Harris criterion [20], the critical
exponent of the specific heat α is negative for the random Ising
model, but positive for the bulk Ising model. Such a change
in sign might yield a more pronounced numerical signature in
simulation data.
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