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We study numerically the phase-ordering kinetics of the two-dimensional site-diluted Ising model. The data
can be interpreted in a framework motivated by renormalization-group concepts. Apart from the usual fixed
point of the nondiluted system, there exist two disorder fixed points, characterized by logarithmic and power-law
growth of the ordered domains. This structure gives rise to a rich scaling behavior, with an interesting crossover
due to the competition between fixed points, and violation of superuniversality.
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I. INTRODUCTION

Relaxation through domain coarsening is a well-established
paradigm of slow nonequilibrium dynamics. Typically, it
takes place in the phase-ordering process following the
quench of a system, like a ferromagnet or a binary mixture, to
below the critical point [1,2]. The key feature of coarsening
is the unbounded growth of the size L(t) of ordered domains.
For large enough times, the existence of a dominant length
scale produces an interesting aging-scaling phenomenology
in various observable quantities [3–5]. The simplicity of
the structure is very attractive and is expected to be valid
beyond the realm of disorder-free phase-separating systems.
In recent years, this has prompted a considerable effort to
understand the role of disorder in systems where its presence
does not prevent phase-ordering [6]. Systems of this type
are disordered ferromagnets, namely systems where disorder
coexists with the low-temperature ferromagnetic order. The
unifying theme in this area has been the investigation of the
modifications produced by disorder on the properties of the
underlying pure systems [6–11].

In our previous works, devoted to the random-bond Ising
model (RBIM) and the random-field Ising model (RFIM)
[12–15], we have addressed two long-debated issues. The first
one was about the nature of the asymptotic growth law: power
law, with a disorder-dependent exponent, against logarithmic
behavior. The second was about the so-called superuniversality
hypothesis, according to which disorder affects the growth
law, but not the scaling functions of quantities like correlation
and response functions [16]. We have been able to clarify
both issues, presenting evidence for an asymptotic logarithmic
growth law and for the absence of superuniversal behavior.

The achievement of these results has required, in addition
to a considerable numerical effort, extensive use of a scaling
approach based on the competition between pure and disorder-
controlled behavior. The overall picture emerging from our
work suggests the existence of an underlying framework,
independent of the source of disorder, whose gross common
features are: (i) disorder slows down coarsening, producing
logarithmic asymptotic behavior; and (ii) the relevance of
disorder, in a sense to be made precise below, excludes the
validity of the superuniversality hypothesis. Differences from
system to system arise only in the quantitative details.

In this context, we undertook a study of the two-
dimensional site-diluted Ising model (SDIM), expecting
further confirmation of the above pattern. However, our
simulations have revealed a richer phenomenology that is
qualitatively different from that observed in the RBIM and
the RFIM. The major novelty is that, in the SDIM case,
more disorder produces slower growth only when disorder
is sufficiently small. If the amount of disorder goes beyond a
certain threshold, more disorder produces faster growth. This
lack of monotonicity does not fit into the crossover pattern
as observed in the RBIM and RFIM. However, the pieces of
what otherwise would be an intricate puzzle fall into place if
the scaling framework is adequately generalized. Scaling has
turned out to be an indispensable tool, without which sorting
out the SDIM phenomenology would have been a difficult task.

This paper is organized as follows. The model and the
simulations are presented in Sec. II. The study of the growth
law and its scaling analysis are carried out in Secs. III
and IV. Section V is devoted to the scaling analysis of the
autocorrelation function. Finally, in Sec. VI the conclusions
are presented.
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II. SITE-DILUTED ISING MODEL

A. Substrate

The substrate is prepared by generating configurations of
occupied sites as in random percolation. On the sites of a
square two-dimensional lattice there are independent random
variables ni , which take values ni = 1 (occupied site) with
probability p and ni = 0 (empty site) with probability d =
1 − p. The substrate is formed by the set of occupied sites. In
the following, d will be referred to as dilution.

Let us follow the evolution of the geometrical structure of
the substrate as dilution is varied from high to low values. We
denote the percolation threshold by pc. Then, for d > dc =
1 − pc � 0.4072, the substrate is formed by finite clusters of
occupied sites. Their characteristic size is

ξ (d) ∼ |dc − d|−ν, (1)

where ν = 4/3 and the fractal dimension is df = 91/48 [17].
The dilution range d > dc will not be considered in the
following since, in the absence of an infinite cluster, coarsening
cannot be sustained. At dc, ξ (d) diverges and an infinite
spanning cluster is formed. As d is lowered below dc, the
infinite cluster is fractal over distances up to ξ (d), while it
becomes compact over larger distances. In addition, finite
clusters are also present. This is the structure of the substrate
in the dilution regime dc � d � d∗, where d∗ is the special
dilution value defined by

ξ (d∗) = a, (2)

and a is a characteristic microscopic length, like the lattice
spacing. For dilutions below d∗, the infinite cluster is compact
over all length scales and there are no finite clusters. There
remain vacancies inside the infinite cluster that are essentially
single-site vacancies. Hence, in the dilution regime d∗ � d �
0, the average distance between pairs of vacancies defines a
new characteristic length:

λ(d) = a(d/d∗)−1. (3)

B. Spin system

The SDIM is obtained by putting Ising spins σi = ±1 on
the substrate or, equivalently, on the whole lattice and taking
an interaction Hamiltonian of the form

H = −J
∑
〈ij〉

ninjσiσj . (4)

Here, 〈ij 〉 denotes nearest-neighbor pairs, and J > 0 is a
ferromagnetic coupling constant. The variables {ni} enter the
problem as quenched disorder.

1. Equilibrium states

For d � dc, at low enough temperature the system exhibits
ferromagnetic order. In the (d,T ) plane there is a critical
line Tc(d), which separates the paramagnetic from the ferro-
magnetic phase. The equilibrium phase diagram is pictorially
represented in Fig. 1. The critical temperature, which in the
following will be measured in units of kB/J , where kB is the
Boltzmann constant, decreases from the pure Ising model value
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FIG. 1. (Color online) Pictorial representation of the equilibrium
phase diagram of the SDIM. The bold blue line is the critical tem-
perature Tc(d). The temperature T = 0.65 where most simulations
will be performed is marked with a dashed red line. Vertical arrows
represent the quenching processes considered in the simulations.

[Tc(0) � 2.269] as the dilution is increased and vanishes at dc

[Tc(dc) = 0] since the structure is disconnected for d > dc.

2. Time evolution

The occupied sites evolve with nonconserved dynamics
[1,2]. We use single-spin-flip transition rates of the Glauber
form

w(σi → −σi) = 1
2

[
1 − σi tanh

(
HW

i /T
)]

. (5)

Here, HW
i is the local Weiss field obtained by the sum

HW
i =

∑
j∈Li

njσj (6)

over the set of nearest-neighbors Li of i. We consider a cooling
procedure where the system is prepared initially in the infinite-
temperature disordered state. At the time t = 0, it is suddenly
quenched to a finite temperature T . We will study the following
two classes of quenches: (i) the dilution of the system is in
the range d ∈ [0,0.3] and the final temperature is T = 0.65
(represented by the cyan vertical arrows in Fig. 1); (ii) we
have d = dc and different values of T > 0 (represented by the
violet arrows in Fig. 1).

In the first case, the system is always quenched well below
the critical temperature Tc(d) [18], as sketched in Fig. 1. In this
situation, one can speed up the simulations by using a modified
dynamics where spin flips in the bulk of domains, namely
those aligned with all the nearest neighbors, are prevented.
This modified dynamics does not alter the behavior of the
quantities we are interested in, as has been tested in a large
number of cases [19]. We have checked that this is also true in
the present study.

In the second case, the system is quenched to finite
temperatures, because at T = 0 the evolution gets frozen in
metastable states and there is no long-time dynamics. Hence,
we are quenching above the critical temperature Tc(dc) = 0
and the system will eventually relax to a disordered state with
a finite spin coherence length ξσ (T ) [not to be confused with
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the substrate property ξ (d)]. However, since ξσ (T ) diverges
very fast for T → 0, a coarsening phenomenon is seen in the
preasymptotic stage. The corresponding growth of L(t) will
eventually end at t = teq(T ) when L(t) � ξσ (T ). The situation
is similar to the one found in other ferromagnetic systems with
Tc = 0 as, for instance, the one-dimensional Ising model with
conserved dynamics [20]. In order to study the ordering phe-
nomenon, we have set T sufficiently low as to never observe
the equilibration of the system. Further, it can be shown that
flips of bulk spins are only observed for t � teq(T ), so we use
the modified dynamics discussed above in this case also.

3. Simulation details

The details of the simulations are as follows. We have
considered a two-dimensional square lattice system of N =
20002 lattice sites. We have checked that, with this choice, no
finite-size effects can be detected in the time-regime accessed
by the simulations. For every choice of the parameters, we
perform a certain number (in the range 10–100) of independent
runs with different initial conditions and thermal histories
in order to populate the nonequilibrium ensemble needed to
extract average quantities that will be introduced below.

C. Observables

The two observable quantities of interest in this paper are
the typical domain size L(t) and the autocorrelation function:

C(t,tw) = 1

N

N∑
i=1

[〈σi(t)niσi(tw)ni〉 − 〈σi(t)ni〉〈σi(tw)ni〉],

(7)

where t, tw (0 < tw < t) are a pair of times after the quench.
The angular brackets denote a nonequilibrium ensemble aver-
age, taken over random initial conditions and over dynamical
trajectories.

For a model defined on a disconnected substrate, as it
happens for d > d∗, phase ordering occurs independently on
the various parts of the system and, correspondingly, different
definitions of the growing length can be given. Indeed, while
on the spanning cluster growth continues indefinitely, on finite
clusters it saturates to their size. Since we are interested in
the aging phenomenon related to the existence of a divergent
length, we define L(t,d) as the characteristic length of the
ordered regions that are effectively growing. As we will discuss
soon, this quantity can be computed as the inverse excess
energy:

L(t,d) = [E(t,d) − E∞(d)]−1. (8)

Here, E(t,d) = 〈H (t)〉 is the energy at time t , and E∞(d) is
the energy of the equilibrium state at the final temperature
T . Equation (8) is often used to determine L(t) in nondiluted
systems [1]. It expresses the simple fact that the excess energy
of the coarsening system with respect to the equilibrated one
is associated with the density of domain walls. This, in turn,
is inversely proportional to the typical domain size. Besides
its simplicity, in the diluted case the definition Eq. (8) has
the further advantage that the disconnected finite parts of the
substrate that are already ordered do not contribute to the
computation of L(t,d). Indeed a finite cluster is by definition
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FIG. 2. (Color online) The behavior of the typical length L(t)
after a quench to T = 0.65 is shown in the upper panel for the three
dilutions d = 0, d = d∗, and d = dc in a double logarithmic plot. In
the lower panel the same quantity is shown in a three-dimensional
plot as t and d are varied. Color code is from light blue [L(t,d) very
small] to violet [L(t,d) very large]. The three bold lines are the curves
for d = 0, d = d∗, d = dc plotted in the upper panel.

surrounded by empty sites and hence there is no excess energy
associated with it when its spins are aligned.

III. GROWTH LAW

The time dependence of L(t,d), for the three dilution
values d = 0, d∗ = 0.225, dc, is plotted in the upper panel of
Fig. 2. Here d∗ is identified as the dilution value corresponding
to the slowest numerically observed asymptotic growth. The
connection with the dilution d∗ of Eq. (2) will be clear below.
The plot shows that disorder is a relevant perturbation with
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FIG. 3. (Color online) In the upper insets the raw data for L(t,d) are plotted for quenches at T = 0.65 and various 0 � d � d∗ (left panel)
or d∗ � d � dc (right panel) in a log-log plot. In the main figures the scaling functions � (left panel) and L (right panel) are plotted in a log-log
plot against ln x, where x = t1/z/λ(d) (left panel) or x = t1/ζ (T )/ξ (d) (right panel). The dashed violet and green lines are the fitting curves
y ∝ x and y = (a + b ln x)1/ψ with x = t1/z/λ(d) and the values of a, b, ψ given in the text (the curves have been vertically displaced for
clarity). The lower insets show the dependence of the rescaling parameter λ(d) and ξ (d) on d . The bold red lines are the expected behaviors,
respectively, Eq. (3) and Eq. (1).

respect to pure behavior, since for d > 0 the late time growth
is considerably slower than the pure-like power law. However,
contrary to what is observed in the Ising model with random
bonds and random fields [7–15], Fig. 2 shows, as anticipated in
the Introduction, that the d-dependence of L(t,d), at fixed time
t , is nonmonotonic. The nature of the problem can be grasped at
a glance by looking at the lower panel of Fig. 2, which has been
produced by a fine sampling of the dilution range [0,dc]. In
the three-dimensional plot, the growth law appears as a surface
with the shape of an upward bending valley. The growth-law of
the pure system, denoted as L0(t), is marked in the figure with
a bold blue line. This is the case where the growth is faster, as it
can be clearly seen, in agreement with the general observation
that, particularly at low T , the dynamics of a disordered system
is slower than in the corresponding pure one, because disorder
pins the interfaces. Naively, one could also expect that the
kinetics get slower and slower as the parameter that controls the
strength of the disorder (in this case d) is increased, as it is gen-
erally observed in various disordered ferromagnetic models
[7–15,21,22]. This feature is also found in the present system
but only when the dilution is increased from zero up to d = d∗.
The growth-law at this density is marked by the bold dark line
at the bottom of the valley in the figure. For d > d∗, growth
increases again up to the bold yellow line corresponding to
L(t,dc). The nonmonotonous character of the growth law, for
fixed t , corresponds to descending toward the bottom of the val-
ley and then climbing again as d is varied. This nonmonotonic-
ity prevents the explanation of the data within the straightfor-
ward scaling framework arising from the competition between
an unstable pure fixed point and a stable disorder-controlled
fixed point [13–15]. In the next section we shall develop the
scaling approach required by the above phenomenology.

IV. SCALING

From the discussion of the substrate made in Sec. II A,
the three dilutions d = 0, d = d∗, d = dc emerge as special

values, since the asymptotic states toward which the system
evolves are scale-free, in the sense that all lengths involved
are either zero or infinite. Clearly, L(t,d) diverges in all cases
as t → ∞. In addition, λ(0) = ∞, ξ (dc) = ∞, and, at d∗,
both ξ (d∗) and λ(d∗) are of the order of the microscopic
length a, which for the sake of simplicity we shall now
treat as negligible, that is ξ (d∗) � λ(d∗) � 0. Therefore, the
three dilutions d = 0, d = d∗, d = dc are candidates for fixed
points, in the renormalization group (RG) sense of the word,
lying on the dilution axis.

If this was correct, the growth low for d other than a fixed
point value ought to exhibit crossover from the preasymptotic
behavior, characteristic of the nearby unstable fixed point, to
the asymptotic behavior characteristic of the nearby stable
fixed point. Indeed, this is what happens.

A. Small dilution: 0 � d � d∗

Let us consider first the dilution regime 0 � d � d∗, which
will be referred to as small dilution. Assuming scaling and
recalling that in the pure case

L(t,0) ∼ t1/z, (9)

with z = 2, the growth law can be written in the form

L(t,d) = λ(d) �

(
t1/z

λ(d)

)
. (10)

According to the assumption, the data obtained for different
values of d should collapse on a single master curve �(x) by
plotting L(t,d)/λ(d) against x = t1/z/λ(d). This is shown in
the left panel of Fig. 3. The upper inset displays the raw data in a
log-log plot: The upper straight line is the power law Eq. (9) of
the pure case. As d is increased from zero, growth slows down
and converges toward L(t,d∗), which is the slowest growth.
Extracting empirically the length λ(d) (lower inset) the data
can be collapsed, as depicted in the main panel.
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The master curve in the left panel of Fig. 3 grows linearly in
x for 1 � x and can be fitted with the curve y = (a + b ln x)1/ψ

with a = 0.3232, b = 0.5325, and 1/ψ = 2.3545 in the region
x � 1. In conclusion,

�(x) ∼
{

(ln x)1/ψ , for x � 1,

x, for x � 1.
(11)

This shows that the pure-like behavior of Eq. (9) is unstable to
disorder perturbation and that the d∗-behavior,

L(t,d∗) ∼ λ(d) (ln t)1/ψ , (12)

with 1/ψ � 2.35, is asymptotically dominant for all d in the
range (0,d∗]. The logarithmic behavior Eq. (12) is in contrast
with the results of Ref. [9], where data are interpreted as
power law growths for any d (although in the third reference
in Ref. [9] compatibility with logarithmic behavior was also
indicated), while it agrees with results for small dilutions of
Ref. [22] (where, however, a slightly larger exponent 1/ψ �
2.5 is reported). The discussion above shows that d = 0 and
d∗ can be identified, respectively, with the unstable and the
stable fixed point in the small dilution regime. Notice (lower
inset of the left panel in Fig. 3) that λ(d) ∼ d−1 as d → 0,
in agreement with the behavior expected from Eq. (3), and
that the the collapse is not perfect. The spread of the curves for
x � 1 reveals the existence of a correction to scaling due to the
microscopic length a introduced in Eq. (2). a enters the scaling
function of Eq. (10) through an extra variable t1/z/a, which
does not appear explicitly in order to keep a compact notation.
Since generally a � λ(d), this term produces corrections at
small times, as we observe in Fig. 3.

B. Large dilution: d∗ � d � dc

Let us first of all recall the discussion of Sec. II B2,
according to which all the quenches with d < dc are below
the critical temperature, while in the quench with d = dc we
consider the preasymptotic phase-ordering stage preceding
equilibration in a disordered state. This being said, a scaling
analysis analogous to the previous one can be carried out in the
large dilution regime d∗ � d � dc. Looking at the raw data in
the upper inset of the right panel of Fig. 3, the fastest growth
occurs at dc, slowing down as d decreases and converging
toward L(t,d∗), which is again the slowest growth. Therefore,
in the large dilution regime the unstable fixed point is at dc,
while d∗ is still the attractive fixed point, being stable with
respect to perturbations from both the small and the high
dilution side. As shown in Fig. 4, right at dc the growth law
obeys the power law (see Fig. 4),

L(t,dc) ∼ t1/ζ (T ), (13)

where ζ (T ) > 2 is a temperature-dependent exponent. For low
temperatures, this behaves as

ζ (T ) ∼ T −1. (14)

An argument to explain these facts will be presented below in
Sec. IV C.

Recalling that in the large dilution regime the characteristic
length is given by ξ (d), the scaling form of the growth law,
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FIG. 4. (Color online) L(t,dc) is plotted against t in a quench at
different temperatures (see key). In the inset, ζ (T ) (obtained as the
best fit of the curves in the large-t sector) is plotted against T in a
double logarithmic graph. The bold green line is the law T −1.

analogous to Eq. (10), is given by

L(t,d) = ξ (d)L
(

t1/ζ (T )

ξ (d)

)
, (15)

where the chosen value of the final temperature T enters
explicitly through ζ (T ). This is checked following the same
procedure as above. After extracting the length ξ (d) (see lower
inset in the right panel of Fig. 3), the collapse of the data is
displayed in the main panel, with the master curve obeying
limiting behaviors analogous to those in Eq. (11)

L(x) ∼
{

(ln x)1/ψ , for x � 1,

x, for x � 1,
(16)

where now x = t1/ζ (T )/ξ (d), and 1/ψ � 2.35.

C. An argument for L(t,d)

In this section we present an argument which explains the
growth laws observed. We start with the case d = dc, focusing
attention on the fractal spanning cluster, a portion of which is
schematically sketched in Fig. 5.

The six panels represent different snapshots of the system
while it is progressively crossed by an interface. Up spins are
colored in blue (dark gray), while the down ones are red (light
gray). Initially, at some time t0 (upper-left panel), the interface
is located on the very left of the figure, and then it moves to the
right at the subsequent times, t0 + τ0 < t1 < t1 + τ1 < t2 <

t2 + τ2, represented in the other panels. The cutting bonds [17],
namely those links whose removal causes disconnection, are
represented as lines connecting bulky regions, free of cutting
bonds, represented by squares. Let us denote with L1 the size
of the down-spin domain at time t1 and with L2 that at t = t2.
One has L2 = kL1 (k = 2 in the figure) or, in general, defining
Lm as the size at time tm,

Lm = kLm−1. (17)

Analogously, by counting the number of down spins N1 (N2)
at t = t1 (t2), one has N2 = nN1 (n = 3 in the figure) and, in
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FIG. 5. (Color online) Schematic representation of coarsening on the percolation network. An x represents an unsatisfied bond.

general, Nm = nNm−1. This implies that the fractal dimension
df of the substrate defined by Nm ∝ L

df

m is df = ln n/ ln k.
We now want to study the energetic barriers that the

interface has to overcome while moving. The highest energy
Emax

1 (Emax
2 ) of the interface in the time interval [t0,t1] ([t1,t2])

will occur at some intermediate time t0 + τ0 (t1 + τ1), as
sketched in the figure. Notice that, in going from t1 to t2,
the two bulky regions can be crossed one after the other. This
imply Emax

2 � Emax
1 + qJ because at time t1 + τ1 there is an

energy Emax
1 associated to the piece of interface spanning the

upper bulky region, as at t = t0 + τ0 (we make the assumption
that bulky regions are equivalent) but an extra bond (q bonds in
a more generic network) with misaligned spins is present (the
one connecting the lower bulky region), with an associated
energy J . Generalizing the above result to a generic step one
has Emax

m = Emax
m + qJ . The height of the energetic barrier in

going from tm to tm+1 is given by 
Em = Emax
m − Emin, where

the minimum energy of the interface Emin is taken at tm and at
tm+1 and it does not depend on m because there is always the
same number of broken bonds in these states. This implies


Em+1 = 
Em + qJ. (18)

Expressing m in terms of the size Lm through Eq. (17),
and dropping the index m (i.e., posing Lm = L) we can
write 
E(kL) = 
E(L) + qJ. Solving we find scaling of the
barriers with L as


E(L) = a ln L, (19)

with a = qJ/ ln k. Finally, using the Arrhenius law t ∼
e
E/(kBT ) for the time needed to exceed an energetic barrier

E, we arrive at

L(t) ∝ t1/ζ (T ), (20)

with

ζ (T ) = a

kBT
, (21)

which agrees with Eqs. (13) and (14).
The situation is different for d < dc, because here the

cutting bonds are absent. In order to represent this property
schematically, we increase the connectivity of the substrate of
Fig. 5 in such a way that any bulky region is directly connected
by q link with the others, as shown in Fig. 6 (where q = 1).

Starting from a configuration of minimum energy Emin
1 =

2qJ at time t1 one arrives to a maximum Emax
1 = 4qJ at

time t = t1 + τ1. Then the new minimum with Emin
2 = 4qJ

is reached at t2, followed by the next maximum of energy
Emax

2 = 8qJ at t = t2 + τ2. On a generic structure, for a
generic m one has Emin

m = KmqJ and Emax
m = bKmqJ , where

K describes how the number of links increases as the interface
spans the structure and b is a constant (K = 2 and b = 2 in
the figure). Hence, 
Em = (b − 1)KmqJ . Then, due to the
modified connectivity of the network, in place of Eq. (18) one
has


Em+1 = 
Em + (b − 1)(K − 1)KmqJ, (22)

t1
x

xx

t1+τ1

x
x

x

x

t2 x

x

x

x

t2+τ2

x

x

x

x
x
x

x
x

FIG. 6. (Color online) Schematic representation of coarsening on the network with d < dc.
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leading to 
E(kL) = 
E(L) + (b − 1)(K − 1)(L/L0)ψqJ ,
with ψ = (logK k)−1, from which


E(L) = aLψ, (23)

where a = (b − 1)(K − 1)qJ/[Lψ

0 (Kψ − 1)]. Using the Ar-
rhenius law, one arrives at

L(t,d < dc) ∝ (ln t)1/ψ , (24)

in agreement with Eq. (12). Notice that, in the present
approach, the striking difference between the two growth laws
[Eqs. (20) and (24)] is due to the different topological features
of the substrate right at d = dc or for d < dc, specifically
due to the presence or absence of cutting bonds. Given the
fundamental role played by the topology of the substrate, the
above argument cannot straightforwardly be related to those
in Refs. [9,23], which rely on different physical ingredients.

V. AUTOCORRELATION FUNCTION

Scaling is expected to hold for any other observable
quantity. In particular, for the autocorrelation function Eq. (7),
we expect

C(t,tw,d) =
{

c
(

L(t)
L(tw) ,

λ(d)
L(tw)

)
, for d � d∗

C
(

L(t)
L(tw) ,

ξ (d)
L(tw)

)
, for d � d∗,

(25)

with the limiting forms of the scaling functions

c(x,y) =
{

C0(x), for y → ∞
Cd∗ (x), for y → 0

(26)

and

C(x,y) =
{

Cdc
(x), for y → ∞

Cd∗ (x), for y → 0.
(27)

Here, C0(x) is the thoroughly studied scaling function of the
pure system [1,24,25], while Cd∗ (x) and Cdc

(x) are the scaling
functions at the other two fixed points which, as far as we know,
have not been studied before. Notice the absence of powers of
L in front of the scaling functions. As it is well known [26], this
is due to the fact that domains grow compactly on the substrate,
even if the substrate itself, as at the percolation threshold dc,
may be a fractal.

According to the scaling forms above, if the dilution is set
exactly at the fixed point values d = 0, d = d∗, d = dc, where
either λ(d) = 0 or λ(d) = ∞, or ξ (d) = ∞, the autocorrela-
tion function should depend only on x = L(t)/L(tw) when tw
is sufficiently large. This prediction is checked in Fig. 7, where
for these three special dilutions the expected data collapse is
obtained by plotting C against x. In the case with d = 0 (lower
set of curves) one recovers the well-known result [1,24] of a
convergence toward data collapse in the large-tw limit. Poor
data collapse at early tw is a feature related to the preasymptotic
corrections to scaling due to the microscopic length a [1,24].
By contrast, at d∗ (set of curves in the middle) and at d = dc

(upper set of curves), an excellent data collapse is obtained
even for moderate values of tw. For any value of x > 1, the
fixed point scaling functions satisfy the inequality

C0(x) < Cd∗ (x) < Cdc
(x). (28)

1 10
x

0.1

1

C
(t,

t w
;d

,T
)

tw=10
tw=42
tw=162
tw=626
tw=2420
tw=9358
d=0
d=d*

d=dc

d=d*

d=dc

d=0

FIG. 7. (Color online) Data collapse of C(t,tw; d) against x =
L(t)/L(tw), for different values of tw (see caption), for a quench to
T = 0.65 and the three fixed-point dilutions d = 0 (lower curves),
d = d∗ (central curves), and d = dc (upper curves).

Next, let us look at dilutions other than the fixed-point
values. The two cases, the first with 0 < d < d∗ and the second
with d∗ < d < dc, are depicted in Fig. 8 (left and central
panel). Here we find that, at variance with the fixed-point
cases, the curves for different tw do not collapse. However,
in both cases as tw is increased the curves tend to the scaling
function Cd∗ (x) of the attractive fixed point at d∗ (from below
and from above, respectively). Given the inequality Eq. (28),
these behaviors imply that c(x,y) and C(x,y) are slowly
crossing over from the preasymptotic forms C0(x) and Cdc

(x),
respectively, at early tw, to the asymptotic one Cd∗ (x) as y is
varied. This is a clear-cut confirmation of the crossover pattern
uncovered from the study of the growth law in Sec. IV.

An alternative representation of crossover is given in the
right panel of Fig. 8. Here, C(t,tw,d) is plotted against tw for
fixed x = t/tw and for different dilution values spanning the
whole range [0,dc]. At the three fixed points (d = 0, d∗, dc) the
curves converge toward the respective asymptotic values. For
values of d different from these, the curves are asymptotically
attracted toward the one corresponding to d∗. Notice that,
for values of d sufficiently close to dc (as for the case d =
0.35), the preasymptotic behavior corresponding to the nearby
unstable fixed point is observed. Indeed, the curve initially
increases (toward the plateau value of the case d = dc), and
then decreases toward the value of the d = d∗ case.

Let us stress that, due to the presence of the variable
y = λ(d)/L(tw) [or ξ (d)/L(tw)] in Eq. (25) the autocorrelation
function is a function of x = L(t)/L(tw) only if d is set
to one of the fixed-point densities where y vanishes or
diverges. Conversely, in Ref. [22] collapse of the curves for the
autocorrelation is found when plotted against x at any value of
d. This can be perhaps understood as due to the large values
of tw used in Ref. [22]. It must be recalled in fact that in the
large-tw limit the curves approach the master curve Cd∗ of
the attractive fixed point, and it may be numerically hard to
detect the dependence on y. However, the dependence on y

implied by the scaling picture is present, as it is clearly visible
in Fig. 8. Moreover, at least in one case the results of Ref. [22]
are obtained for a value (d = 0.2) of the dilution so close to

042129-7



CORBERI, LIPPIELLO, MUKHERJEE, PURI, AND ZANNETTI PHYSICAL REVIEW E 88, 042129 (2013)

x
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C (x)
C (x)
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d=0.05 , t =162
d=0.05 , t =626
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d=0.05 , t =9358

d=d*

d=0
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)

d=0.3 , t =10
d=0.3 , t =42
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0.65

0.7

C
(x

=2
,t w

,d
)

d=0
d=0.01
d=0.05
d=0.1
d=0.15
d=0.2
d=d
d=0.25
d=0.3
d=0.35
d=d

FIG. 8. (Color online) C(t, tw; d) is plotted against against x = t/tw for different choices of tw (see caption) in a quench to T = 0.65
and d = 0.05 (left panel), and d = 0.3 (central panel). The bold curves with heavy symbols are the scaling functions C0(x), Cd∗ (x), Cdc

(x)
(see caption). In the right panel we plot C(t, tw; d, T ) against tw by fixing x = t/tw = 2 in quenches to different values of d (see caption)
spanning the entire range [0 − dc]. The bold dashed lines are guides to the eye representing the asymptotic values limtw→∞ C(x = 2, tw, d = 0),
limtw→∞ C(x = 2, tw, d = d∗), limtw→∞ C(x = 2, tw, d = dc) (from bottom to top).

d∗ to basically probe the scaling at d∗ where indeed there is
no further dependence on y.

Finally, notice that the scaling behavior of the autocorre-
lation discussed insofar excludes superuniversality, since the
three scaling functions C0, Cd∗ , and Cdc

are different, depend
on the disorder strength d, and obey the inequality Eq. (28).

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the phase-ordering kinetics of
the two-dimensional diluted Ising model. Numerical data can
be consistently interpreted in a RG-inspired scaling scheme
with three fixed points (FPs): an attractive FP at d = d∗ and
two repulsive FPs at the limits d = 0 and d = dc of the possible
dilution values. This structure can be geometrically interpreted
as due to the existence of two sectors separated by d∗: for
d < d∗, vacancies play the role of isolated voids separated by
a distance λ(d) ∝ d−1, whereas for d > d∗, the spin network
has a percolative fractal structure up to distances ξ (d) ∝ (dc −
d)−ν . At d∗ these two lengths become microscopic and merge,
while they respectively diverge at d = 0, dc, providing in this
way three FPs for the dynamics and an associated pattern of

crossovers regulated by their attractive or repulsive character.
This behavior excludes superuniversality, as has been clearly
shown when discussing the properties of the autocorrelation
function.

We should also comment on the fact that, at least at
dc, the growth law of the domains can be understood in
terms of topological properties of the spin network as, in
particular, the weakness of the fractal graph due to the presence
of the cutting bonds. Although the argument presented in
Sec. IV C has been developed for L(t), we expect that the
role played by the topology might affect other observables.
This observation provides a link between the actual system
and the related problem of phase-ordering on fractal structures
where the importance of analogous topological properties has
been pointed out [27].

Finally, given the rather general character of our arguments,
one might ask if an analogous fixed-point structure and a
similar role played by topology could also have important
consequences in ferromagnets with a different kind of disorder
such as, for instance, random bonds. This issue requires
careful investigation and is beyond the scope of the present
work.
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