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When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is
important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple
exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model
mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving
rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply,
the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with
mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current
and density profiles provide quantitative insights into the regulation of the transcription and translation process
in bacterial protein synthesis.
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I. INTRODUCTION

One of the paradigms in nonequilibrium statistical me-
chanics, the totally asymmetric simple exclusion process
(TASEP), brings insights to various transport phenomena in
stochastic systems. Originally proposed in the context of
protein synthesis [1] and pure mathematics [2], TASEP now
finds its versatility in biological transport [1,3–9], traffic flow
[10–12], surface growth [13], and much more [14,15].

The simple TASEP consists of particles moving unidirec-
tionally along a one-dimensional lattice (at a site-dependent
rate γi , typically unity for all lattice sites) with particles
experiencing hard-core exclusion. For periodic boundary
conditions, the stationary distribution is trivial [2] but contains
rich dynamics [16]. With open boundary conditions where
particles enter with rate α and exit with β, three phases
emerge and the steady state can be characterized as [17]:
(i) low-density (LD) phase with average density 〈ρ〉 = α,
(ii) high-density (HD) phase 〈ρ〉 = 1 − β, and (iii) a maximal
current (MC) phase 〈ρ〉 = 1/2. Along α = β < 1/2, LD and
HD coexist with a sharp “shock” wandering throughout the
system. The coexistence line is referred to as the shock phase
(SP). The exact steady-state solution is known [18–20] (for a
recent review, see Ref. [21]).

In most transport systems, however, the hopping rate γ of
particles is rarely homogeneous throughout the system. The
supply of particles can also be far from thermodynamic limit,
sometimes even on par with the system size. The interplay
of inhomogeneous hopping and finite reservoir regulates the
overall flux, a quantity that characterizes the steady state of
the entire system. We note that despite much effort in studying
variations of TASEP, the effect due to local defect in the
presence of limited particle supply remains unexamined. Our
study here reveals a regime where the steady-state current is
limited by the strength of the local defect despite tuning of the
entry. Utilizing a domain wall approach, we also identify the
localization of the shock demonstrated in the density profiles
in this regime.

We provide a brief summary of relevant earlier studies here.
More details on how either aspect affects the system properties,
respectively, are reviewed in the next section.

Open TASEP with a single defect restricted in the middle
of the lattice was first studied in Ref. [6]. Using a mean-
field approach, Refs. [6] and [22] provided approximations
for the bulk densities on either side of the defect as well
as the current in steady state. In Ref. [22], scaling exponents
are found numerically for the deviations of the density profile
near the defect. Driven by both mathematical and biological
communities, multiple slow sites, including fully inhomoge-
neous cases, have been under investigation [4,5,14,23–27].
Even though a complete analytical picture for TASEP with
inhomogeneity remains elusive, various levels of mean-field
approximations proved successful in capturing the current
[24,27], a key quantity characterizing the steady state of the
system. Additionally, TASEP with extended particles [5,8,28]
and recharge dynamics [29–31] have been studied.

On the front of finite particle reservoir [32–36], various
rules have been implemented to regulate particles’ entry to the
system. For instance, the authors of Ref. [12] investigated
the parking garage problem and applied a constant entry
rate until the particle pool was depleted. In the context of
translocating ribosomes on a messenger RNA template [32],
the entry rate depends on the number of particles remaining in
the pool. In the simple case where a reservoir of ribosomes
supplies to a single mRNA, a crossover regime appears
as the system transitions from LD to HD [32], which is
characterized by a localized “shock” in the density profile
[33]. References [34–36] presented more generalizations on
multiple mRNAs competing for ribosomes from the same
reservoir and identified the relation between lattice parameters
and the reservoir density.

When the steady-state flux is in question, the regulation
from entry and hopping rate of particles can affect the system
in various ways. In the case of ribosomes translating on
mRNA, optimizing the overall current explores the general
regime between entry-limiting and hopping-limiting scenarios.
Similarly, in regulating traffic flow, a slow segment on the road
may well cancel the efforts in tuning the “on-ramp.”

To confirm these intuitions and chart the entry- and exit-
limiting and hopping-limiting regions, we study the effects
of TASEP coupled to a finite pool of particles with a defect
located at its center in this article. Through several refined
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mean-field approximations, we explicate on how the defect site
and the regulated entrance from a finite pool of particles affect
the overall average density, current, and density profiles in a
wide range of parameters. We see novel behaviors emerging
in these quantities, particularly in density profiles. The paper
is organized as follows: we first review relevant results in
Sec. II. We define our model and present our simulation results
for a single TASEP in Sec. III. Several analytical approaches
are presented in Sec. IV. Finally, we summarize and provide
further avenues of investigation in Sec. V.

II. SYNOPSIS OF PREVIOUS RESULTS

A. Finite resources

Previous studies of the open TASEP with finite resources
include both single [12,32,33] and multiple TASEPs [34–36].
In these studies, the entry rate depends on the number of
particles remaining in the pool Np through the expression

αeff = α tanh

(
Np

N∗

)
, (1)

where α is the entry rate with unlimited resources and N∗ is a
scaling factor that controls the strength of the feedback. When
Np � N∗, indicating a scarce supply of particles, then the
entrance grows linearly with the pool. When more particles
are added to the reservoir, Np � N∗, the entry rate returns to
the unlimited resources situation. Since the particles are
recycled back into the pool once they leave the TASEP, the
total number of particles Ntot in the system (pool + TASEP)
remains constant. For the single TASEP case, the three phases
from the original TASEP reappear [32]. However, a new type
of SP appears when the system crosses from LD to HD. The
shock is localized to a small portion of the lattice for a range
of Ntot values [33]. The strength of the localization depends
on N∗ and the number of TASEPs utilizing the particles in
the pool [33]. When the pool is supplying several TASEPs,
various combinations of the LD, HD, MC, and SP (with and
without shock localization) can occur [34–36].

While mean-field results capture most aspects of the current
and average density [32], we need to use a domain wall (DW)
approach [37] to understand the features in the density profiles
manifested in Monte Carlo simulations [33]. On the lattice, a
LD region and a HD region are separated by a sharp DW. This
DW performs a random walk along the lattice of length L and
is being reflected back into the lattice at the boundaries. With
a finite pool of particles, the motion of the DW changes the
number of particles remaining in the pool, which in turn affects
the value of αeff. By rewriting Np in terms of the domain wall
position x, αeff now explicitly depends on the site that the DW
is located [33]:

αeff,x = α tanh

(
Ntot − (1 − β)(L − x) − xαeff,x

N∗

)
. (2)

This self-consistent equation allows us to find αeff,x numeri-
cally for each value of x. By setting the density of LD and HD
regions to be αeff,x and 1 − β, respectively, the hopping rates

at site x become site-dependent [33]:

D+
x = β(1 − β)

1 − β − αeff,x
(3)

D−
x = αeff,x(1 − αeff,x)

1 − β − αeff,x
. (4)

The probability of finding the DW at site x, P (x), can be
obtained from the master equation for the motion of the DW.
The density profile is calculated from the P (x) distribution
[33]. Additionally, the DW approach accurately predicts the
Ntot value at which the system transitions from LD to the new
SP and from SP to HD.

B. Defects

Both a naive mean-field (NMF) approach [6,22] and finite
segment mean-field theory (FSMF) [4] have been employed to
study open TASEPs with defects. In the presence of a single
defect with hopping rate larger than γ = 1, the density profile
remains the same as the ordinary TASEP except in a localized
region around the defect. For a defect with hopping rate q < 1,
the overall system is found to be either q-limiting or α (or
β)-limiting. In the former, particles pile up behind the defect.
The density profile contains a HD region jointed through the
defect to a LD region. Neglecting spatial correlations across
the slow site, the authors of Ref. [6] computed the densities
for the two regions as well as the steady state current:

ρH = 1

1 + q
(5)

ρL = q

1 + q
(6)

J = ρH/L(1 − ρH/L) = q

(1 + q)2
. (7)

In the case of α (or β)-limiting, the system returns to an
ordinary TASEP found either in LD or HD with a continuous
density profile.

For particular values of q, spatial correlations become
important in determining the current [4,8,22,23]. To account
for the correlations, FSMF computes the exact current of an
n-site lattice segment including the defect and matches it to the
currents in the bulk of the two sublattices [4]. This approach
is performed numerically up to n ∼ 20. Comparing the results
with Monte Carlo simulations, the authors found that typically
only three or four sites are needed to obtain accurate results.

III. MODEL DEFINITION AND SIMULATION RESULTS

Our model consists of a single open TASEP of length L with
a slow site located in the center of the lattice. Meanwhile, the
system is coupled to a finite pool of particles. Particles enter
the system from the pool (provided the first site is empty)
with probability αeff given in Eq. (1). Each particle on the
lattice moves to the adjacent vacant site with unit probability,
except at the defect with probability q < 1. Particles leave
the system at the last site of the lattice with probability β

and are immediately recycled back into the pool of particles.
The pool and lattice sites are updated sequentially at random.
We define a Monte Carlo step (MCS) to be L + 1 updates,
giving equal probability to update each lattice site as well as
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FIG. 1. (Color online) Overall (blue circles) average density and
(red triangles) current as a function of Ntot/L with α = 0.25, β =
0.75, and q = 0.1.

the reservoir. We typically discard the first 105 MCS to allow
the system to reach steady-state. We then run our simulations
for an additional 106 MCS, taking data every 100 MCS.
Measurements are averaged over 100 such runs.

In our model, we focus on the interplay among the following
parameters: α, β, q, L, and Ntot. In its simplest version, the
slow site is fixed in the middle of the system. We also keep
the scaling factor N∗ = 750 for all of our simulations. It is
worth noting that both the location of the slow site and the
strength of the feedback (determined by N∗) play nontrivial
roles in the steady-state properties of the system. We will save
the investigation on these effects for future studies. With the
remaining parameters, three scenarios emerge to characterize
the current: entry-limiting case, exit-limiting case, and defect-
limiting case. With the system coupled to a finite reservoir, the
entry-exit symmetry in an ordinary TASEP does not survive.
Instead, we discover a new phenomenon in the defect-limiting
case to be detailed below.

A. Defect-limiting case

The defect-limiting case presents the most qualitatively
different insights from previous studies. In this case, we have
ρL < α and ρL < β. Figure 1 (with α = 0.25, β = 0.75, and
q = 0.1) illustrates the behavior of the overall average density
〈ρ〉 and current J . Three different regimes form as the Ntot

increases. The first regime occurs when Ntot is small. In this
regime, the system lacks particles to fill the lattice, resulting
in a LD state. As Ntot increases, the density rises linearly due
to the linear nature of αeff for small pools. Once αeff = ρL, the
system enters the second regime. This regime is marked by
αeff remaining constant as Ntot continues to increase. Also, the
current has already reached its limit at the beginning of the
second regime, yet the density increases linearly. Finally,
the system becomes saturated at 〈ρ〉 = 0.5 in a MC state for
the third regime.

During the second regime, a localized shock emerges from
the defect and moves toward the entrance as Ntot increases. An
example of this movement is shown in Fig. 2 for α = 0.25,
β = 0.75, and q = 0.1. The formation of the localized shock
at the defect site differs from previous results [33] where shock
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FIG. 2. (Color online) Density profile with α = 0.25, β = 0.75,
and q = 0.1 for (blue circles) Ntot = 400, (red triangles) Ntot = 600,
and (purple squares) Ntot = 800.

formed at the exiting site. The shock on the sublattice left of
the defect separates a HD region ρH and a LD one ρL. The rate
q determines the values of ρH and ρL, but the values seen in the
simulation differ from what is estimated using Eq. (5). Further,
the location about which the shock is localized depends on both
ρH and ρL. However, the site where the shock is localized does
not alter the density profile to the right of the defect.

B. Boundary-limiting cases

When the current is controlled by the boundary rates,
the system behaves similar to a constrained TASEP. For
completeness, we present the simulation results for the entry-
limiting and exit-limiting cases, noting the differences from
the constrained TASEP. When α < ρL and α < β, the entry
rate of particles limits the current in the system. This situation
corresponds to the LD phase in the ordinary TASEP. Particles
will not enter the lattice at a fast enough rate to be held up
by the defect or exit. Therefore, 〈ρ〉 and J are controlled by
the value of αeff. This behavior is reminiscent of a constrained
TASEP [32] for α < β. While the defect site has little effect
on 〈ρ〉, it has more influence on the density profile.

While the defect does not receive particles fast enough to
create a large back up, it does hold up a small amount of
particles just longer than other sites on average. As shown in
Fig. 3, this creates an increase in the density profile above the
bulk density just before the defect and a decrease (below the
bulk density) immediately after it. A similar feature appears in
an ordinary TASEP with a defect [6,22]. These “kicks” only
affect the site density of a few sites and are not symmetric
about the defect. The drop below the bulk density in the profile
after the defect is much less pronounced than the increase
before the site as seen in the inset of Fig. 3. A naive mean-
field approach fails to capture this subtle feature as significant
spatial correlations are introduced in the presence of the defect.

When β < α < ρL, the exit rate controls the current
through the system with large Ntot. This case is analogous to
the HD phase in the ordinary TASEP. The number of particles
and boundary rates play an important role in controlling the
overall density and current, while the defect has little effect.
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FIG. 3. (Color online) Density profile with α = 0.25, β = 0.5,
and q = 0.75 for (blue circles) Ntot = 800 and (red triangles) Ntot =
2000. Inset shows the deviation from the bulk density near the defect.

An example of how 〈ρ〉 and J change with Ntot is shown
in Fig. 4 for α = 0.75, β = 0.25, and q = 0.5. Again, this
case is similar to what is seen in the constrained TASEP
[32] with β < α. Three regimes exist in Fig. 4. The second
regime corresponds to the system crossing the LD-HD phase
boundary. The density rises linearly (but with a unit slope)
while the current remains constant. Also in this regime, the
average number of particles in the pool remains constant as
Ntot increases.

The density profile resembles the constrained TASEP [33]
as Ntot varies. As with the previous case, the slow site causes
the particles to pile up behind it leading to an increase in
the site density before the defect and a drop in the density
afterwards. At small Ntot values, αeff limits the number of
particles entering the lattice; thus, the profiles are similar to
the entry-limited case. As Ntot increases, eventually αeff = β,
signaling the start of the second regime mentioned above.
In this regime, a localized shock appears near the exit and
moves toward the entrance as Ntot increases, as shown in
Fig. 5. The relatively high q value allows particles to move
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FIG. 4. (Color online) Overall (blue circles) average density and
(red triangles) current as a function of Ntot/L with α = 0.75, β =
0.25, and q = 0.5.
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FIG. 5. (Color online) Density profile with α = 0.75, β = 0.25,
and q = 0.5 for (blue circles) Ntot = 500, (red triangles) Ntot = 750,
and (purple squares) Ntot = 1000.

quickly through the middle of the lattice, creating only a local
disturbance, even as the shock moves through the slow site.
Once the shock reaches the entrance, TASEP is saturated with
particles, and the profile remains fixed as Ntot increases in this
HD state.

IV. THEORETICAL APPROACH

Even though the steady-state current J behaves qualita-
tively similar in the aforementioned three cases, the density
profiles in entry-, exit-, and defect-limiting cases are quite
different. To further elucidate the latter, we turn to a domain
wall (DW) approach, which has been successful in previous
studies [34,36] in capturing the localization of the shock, and
reproduced the density profile resulting from the Monte Carlo
simulations.

A. Domain wall for boundary-limiting cases

Using DW results discussed in Sec. II, we have similar
success for the entry- and exit-limiting cases for the overall
density 〈ρ〉, shown in Fig. 4. Additionally, DW captures the
shock localization in the exit-limiting case, as shown in Fig. 6,
even when the localization region includes the defect.

While the location of the shock is captured by the theory,
the kicks around the defect are not. These kicks are due to the
spatial correlations induced by the defect; yet, DW approach
only uses the boundary rates as input. DW will not capture
this detail of the profile. However, we can conclude for this
case that the defect has no impact on the location of the shock
localization, which only depends on the entry and exit rates.

B. Domain wall for defect-limiting case

To better understand the defect-limiting case, we look at
how q affects the density profile for either sublattice. As seen in
the simulation, the defect produces strong spatial correlations
within a few sites. A NMF approach, which ignores such
correlations, provides a reasonable estimate for 〈ρ〉 and J .
However, the lack of information about spatial correlations
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FIG. 6. (Color online) Comparison of the (blue circles) simula-
tion and (open circles) domain wall results for the density profile with
α = 0.75, β = 0.25, and q = 0.5 for Ntot = 750.

makes these results inadequate for producing the density
profiles [6,22], even with a DW approach. To properly account
for the correlations around the defect, we employ the FSMF
theory used in Ref. [4] to compute densities for the LD and
HD regions as additional inputs for DW theory. Since the kicks
near the slow site decay into the bulk density very quickly, only
a few sites are needed for the FSMF to give descent estimates
of the bulk density.

We calculate the bulk densities to the left and right of the
slow site, denoting them as ρH (to the left) and ρL (to the right).
For an n-site FSMF, the defect is positioned at n/2 for even n

or (n + 1)/2 for odd. Setting up the 2n × 2n transition matrix
between configurations, we solve for the eigenvector that cor-
responds to the zero-eigenvalue. We then calculate the current
J using the eigenvector and match it to the boundary cur-
rents J = ρL(1 − ρL) = ρH (1 − ρH ). Clearly, ρH = 1 − ρL

is the only physical solution for the boundaries. This leads to
at least an n-order polynomial in ρH . The two-site polynomial
is

0 = 2ρ2
H + ρH (3q − 2) − q, (8)

and for three sites, we obtain

0 = 4ρ4
H (1 + q) + 4ρ3

H (q + q2)

+ ρ2
H (3q2 + 3q − 4) + ρH (q2 − 3q) − q2. (9)

The numerical solutions for the densities from FSMF theory
give an improvement over NMF theory when compared to the
simulation data, as shown in Fig. 7.

The simulation densities are the average site densities of 100
sites away from the slow site and boundaries. Additionally, α

and β are kept constant and set to unity. The two-site FSMF (2-
FSMF) is a major improvement over NMF, while the three-site
FSMF (3-FSMF) gives a slightly better result than the two-site.
Increasing n would, in principle, improve the FSMF results.
But the improvement in predicted J and ρ is already quite
minimal when n = 3, as shown in Fig. 7, a trend consistent
with the findings in Ref. [4]. For the results that we present in
this paper, we include up to the 3-FSMF for comparison with
the simulation data.
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FIG. 7. (Color online) Bulk density for the left sub-lattice as a
function of q for various mean-field approaches. The simulation curve
keeps the entry and exit rates constant with α = β = 1 for L = 1000.

The left and right bulk densities computed from FSMF are
incorporated into the DW theory. The effect of the defect site
on the bulk densities only becomes apparent when the system
is defect-limiting, which we will focus on. In this case, we
treat the left and right sublattices as having separate domain
wall dynamics. For the left sublattice, the slow site becomes
an effective boundary and controls the hopping rates of the
domain wall on it. ρH from the FSMF is used to determine
the hopping rates of the shock. Thus, we have for the hopping
rates

D+
x = ρH (1 − ρH )

ρH − αeff,x
(10)

D−
x = αeff,x(1 − αeff,x)

ρH − αeff,x
, (11)

where αeff,x is calculated from the following self-consistent
equation:

αeff,x = α tanh

(
Ntot − ρL(L − k) − ρH (k − x) − xαeff,x

N∗

)
.

(12)

Same as the case without a slow site [33], the hopping rates
have a site dependence due to the fluctuating value of αeff.

The DW performs a biased random walk throughout the left
sublattice with reflecting boundary conditions at the entrance
and site k, of which the motion is governed by the following
master equation:

∂P (x)

∂t
= 0 = D+

x−1P (x − 1) + D−
x+1P (x + 1)

− (D+
x + D−

x )P (x). (13)

The boundary conditions are given by

∂P (0)

∂t
= 0 = D−

1 P (1) − D+
0 P (0) (14)

∂P (k)

∂t
= 0 = D+

k−1P (k − 1) − D−
k P (k). (15)
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FIG. 8. (Color online) Comparison of density profiles between
(blue circles) simulation and (open points) FSMF DW theory with
α = 0.25, β = 0.75, and q = 0.1 for Ntot = 600.

We find the solution to Eq. (13):

P (x) =
⎧⎨
⎩

1
Z

x = k

1
Z

∏k−1
j=x

D−
j+1

D+
j

0 � x � k − 1,
(16)

where Z is the normalization constant:

Z = 1 +
k−1∑
x=0

k−1∏
j=x

D−
j+1

D+
j

. (17)

Subsequently, we obtain the density profile ρx , using

ρx =
x∑

i=0

ρH P (i) +
k∑

i=x+1

αeff,iP (i) (18)

for the left sublattice and ρx = ρL for the right sublattice.
Averaging ρx over the entire lattice gives us the overall average
density 〈ρ〉.

The agreement between DW theory and the simulation
data for the slow site limited case depends on the accurately
predicting the bulk densities from q. For q near 0 or 1,
both NMF and FSMF approximate the densities seen in the
simulations. Figures 1 and 8 show the comparison between
using NMF, 2-FSMF, and 3-FSMF for ρH in the DW theory
with q = 0.1. The difference in both figures is minimal: the 2-
FSMF and 3-FSMF results provide only a slight improvement
over NMF. However, NMF result for ρH with q = 0.1 is very
close to the simulation results, as shown in Fig. 7. Thus, our
DW approach correctly predicts the density profile and overall
density when we first compute an accurate value for the bulk
densities.

To show how the bulk densities affect the DW predictions,
we look at q away from 0 and 1. For q = 0.25, the difference
is noticeable in the density profile as seen in Fig. 9.

The 2-FSMF and 3-FSMF results are in much better
agreement with the simulation results than NMF; however,
all three results predict a greater ρH than the simulations. ρH ,
which appears in both D+

x and D−
x , controls both the height

of the DW and the location of where the shock is localized.
The 2- and 3-FSMF give more accurate overall average density
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FIG. 9. (Color online) Comparison of density profiles between
(blue circles) simulation and (open points) FSMF DW theory with
α = β = 1, and q = 0.25 for Ntot = 500.

value, but the difference with the NMF is less pronounced
(Fig. 10).

C. LD-MC phase transition

The phase transition between the LD and MC phases occurs
when the average αeff = ρL. The difference in the 2-FSMF and
3-FSMF results appears when the system is near this transition
line for large Ntot. In Fig. 11, we have α = q = 0.25 and
β = 0.75.

As seen in Fig. 11, 3-FSMF result better captures our
simulation than 2-FSMF; however, neither gives an accurate
prediction of the density profile. Similar disagreement exists
for 〈ρ〉. The inclusion of more sites in the FSMF continues
to improve the agreement between the DW theory and the
simulations. The need for more sites in the FSMF is a result
of the strong spatial correlations between lattice sites near the
LD-MC phase boundary.

In Fig. 12, we see a failure of NMF to correctly predict 〈ρ〉
near the LD-MC phase boundary for large Ntot. NMF theory
predicts that the system will leave LD, while simulations show
that it remains in LD. The system begins transitioning from

 0
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Ntot/L

〈ρ〉 - Sim
〈ρ〉 - NMF

〈ρ〉 - 2-FSMF
〈ρ〉 - 3-FSMF

J - Sim

FIG. 10. (Color online) Overall (blue circles) average density and
(red triangles) current as a function of Ntot/L for simulations and
(open points) FSMF DW theory with α = β = 1 and q = 0.25.
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FIG. 11. (Color online) Comparison of density profiles between
(blue circles) simulation and (open points) FSMF DW theory with
α = q = 0.25 and β = 0.75 for Ntot = 1400.

LD to MC when 〈ρ〉 = ρL, which occurs when the average
αeff reaches ρL,

ρL = α tanh

(
Ntot − ρLL

N∗

)
, (19)

and enters MC when the average density on the left sublattice
is ρH ,

ρL = α tanh

(
Ntot − L/2

N∗

)
. (20)

For parameters shown in Fig. 12, NMF predicts that the left
sublattice should have a delocalized DW at large Ntot values
for α = 0.2 and q = 0.25, which lead to 〈ρ〉 > α. Yet, the
simulation results reveal that the system remains in the LD
phase for very large Ntot values.

The FSMF results have better agreement with what is seen
in the Monte Carlo simulations as shown in Fig. 12; however,
these will also fail as α continues to approach ρL.

V. SUMMARY AND OUTLOOK

Motivated by transport processes with limited resources as
well as “speed bumps,” we investigate TASEP coupled with
a finite supply of particles and defect site in the middle of
the system. The reservoir of the particles dictates the entry
rate through Eq. (1) and the parameter q regulates the strength
of the defect. By means of a combination of Monte Carlo
simulations and various levels of mean-field approximations,
we presented the results and a quantitative understanding of
the interplay among limited resources and a single defect. We
demonstrated that a domain wall theory, which uses the defect
as an effective boundary, captures the localization of the shock
seen in the simulations. Although it failed to provide accurate

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5
Ntot/L

〈ρ〉 - Sim
〈ρ〉 - NMF

〈ρ〉 - 2-FSMF
〈ρ〉 - 3-FSMF

J - Sim

FIG. 12. (Color online) Overall (blue circles) average density
and (red triangles) current as a function of Ntot/L for simulations
and (open points) FSMF DW theory with α = 0.2, β = 0.75, and
q = 0.25.

quantitative results when the system was near the LD-MC
phase transition for large Ntot, it provided valuable qualitative
insight in this regime.

Beyond the study presented in this article, several open
questions remain intriguing. While we have limited our study
to a defect located in the center, this does not need to be the
case. The location of the slow site affects the density and
current in the simplest TASEP [5]. Thus, a natural extension
of our study is to explore the affects of the slow site’s location
in a TASEP with finite resources. Returning to our motivation
from biology, ribosomes cover more than one codon. Having
large particles covering more than one site in our model would
be more realistic. Also, many mRNA compete for the same
resources, so what effect does a slow site have on competition
between TASEPs coupled to the same pool of particles?
Finally, we still do not have an analytical way of predicting the
bulk densities, which should be further studied in the future.
Transport phenomena play a vital role in many systems in
nature. Our study has furthered the understanding of such
systems by exploring the coupling between finite resources
and defects. However, search for a comprehensive framework
for solving these systems is still underway. Many more studies
must be performed in the future before we can say that we
truly understand the world around us.
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