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This work analyzes a percolation model on the diamond hierarchical lattice (DHL), where the percolation
transition is retarded by the inclusion of a probability of erasing specific connected structures. It has been
inspired by the recent interest on the existence of other universality classes of percolation models. The exact scale
invariance and renormalization properties of DHL leads to recurrence maps, from which analytical expressions
for the critical exponents and precise numerical results in the limit of very large lattices can be derived. The
critical exponents ν and β of the investigated model vary continuously as the erasing probability changes. An
adequate choice of the erasing probability leads to the result ν = ∞, like in some phase transitions involving
vortex formation. The percolation transition is continuous, with β > 0, but β can be as small as desired. The
modified percolation model turns out to be equivalent to the Q → 1 limit of a Potts model with specific long
range interactions on the same lattice.
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I. INTRODUCTION

In the past years there have been interesting discussions
about the possible existence of percolation phenomena [1]
with unusual phase transitions [2–6]. While the usual bond
percolation model is based on purely random occupation of
still empty bonds, several new models have been proposed
with some kind of restriction for the placement of a new bond.
A common feature of the quoted works (and many others in
the recent literature) is to add rules that favor the inclusion
of bonds between sites that do not increase the largest cluster
size, and reduce the occupation probability of spanning links,
i.e., links that if occupied would cause spanning [7,8]. This
leads to two main consequences: (i) the percolation transition
is retarded towards a larger critical value of (p = pc), where
p is the probability occupation of an individual site; (ii) a
much sharper transition is observed when the new value pc

is reached, since any connecting bond sharply increases the
largest cluster.

Such investigations are heavily based on numerical simula-
tions, which makes it difficult to uncover the actual nature of
the new transition. Also, as the new simulation rules require
a global knowledge of the system, it becomes complicated to
translate them into a model that can be treated analytically.
Nevertheless, it is now accepted that the original explosive
percolation model follows a second order transition from
the nonpercolating to the percolating phase [9–11]. Let us
remind that the existence of sharp transitions has been recently
investigated in the context of attacks (bond or node removal)
in coupled complex networks stressing the importance of
understanding the role of some key elements in this broad
class of systems [12].

The present work should be regarded in the context of
the above discussion. In the first place, it investigates the
effects related to retarding and modifying the nature of the
percolation transition caused by the inclusion of new rules in
a well known percolation model. Next, it makes a contribution
to understanding the role of a few key elements in the origin
of sharp transitions. The adopted approach is amenable to

analytical treatment, since it is based on changes in the rules
of a standard bond percolation model on hierarchical lattices.
Due to their geometrical scale invariance, exact analytical
methods based on renormalization methods can be derived.
Although we restrict our results to the diamond hierarchical
lattice (DHL) [13–18], this strategy can be extended to more
complex geometries.

For the bond percolation model on DHL [19–22], the
probability p0 of a bond being occupied is kept constant while
the lattice grows. In turn, it is possible to derive exact maps for
the probability that the root sites are connected in subsequent
generations, say pg+1 = pg+1(pg). After iterating the map, the
result p∞(p0) = 1 [p∞(p0) = 0] indicates if the two root sites
of the lattice are connected (disconnected).

The DHL results are approximations to an alternative
percolation process on the square lattice. Here, we would start
with a four site square and a given bond probability occupation,
and construct the lattice by putting together four equivalent
units at each step. However, since this procedure is not exact
for Euclidian lattices, the random bond occupation process
is the preferred method. The hierarchical assembly method
does not allow one to randomly choose a subset of bonds and
decide which of them should be added as in the quoted models.
If one wants to describe recent advances in percolation studies
on hierarchical structures, it becomes necessary to devise an
alternative procedure to avoid the emergence of large clusters.

Our proposal is to add an erasing probability to the usual
percolation model when we go from one generation to the
next. Therefore, the new system is characterized by an overall
reduction in the number of bonds as compared to the results of
the original system (i.e., without any erasing probability) for
the same value of p0. The same is also valid for the average
number of sites in the percolating cluster. This contrasts with
models based on the choice of a new bond among a preselected
random subset. Here, the value of p after inserting any given
number of bonds is exactly the same as in the corresponding
original percolation model [2,8].

We also discuss that, for a particular choice of eras-
ing probability, the results for the percolation model are
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reproduced by a Q-state Potts model [23] (in the usual Q → 1
limit) provided we include an extra set of competing bonds
between root sites of each generation. Such results are derived
within a transfer matrix (TM) approach, which has been
used to investigate uniform and nonuniform spin models on
hierarchical structures [24–27].

The rest of this paper is organized as follows: in Sec. II we
define the model, and derive the recurrence maps for the perco-
lation probability between the root sites and for the number of
connected sites in the percolating cluster. Section III discusses
analytical and numerical results, emphasizing the derivation
of the critical exponents and the influence of the erasing
probability. In Sec. IV we derive a Potts model with long
range interactions that is equivalent, in the Q → 1 limit, to the
explored percolation model. A transfer matrix (TM) method
is used to obtain thermodynamical and magnetic properties,
which coincide with those derived from the percolation model.
Finally, Sec. V closes the paper with concluding remarks.

II. PERCOLATION MODEL

Any geometrically hierarchical structure can be constructed
in a sequence of steps (or generations g), by replacing a given
geometrical element in the gth generation by a more complex
structure in the g + 1-th generation. In the case of the DHL, we
start at g = 0 with a line segment linking two root sites (r1,r2).
For any g � 1, we replace each bond of the previous generation
g − 1 by a set of r parallel branches, with s − 1 inner sites in
each one of them. In this work, we consider r = s = 2 (see
Fig. 1). The resulting self-similar graph has a fractal dimension
df = log rs/log s [22]. The maximal number of bonds, sites,
and shortest distance between root sites depend on g. They will
be denominated, respectively, as Bg = 4g , Ng = 2(4g + 2)/3,
and Dg = 2g .

It is well known that the results for spin models on the
DHL are equivalent to approximations produced for Euclidian
lattices by the Migdal-Kadanoff real space renormalization
group (RG) [15,16,18,22]. Adopting the same point of view,
the percolation model we investigate here can also be regarded
as an approximation to a similar percolation problem on the
square lattice. The usual percolation model starts by assigning,
at g = 0, the probability p0 that the root sites are connected.
Let pg(p0) denote the probability that, at generation g, the
two root sites are connected. It is straightforward to derive the
following recurrence maps expressing pg+1 and qg+1 in terms

 1  2  3  4  5  6  7

g=1g=0

FIG. 1. First step of construction of the usual percolation model
on the DHL: solid and dotted lines indicate occupied and nonoccupied
bonds. At g = 1, seven possible degenerated different configurations
exist, which can be percolating (1–3) or non-percolating (4–7).

of pg and qg = 1 − pg , g = 0,1, . . .:

pg+1 = p4
g + 4p3

gqg + 2p2
gq

2
g , (1)

qg+1 = 4p2
gq

2
g + 4pgq

3
g + q4

g . (2)

Each term in the above equations expresses the contribution
to pg+1 or qg+1 of a given configuration formed by different
percolating and nonpercolating structures at generation g (see
Fig. 1). For instance, the term p4

g indicates the contribution of
the configuration 1, formed by four percolating structures in
the generation g.

The probability pg+1 can be reduced if we multiply any
of the three terms on the right-hand side (rhs) of Eq. (1) by
constant factors (say A, B, and C), with 0 � A,B,C � 1 and
A + B + C < 3. This corresponds to terms ∼A − 1,B − 1,

C − 1 � 0 that are added to Eq. (1), while corresponding terms
∼1 − A,1 − B,1 − C � 0 are added to the rhs of Eq. (2),
increasing the value of qg . With these modifications, the two
maps become

pg+1 = Ap4
g + 4Bp3

gqg + 2Cp2
gq

2
g , (3)

qg+1 = 4p2
gq

2
g + 4pgq

3
g + q4

g + (1 − A)p4
g

+ 4(1 − B)p3
gqg + 2(1 − C)p2

gq
2
g . (4)

The parameters A, B, and C impact differently on the
maps. If we consider the individual effect of each parameter,
condition A < 1, B = C = 1 causes the most severe changes
in the behavior of the model, followed by B < 1, A = C = 1.
The reason is that A < 1 reduces the probability of having
highly populated configurations with four percolating struc-
tures in the previous generation ∼p4

g . To simplify our analysis,
we consider from now on that only one of the three parameters
is taken to be less than 1. Therefore, unless explicitly indicated,
A < 1 also requires B = C = 1, with similar assumptions
being valid when we state B < 1 or C < 1.

To illustrate which processes are described by the erasing
action at g = 1 (see Fig. 1), a value C < 1 amounts to replace
the percolating configuration 3 of Fig. 1, formed by two
bonds, by other nonpercolating configurations (4–7), which
may have 2, 1, or 0 bonds. If it is replaced by a two-bond
structure (configurations 4 or 5 of Fig. 1), the action is close to
what is done in the original model by Achlioptas et al. [2].
However, for the percolation transition, it is not relevant
to know the actual configuration of the new nonpercolating
structure. Indeed, at g = 2 the values of p2 and q2 depend
only on p1 and q1, not on specific configurations. Because
of this, when A < 1 or B < 1, it is not crucial to indicate
which nonpercolating structure at generation g replaces the
percolating one in the evaluation of pg+1.

Two other measures are relevant for a more precise char-
acterization of the percolation process: the average number of
bonds and the mass of the largest cluster. In this work we will
consider the latter measure, which is understood as the number
of sites connected to the root sites. Therefore, we define Ip,g

(and I q,g) as the normalized average internal mass of the
largest connected cluster in a percolating (nonpercolating)
configuration. We emphasize that, to have a simpler form of
the recurrence maps, at any generation g the internal mass
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does not include the two root sites. Recurrence maps can be
derived to describe the dependence of these functions for the
g + 1-th generation in terms of the corresponding values at
generation g. After identifying the contributions of the proper
configurations, it is possible to derive the recursion relations
for the average mass of the largest connected cluster in the
percolating and nonpercolating regions as

Ip,g+1 = 1

pg+1

[
(2kg + 4�gIp,g)p4

g

+ (2kg + �g(3Ip,g + I q,g))4p3
gqg

+ (kg + �g(2Ip,g + I q,g))2p2
gq

2
g

]
, (5)

I q,g+1 = 1

qg+1

[
(2kg + �g(2Ip,g + 2I q,g))4p2

gq
2
g

+ (2kg + �g(Ip,g + 2I q,g))4pgq
3
g + 2�gI q,gq

4
g

]
,

(6)

where kg = 1/Ng+1 and �g = Ng/Ng+1. The recurrence maps
for Ip,g and I q,g do not depend explicitly on A, B, and
C. However, the resulting iterated values are influenced by
these parameters through pg and qg . To obtain the normalized
average mass of the percolating and nonpercolating clusters at
generation g with the inclusion of the root sites we consider,
respectively, Mp,g = 2/Ng + Ip,g and Mq,g = 2/Ng + I q,g .
Finally, the average mass of sites connected to the root sites is
expressed by Mg = pgMp,g + qgMq,g . As we will show in
the next section, maps (3) and (5) lead to transition properties
that depend on the value of A and B.

III. RESULTS

We start this section by revising the critical properties of
the usual percolation model on hierarchical lattices [19–22].
By imposing the fixed point (FP) condition pg+1 = pg = pc

on Eq. (1), it is possible to derive a fourth degree polyno-
mial equation P (pc) = p4

c − 2p2
c + pc = 0 with roots: pc,1 =

−(
√

5 + 1)/2, pc,2 = 0, pc,3 = (
√

5 − 1)/2, pc,4 = 1, where
pc,1 has no physical meaning. pc,2 and pc,4 correspond to
the attractive nonpercolating and percolating solutions, while
the critical properties are related to the unstable pc,3. If maps
(1) are iterated starting from the points p0 = p, the system
evolves for the percolating (nonpercolating) phase when p >

pc,3 (p < pc,3). By eliminating q in Eq. (1) and linearizing
the resulting equation in the neighborhood of p = pc,3, we
obtain the eigenvalue λ = 6 − 2

√
5. The critical exponent ν,

which governs the divergence of the correlation length at
the critical point, can be expressed in terms of λ by [1,19]
ν = log s/ log λ = 1.6352 . . . , where s = 2 according to the
discussion in Sec. II.

If we consider the condition A < 1, it turns out from the
structure of the fourth degree FP equation that pc,2 = 0 is still
a solution, but the other three roots of P (pc) = 0 cannot be
given by simple analytical expressions as before. Of course
they can be expressed with the help of the Cardan’s formulas,
or can be evaluated by numerical methods. We take a shortcut,
and look for the roots p∗ of the derivative dP/dp = 3p2(A −
2) + 2|p=p∗ = 0. If they are real, they represent extreme points
that must be necessarily between the roots of P (pc) = 0. It

easily follows that p∗ = ±√
2/(6 − 3A). Indeed, for A = 1,

the positive root p∗ = √
2/3 lies between pc,3 and pc,4. In

general, P (p∗
+) = 4p∗

+/3. We find that pc,3 and pc,4 are real
as long as P (p∗

+) � 1.
This provides the following conditions on A: if A > As =

22/27, the system admits three physical FP’s: pc,2 = 0, which
corresponds to the nonpercolating state; pc,3 > (

√
5 − 1)/2,

the threshold value for the emergence of the percolation phase;
and pc,4 < 1, which describes the percolating state. When
A decreases from 1 to As , the roots pc,3 and pc,4 approach
each other and finally coalesce at pc,3(As) = pc,4(As) = 0.75.
Finally, the nonpercolating root pc,2 = 0 is the only attracting
set of Eq. (3) if A < As . The dependence of the percolation
transition expressed by pc,3 as function of A is illustrated in
Fig. 2(a).

The above described FP properties for A ∈ [22/27,1) have
two direct physical consequences: (i) the percolation transition
occurs at a larger value pc,3; (ii) even if p > pc,3 there exists
a small probability that the percolating cluster fails to emerge,
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FIG. 2. (Color online) (a) Dependence of pc = pc,3 on A (solid
line). The red dots were obtained by making the correspondence
between the critical temperature Tc of the modified Q = 1 Potts and
the value of pc (see Sec. IV and Fig. 5). (b) Dependence of ν on A. The
solid curve follows from the evaluation of pc,3 and λ. The red circles
indicate the values obtained from the slopes of logξ (T ) as function of
log[(T − Tc)/Tc], where ξ is the correlation length of the equivalent
Q → 1 Potts model (see Sec. IV and inset in Fig. 5). (c) Dependence
of β with respect to A. The solid curve follows from the evaluation
of pc,3 and pc,4. As in (b), the red circles indicate the values obtained
from the dependence of the spontaneous magnetization m(T ) of the
Q → 1 Potts model as a function of T (see Sec. IV and Fig. 3). They
coincide with values obtained from scaling analysis of M as function
of p − pc,3 in a neighborhood of pc,3.
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since the solution of the maps (3) is attracted to pc,4 < 1. This
behavior is different from usual percolation models.

The value of λ at pc,3 decreases monotonically with A,
reaching the value λ = 1 at A = As . The absolute value of the
attractive eigenvalue of the linearized map in the neighborhood
of pc,4 also decreases with A. If A � As and p � pc,3, the
trajectory formed by the values of pg requires a larger number
of generations to depart from the neighborhood of pc,3. Such
dependence of λ on A causes an increase of ν as A decreases.
In fact, it is possible to show that, in a neighborhood of As ,
ν(A) ∼ (A − As)−1/2. Thus, the percolation phase transition
has a singular behavior at A = As . The dependence of ν on
A is shown in Fig. 2(b). The result ν = ∞ indicates that the
correlation length diverges exponentially in a neighborhood
of pc. Such behavior has been observed in other systems,
like planar rotors, XY , and vertex ice models on the square
lattice [28,29]. It is associated with the presence of an essential
singularity in the singular part of the free energy, and nonlinear
evolution equations of the RG approach. The value λ = 1 leads
to a different behavior of the iterates of p when A = As . In this
case, if we insert pg = pc,3 + δg into Eq. (3), the map reduces
to δg+1 = pg+1 − pc,3 = δg − 2δ2

g , so that δg+1 depends on
the second degree term δ2

g in any infinitesimal neighborhood
of pc,3. As a consequence, the trajectory moves towards pc,3

if p > pc,3, but moves away from it when p < pc,3.
The largest cluster mass M = limg→∞ Mg as a function of

p for As < A � 1 is illustrated in Fig. 3. The curves follow
from the iteration of the maps (3) and (5). The value of M

depends on whether p < pc,3 or p > pc,3. In the first case,
the only possible FP solution of (5) is Ip∗ = I q∗ = 0, so that
M = 0. When p > pc,3, M depends not only on the properties
of pc,4 but also on transient steps, which are the values of g

for which pg is not yet in a sufficiently close neighborhood
of pc,4.

When A = 1, qc,4 = 1 − pc,4 = 0 but, for As < A < 1, it
is observed that pc,4 < 1. This fact changes the nature of the
possible FP solutions of the maps (5). Indeed, if both pc,4 and
qc,4 are nonzero, the only exact FP solution is Ip∗ = I q∗ = 0.

0.6 0.7 0.8 0.9 1.0
0.0

0.2
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1.0

M
, m

(h
=0

)

p

FIG. 3. (Color online) Dependence of the size of the largest
cluster M and the spontaneous magnetization m of the Q → 1 Potts
model that is equivalent to the A model (see Sec. IV). Lines indicate
the behavior of Mg for A = 1 (black solid), 0.95 (red dashes),
0.90 (green dots), 0.85 (blue dash dot), and 0.82 (wine dash dot
dot). Symbols (squares, circles, up triangles, down triangles, and
diamonds) correspond to values of mg for the same values of A.

Nevertheless, the numerical iteration of maps (5) indicates
that the convergence to Ip∗ = I q∗ = 0 is extremely slow.
This is illustrated in Fig. 3 where we draw several curves for
Mg=200 and different values of A. For this value of g the lattice
contains already a very large number of sites, (Ng ∼ 10120),
which largely exceeds the accepted number of baryons in the
universe. There we clearly see that 0.1 � Mg � 1 when p >

pc,3, except in the immediate neighborhood of the transition
point. It is also possible to recognize the decrease of Mg(p)
as A decreases, which can exemplarily be measured through
Mg=200(p = 1). It is important to notice that, when As <

A < 1, Mg receives two nonzero, nonequivalent contributions
(pc,4Mp,∞ and qc,4Mq,∞), while it depends only onMp,g→∞
when A = 1.

The critical behavior of M , which is observed for
p0 > pc,3, follows from the analysis in the neighborhood of
pc,3 of Eqs. (5) and (6) as well as Eqs. (3) and (4). In the first
place, it amounts to replace the nonlinear maps (5) and (6) by
a linear system described by the matrix

� =
(

pc,3
(
1 + pc,3 − p2

c,3

)
, pc,3

(
1 − p2

c,3

)/
2

pc,3
(
1 − p2

c,3

)
, (1 + pc,3)

(
1 − p2

c,3

)/
2

)
,

(7)

with real eigenvalues ω1 < 1 and ω2, such that |ω2| < ω1.
While pg stays in the neighborhood of pc,3 (δg � 1), the
evolution of (5) and (6) is dominated by ω1, so that we obtain

Mg ∼ ω
g

1 or Mg 	 Eω
g

1 . (8)

Since we still consider the restriction As < A < 1, the
linearization of Eqs. (3) and (4) leads to δg ∼ λgδ0. Let g†

be an integer such that, if g > g†, the condition δg � 1 no
longer holds and the approximations δg ∼ λgδ0 and Mg ∼ ω

g

1
do not provide accurate solutions to the maps. If we express g†

in terms of δg† = λg†
δ0, the largest magnitude of δg where the

linear evolution is valid, we obtain g†(δ0) = log(δg†/δ0)/ log λ.
Of course the choice of δg† impacts the precision with which
Eq. (8) is fulfilled but, as we will see, the expression for β does
not depend on δg† .

To continue with our analysis, we define g‡ 
 g† by the
condition that, if g > g‡, |pg − pc,4| � 1. It follows that,
when g > g‡, Mg depends on the eigenvalue o1 of a matrix O,
which describes the linearized evolution of Eqs. (5) and (6) in
the neighborhood of pc,4. O is obtained after replacing pc,3

by pc,4 in Eq. (7). Under this condition, the solution for Mg

satisfies Mg+G/Mg = oG
1 .

Now let us write down the usual scaling behavior for M

close to pc,3, where Eq. (8) is valid. If we consider two nearby
values δ0 and δ′

0, it follows that

M(δ0)

M(δ′
0)

=
(

δ0

δ′
0

)β

	 ω
[g†(δ0)−g†(δ′

0)]
1 , (9)

where we have used, as a first approximation, M(δ0) 	 Eω
g†

1 .
Note that we used the largest value of g for which Eq. (8)
still holds. Taking the logarithm on both sides of Eq. (9), and
expressing g†(δ0) in terms of the logarithms of δg† , δ0, and
λ, we are led to β = −logω1/logλ. This expression is still
not completely correct as it does not take into account the
influence of pc,4 on β. Such influence is correctly dealt with
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if we consider the value of M(δ0) for which the number of
iterations that are performed when g > g‡ equals g†. In other
words, we assume that the maps are iterated the same number
of steps in the immediate neighborhoods of pc,3 and pc,4. This

amounts to divide M(δ0) by o
g†

1 , so that M(δ0) 	 E(ω1/o1)g
†
.

With this accurate treatment, we are led to the correct estimate
β = −log(ω1/o1)/logλ, which is valid for A � 1.

The dependence of the critical exponent β as a function
of A is illustrated in Fig. 2(c). There we draw the values of
β after the evaluation of ω1, o1, and λ. We superpose also a
few values of β evaluated by taking the numerical derivatives
of logMg as a function of logp in the neighborhood of pc,3.
The perfect agreement between the two evaluation methods
corroborates the scaling arguments developed above, allowing
for the rapid evaluation of β for all As < A � 1. We remark
that the direct evaluation of β becomes very difficult for A ∼
As , as a very large number of iterations becomes necessary for
p to leave the immediate neighborhood of pc,3 and approach
pc,4. Concomitantly, the value of M becomes smaller and
smaller due to the fact that o1 < 1, making the direct search
for the scaling behavior of M very elusive. Finally, at A ≡ As ,
we have pc,3 = pc,4 = 3/4, what allows us to obtain the exact
value β = (−8 + 926

√
7753)/21 ∼= 0.119 838 . . . .

The nonzero values of β for all intervals of interest indicate
that the order parameter of the percolation transition always
increases continuously from M = 0 at pc,3. The universality
class changes, but the second order character remains the same.

We carried out a similar analysis for the B � 1 model. The
results have some similarities to those for A � 1. When B

decreases, the percolation transition occurs at a larger value of
pc,3, which moves in the positive direction towards pc,4 = 1.
This behavior prevails until a critical value B = Bs = 3/4 such
that, if B < Bs the percolation phase vanishes. Then p2,c = 0
becomes the only stable FP with a clear physical meaning. As
in the A � 1 model at A = As , the critical exponent ν diverges
at Bs . It can be shown that, for both conditions, ξ ∼ exp[|pc −
p|−1]. The major difference between the two conditions
(A < 1 and B < 1) is the fact that pc,4 does not decrease with
B, but stays fixed at its original value. pc,3 reaches pc,4 = 1 and
collapses with it at Bs . Contrary to the A � 1 case, however, the
exponent β → 0. In fact, if we let B = 3/4 + δB , it is possible
to show that, to leading order in δB , pc,3 = 1 − 4δB , ν =
log2/log(1 + 4δB), and β = 16δ2

B . In spite of very small values
of β when δB → 0, it does not characterize a discontinuous
transition [2]. Strictly speaking, this occurs only for B = 3/4
when β = 0. However, in this case, a finite value of M is
observed in the single point p = 1.

Finally, the behavior of the C � 1 model does not present
any qualitative changes with respect to that of usual percolation
on the DHL. There is no restriction on the existence of the
critical point pc,3 even if the value of C is set to zero.

IV. EQUIVALENT LONG RANGE INTERACTION
POTTS MODEL

Let us now show that it is possible to derive a Potts model
which, in the Q → 1 limit, becomes equivalent to the A � 1
percolation model. The general Hamiltonian for a nearest

neighbor Potts spin model [22,23] can be written as

H = −
∑
(i,j )

Jij δ(σi,σj ) − h
∑

i

δ(σi 1), (10)

where σi = 1,2, . . . ,Q indicates Q-state Potts spin variables,
δ(i,j ) denotes the Kronecker δ function, the double sum is
performed over pairs of nearest neighbor sites (i,j ), and the
external field is assumed to point along the Q = 1 direction.
The general form of Hamiltonian (10) holds for any lattice,
including DHL.

It is well known that, for the uniform nearest neighbor
model with coupling constant Jij = J0, a formal equivalence
exists between the bond percolation problem and the Potts
model in the Q → 1 limit. Then, the thermodynamical prop-
erties of the spin model are equivalent to the results obtained
from Eqs. (1) and (5), provided the following identification is
made:

p0 = 1 − exp(−J0/T ). (11)

Consider now modifying the Hamiltonian H in such a
way that it becomes equivalent to the new percolation model
in the DHL described by Eq. (3), including the observed
changes in the nature of the transition between the ordered
(⇔ percolating) and disordered (⇔ nonpercolating) states.
The search for a suitable modification was based on the fact
that, in the modified model, a similar condition as given by
Eq. (11) should hold. In particular, we note that retarding the
percolation transition is equivalent to a decrease in the value of
the critical temperature Tc. The desired equivalence requires
one to reduce the ferromagnetic coupling interaction between
the spins. This should be done by reducing in a nontrivial way
the effect of J0. We identified a possible way to obtain this
effect, which consists of adding extra antiferromagnetic (AF)
bonds Jg between the root sites at each generation g � 1, as
illustrated in Fig. 4. In this process, the system at generation
g consists of four subsystems at generation g − 1 plus one
extra bond coupling the two g root sites. Note that the four
g − 1 subsystems carry along all previously introduced AF

g=1 g=2g=0

J2

J1J1

J1
J1

J1

J0
J0

J0

J0

J0

FIG. 4. Schematic representation of the modified Potts model on
the DHL. The dashed and dot-dashed lines for g = 1 and g = 2
indicate the extra AF interactions J1 and J2, which are added to
the usual nearest neighbor Potts model to account for the erasing of
percolating clusters described by A.
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bonds, so that the gth system contains exactly 4g−g′
bonds Jg′ ,

g′ = 0,1, . . . ,g (see Fig. 1).
Thus we formally define the new Hamiltonian as

H = −
∑
(i,j )

J0δ(σi,σj ) −
∞∑

g=1

∑
(i,j )g

Jgδ(σi,σj ) − h
∑

i

δ(σi 1),

(12)

where (i,j )g identifies the pairs of spins that are first neighbors
when all links introduced at previous generations, 0,1, . . . ,

g − 1, are erased from the DHL. The new coupling constants
Jg will be used to obtain the desired equivalence between
percolation and Potts models, which requires that they depend
on the erasing probability A.

The exact scale invariance of DHL permits the use of a
TM formalism for the evaluation of the thermodynamical
properties. A detailed description of all steps for the imple-
mentation of this method on hierarchical lattices has been
discussed in a number of previous works (see, e.g., [24,25,27]),
so that we will indicate only the main necessary steps for its
implementation. For the short range Q-state Potts model, it
amounts to writing down Tg , a Q × Q TM connecting the root
sites, which depends only on the Q2 distinct configurations this
pair of spins may assume. At zero magnetic field, the matrix T0

has only two different matrix elements ∀Q: a0 = exp(J0/T )
(where we have set kB = 1), and b0 = 1. For g > 0, each
Tg element is a partial trace accounting for the Boltzmann
weight contributions from all configurations involving the
intermediate spins. As long as Jg = 0 ∀g � 1, the matrix
elements of Tg+1 can be expressed in terms of those of Tg

by the following nonlinear maps:

ag+1 = [
a2

g + (Q − 1)b2
g

]2
, (13)

bg+1 = b2
g[2ag + (Q − 2)bg]2. (14)

The numerical iteration of Eqs. (13) and (14) leads to the
partition function at any generation g. However, to avoid
numerical overflows caused by multiplication of Boltzmann
weights in the matrix elements, it is convenient to rewrite
them as

fg+1 = 4Ng

Ng+1
fg − 2T

Ng+1

{
ln

[
1 + (Q − 1)y2

g

] }
, (15)

ξg+1 = ξg

[
1 + ξg

Dg+1
ln

(
1 + (Q − 1)z4

g

2 + (Q − 2)z2
g

)]−1

, (16)

where fg = − T
Ng

lnag and ξg = 2g/ln(ηg/εg) represent, re-
spectively, the free energy per spin and the correlation length.
ξg is defined in terms of the Tg eigenvalues ηg = ag +
(Q − 1)bg and εg = ag − bg (Q − 1-fold degenerated), while
yg = bg/ag and zg = (1 − yg)/[1 + (Q − 1)yg] are auxiliary
variables. It is important to recall that, in the Q → 1 limit,
Eq. (11) leads to a simple relation between p0 and y0 (or z0),
namely

p0 = 1 − y0 = z0. (17)

The introduction of extra bonds in Hamiltonian (12) does not
destroy the scale invariance of the system, so that the TM
method can be adapted to include the influence of the new
coupling constants Jg’s. To this purpose, at each generation g,

the matrix element ag must be redefined to account for the new
bond that is introduced between the two root sites. Therefore,
for g � 1, we have to multiply the matrix element ag by the
Boltzmann weight exp(Jg/T ) so that, for Q = 1, Eqs. (13),
(15), and (16) are now written as

ag+1 = a4
g exp(Jg+1/T ), (18)

fg+1 = 4Ng

Ng+1
fg − Jg+1

Ng+1
, (19)

ξg+1 = ξg

[
1 + ξg

Dg+1
ln

(
z2
g

1 − (
1 − z2

g

)2
exp(−Jg+1/T )

)]−1

.

(20)

To connect the modified percolation and Hamiltonian
models, respectively defined by Eqs. (3), (4), and (12), we
require that Eq. (17) should be extended to all values of g � 1,
namely pg = 1 − yg = zg . If we restrict the analysis to the
A � 1 model, this condition is satisfied provided the coupling
constants Jg are given by

Jg+1 = −T ln

[
1 + (1 − A)(1 − yg)4(

2yg − y2
g

)2

]
. (21)

Equation (21) warrants that, ∀g, the expressions for pg+1

and zg+1 as a function of pg and zg are equivalent. It is
amazing that the choice of temperature dependent AF coupling
constants given by Eq. (21) leads to a Q → 1 Potts model that
is equivalent to the modified A � 1 percolation model defined
by Eqs. (3) and (4).

Finally, we consider also the magnetization of the Potts
model, which is defined as

mg = 1 + Q
∂fg

∂h

1 − Q
. (22)

To evaluate mg(T ,h), it is necessary to consider h �= 0 in
Eqs. (10) and (12). This condition leads to a larger number of
distinct matrix elements in the TM, so that the eigenvalues are
no longer expressed as simple linear combinations of ag and
bg . In the Appendix we present the complete recurrence maps
required for the evaluation of the magnetization. With the help
of the identity between z and p stated before, mg(T ,h = 0)
can be related to the average mass Mg(p) of the percolating
cluster when Q → 1.

The results derived within the TM formalism are in excel-
lent agreement with those obtained with the percolation model
also when A < 1. For the purpose of illustration, we show in
Fig. 5 the dependence of ξg on T for A = 0.9. We observe
a divergence of ξ at Tc/J0 = 0.943 537 174 3 . . .. For A = 1,
the divergence is observed at Tc/J0 = 1.039 043 4 . . . = 1/

ln[2/(3 − √
5)], as predicted by Eq. (11). In the inset we draw

the dependence of d log10 ξg/d log10 t , where t = |T − Tc|/Tc

is the reduced temperature [30]. When t → 0, this derivative
converges to the correct value of ν already indicated in Fig.
2(b). It is remarkable to see that the framework reveals the
presence of minute log-periodic oscillations, which are related
to the discrete scale invariance of the lattice, even in the A < 1
cases. Such oscillations are known to be part of the general
solution of RG equations, although they cannot be evaluated
within the linear Jacobian approach.
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FIG. 5. Dependence of ξ on T for the Q → 1 modified Potts
model (A = 0.9), with a divergence at Tc/J0 = 0.943 537 174 3 . . ..
The inset shows the behavior of d log10 ξg/d log10 t with respect to
t = |T − Tc|/Tc, which converges to the exponent ν when
log10 t → −∞. Log-periodic oscillations reflect the DHL discrete
scale invariance.

The same agreement is noticed in the evaluation of the
magnetization m(T ). In Fig. 3, where we draw the largest
cluster mass M as a function of p for the percolation model,
we superposed a few points illustrating how m(T ) can be
transformed into M(p) for Q → 1. To be more precise,
Fig. 2(c) shows the values of the critical exponent β obtained
from scaling analysis and by the direct slope evaluation of
logM(p) and log m(T ) in the neighborhood of pc,3 and Tc,
respectively.

We finally proceeded with the evaluation of the magnetic
susceptibility χg = dmg/dh. As we did not obtain exact
expressions for the average cluster size of the modified
percolation model, the results we discuss here were evaluated
by the numerical iteration of the TM maps for the Q → 1 Potts
model only.

For A = 1, we verified that the critical exponents γ− and
γ+, which respectively describe the divergence of χ for T < Tc

and T > Tc, coincide within a precision of 10−3. However,
for A < 1, the susceptibility behaves differently depending

-7 -6 -5 -4 -3 -2 -1
100

1010
1020
1030
1040
1050
1060
1070
1080
1090

10100

log10t

FIG. 6. (Color online) Illustration of the scaling behavior of χ

as a function of t (when T > Tc) for the following values of A: 1.0
(black solid), 0.95 (red dash), 0.9 (green dots), 0.85 (blue dash dash
dot), 0.82 (cyan dash dash dot dot), 0.815 (orange short dash). The
slopes (γ ) increase as A decreases.

TABLE I. Values of the critical exponents of the A � 1 model.
The relation dν = 2β + γ is found to be satisfied with more than
97.5% accuracy for A � 0.82.

A ν β γ = 2ν − 2β γ+ �γ/γ

1 1.6353 0.1647 2.9412 2.938 −1.22 × 10−3

0.95 1.8112 0.1613 3.2996 3.293 −1.99 × 10−3

0.9 2.1233 0.1567 3.9331 3.918 −3.76 × 10−3

0.85 2.9602 0.1474 5.6257 5.570 −9.91 × 10−3

0.82 6.6975 0.1320 13.1311 12.842 −2.20 × 10−3

on whether T < Tc or T > Tc. In the last case, our results
for several values of A > As show that χ obeys a well defined
scaling law, which is illustrated by the plots of log10 χ × log10 t

in Fig. 6. Much as observed with the exponent ν, Fig. 6 shows
that γ+ increases when A decreases from 1 to As .

When T < Tc, some subtleties of the model render the
numerical evaluation γ− almost impossible. First we note
that, after a small number of iterations (g ∼ g†), the general
feature of mg(T < Tc,h = 0) is to decrease when g increases.
This can be understood by the analysis performed in the
last section indicating that, in the neighborhood of pc,4 < 1,
Mg+1 	 o1Mg with o1 < 1. In fact, we checked that this
equality holds for both the iteration of maps (5) and (6), as
well as for the magnetization recurrence map (A3) given
in the Appendix. The use of the same map to evaluate
mg(T < Tc,h > 0) does not show this same behavior. A very
small value of h ∼ 10−15 is sufficient to interrupt the decrease
of mg . Therefore, as g increases, the quotient �m/�h =
[m(T < Tc,h > 0) − m(T < Tc,h = 0)]/h increases without
bound. Since it was not possible to devise an objective criterion
to establish a proper number of interaction steps, we restrict
our analyses to the values obtained for γ+.

After the independent evaluation of ν, β, and γ+ we verified
whether the equality dν = 2β + γ holds when A � 1. The
above relation results from a combination of the Rushbrooke
and the hyperscale relations, although none of them can be
formulated individually. The results shown in Table I permit
to check whether this equality is verified. Let us remind that the
reported values of the exponents ν and β have great accuracy,
since they were evaluated by the local properties of maps
(3)–(6). On the other hand, since the values of γ+ depend on
numerical fittings of the curves shown in Fig. 6, the confidence
of the reported values is naturally reduced. The relative error
|γ− − 2ν + 2β|/|2ν − 2β| increases when A comes close to
As , being however still less than 3%.

V. CONCLUSIONS

In this work we considered an alternative path to retard
the percolation transition. The approach is based on the use of
hierarchical structures satisfying scaling invariance properties,
so that renormalization techniques can be applied. The current
investigation has been motivated by recent investigations of
bond percolation models where the purely random occupation
of empty bonds is changed, so as to permit a judicious choice
of links to be included into the system from a previously
selected subset. The strategy used in this work can be better
understood in terms of erasing probabilities. Like in the
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quoted approaches, it retards the emergence of the percolation
transition, while the difference between the two strategies is
an additional reduction in the number of included bonds. The
erasing probabilities described by the parameters A, B, and C

have the effect of changing the universality class of the per-
colation problems, leading to extreme situations in which the
exponent ν diverges (singular transition). For one set of erasing
probability we have found that, in spite of the extreme behavior
of ν, the nonzero exponent β still indicates a continuous
transition. For another subset, it is possible to tune the erasing
probability in such a way that β can be as small as required.
This indicates the possibility to have discontinuity in the order
parameter. The framework can be further explored to include
a richer combination of erasing probabilities, with more than
one of the three parameters A, B, and C being simultaneously
smaller than 1. We have also shown that an equivalent Potts
model with long range interactions can be defined in such a
way that, in the Q → 1 limit, it becomes equivalent to the
A � 1 percolation model. This opens another possibility for
spin models with discontinuous phase transitions.

ACKNOWLEDGMENTS

The authors acknowledge support from European Research
Council (ERC) Advanced Grant No. 319968-FlowCCS, from
the Brazilian Agencies FAPESB (Project No. PRONEX
0006/2009) and CNPq, and from the Brazilian National
Institute of Science and Technology of Complex Systems
(INCT-SC).

APPENDIX

The strategy to submit the Potts variables in the DHL to
an external field within the TM framework consists of starting
with a field free energy at g = 0. At g = 1, an external field
is introduced to act on the two intermediate sites, but not on
the root sites. The same strategy is repeated for each new
generation, in such a way that, for any value of g, a uniform
field acts on all but the root sites. This way, the magnetization
can be obtained by deriving the field dependent free energy.
It is important to notice that the presence of antiferromagnetic
bonds Jg with g � 1 causes the response of the Potts variables
to a uniform field to become stronger at each generation.
Therefore, it is necessary to reduce the relative magnitude

of the applied field at each generation g in order that the value
of Mg(p) coincides with mg(T ,h = 0).

When h �= 0, there exist four different TM elements
(T Mi,j ) for any integer value of Q > 2 at generation g:
diagonal elements ag at i = j = 1 and cg at i � 2,j � 2;
off-diagonal elements bg at i = 1,j � 2 or i � 2,j = 1, and
dg at i � 2,j � i + 1 or i � 3,2 � j � i − 1.

The recurrence relations for this set of matrix elements as
a function of Q can be inferred after the explicit evaluation of
a few cases of integer values of Q. They read

ag+1 = [
a2

gv
2 + (Q − 1)b2

g

]2
,

bg+1 = b2
g

[
agv

2 + cg + (Q − 2)dg

]2
,

(A1)
cg+1 = [

b2
gv

2 + c2
g + (Q − 2)d2

g

]2
,

dg+1 = [
b2

gv
2 + 2cgdg + (Q − 3)d2

g

]2
,

where v2 = exp(βh). If we add the extra AF bonds and
restrict the analysis to the Q → 1 limit, it is possible to show
that the recurrence map (19) for the free energy fg(t,h) =
−T ln(ag)/Ng becomes

fg+1 = 4Ng

Ng+1
fg − 2T

Ng+1

{
ln

[
v2 + (Q − 1)y2

g

]} − Jg+1

Ng+1
.

(A2)

After deriving the equation above with respect to h, making
use of definition (22), and taking the limit Q → 1, we obtain

mg+1 = 4(Ng − 2)

Ng+1 − 2
mg + 2

Ng+1 − 2
+ 2ygv

−2(2Ty ′
g − yg)

Ng+1 − 2
,

(A3)

where y ′
g = dyg/dh. The explicit dependence on Ng − 2

and Ng+1 − 2 results from the fact that the external field
does not act on the two root sites. The recurrence relation
for y ′

g+1 = dyg+1/dh can be obtained by a straightforward
derivation of Eqs. (A1). It depends on yg and y ′

g , as
well as on the variables xg = cg/ag and wg = dg/ag and
their field derivatives dxg/dh and dwg/dh. To account for
the reduction of the field intensity discussed before, we
have to replace the derivative dyg/dh = (e−Jg+1/T )dyg/dh +
ygd(e−Jg+1/T )/dh by dyg/dh = (e−Jg+1/T )dyg/dh. The same
procedure should also be used in a similar expression for
dwg/dh.
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