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Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2 + 1 Kardar-Parisi-
Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D)
radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random
medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise in three dimensions, and kinetic
roughening phenomena associated with 3D Eden clusters. Examining variants of the 3D DPRM, as well as
numerically integrating, via the Itô prescription, the constrained SHE for different values of the KPZ coupling,
we provide strong evidence for universality within this 3D KPZ class, revealing shared values for the limit
distribution skewness and kurtosis, along with universal first and second moments. Our numerical analysis of
the 3D SHE, well flanked by the DPRM results, appears without precedent in the literature. We consider, too,
the 2 + 1 KPZ equation in the deeply evolved kinetically roughened stationary state, extracting the essential
limit distribution characterizing fluctuations therein, revealing a higher-dimensional relative of the 1 + 1 KPZ
Baik-Rains distribution. Complementary, corroborative findings are provided via the Gaussian DPRM, as well as
the restricted-solid-on-solid model of stochastic growth, stalwart members of the 2 + 1 KPZ class. Next, contact
is made with a recent nonperturbative, field-theoretic renormalization group calculation for the key universal
amplitude ratio in this context. Finally, in the crossover from transient to stationary-state statistics, we observe
a higher dimensional manifestation of the skewness minimum discovered by Takeuchi [Phys. Rev. Lett. 110,
210604 (2013)] in 1 + 1 KPZ class liquid-crystal experiments.
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I. INTRODUCTION

Random walks are ubiquitous in nature, whether they be the
financial meanderings of a trader on Wall Street, the thermal
diffusions of heat in a solid, the fluctuations of vortex lines in
a high-Tc superconductor, or the erratic trajectories of a firefly
on a late summer’s eve. The mathematical theory underlying
the universality of such paths has at its center the Gaussian
distribution, figuring prominently in the solution of diffusion,
heat, and Schrödinger equations, cornerstones of theoretical
physics. A complementary, but much more mathematically
rich, modern, and technically challenging problem considers
random walks in a landscape which is, itself, random. The
focus then is on the statistical properties of the globally optimal
path through this random landscape, a delicate dimension-
dependent affair. In a two-dimensional (2D) random medium
[1], the statistics of these directed extremal paths is known
exactly due to impressive recent work [2] and is governed by a
superuniversal non-Gaussian distribution of great mathemat-
ical import, originally discovered by Tracy and Widom [3]
in the context of random matrix theory [4]. Via serendipitous
mappings, this skewed, asymmetric probability distribution [5]
connects a host of seemingly unrelated problems, including
the nonequilibrium roughening of flameless fire lines [6],
turbulent liquid crystals [7], stochastic growth models such
as ballistic deposition and Eden [8], as well as the shock-laden
kinetics of one-dimensional (1D) driven lattice gases [9], the
last providing an intriguing toy model of motor protein traffic
flow [10]. All, however, are manifestations of an extraordinary
nonlinear stochastic PDE due to Kardar et al. [11], proposed
more than a quarter century ago.

In this paper, we revisit [12] the three-dimensional (3D)
case, where no exact results exist. Investigating a collection
of systems selected from different vantage points, (a) 3D

pt-pt extremal paths, (b) Itô integration of the 3D stochastic
heat equation (SHE), and (c) surface roughening of 3D Eden
clusters, we invoke scaling arguments to strip the results of
model-dependent baggage, isolating the essential mathemat-
ical object, and extract the universal limit distribution at the
heart of the 3D Kardar-Parisi-Zhang (KPZ) class. We start
with the KPZ equation itself, which, in the growth model
context, characterizes the fluctuations of the height h(x,t) of a
kinetically roughened interface:

∂th = ν∇2h + 1
2λ(∇h)2 + √

Dη,

where ν, λ, and D are phenomenological parameters, the last
setting the strength of the stochastic noise η. A Hopf-Cole
transformation, h = 2ν

λ
lnZ, maps KPZ dynamics onto the

equilibrium statistical mechanics of directed polymers in
random media; i.e., the stochastic heat equation with multi-
plicative disorder, governing the restricted partition function
Z(x,t) of the directed polymer in a random medium (DPRM):

∂tZ = ν∇2Z + (λ
√

D/2ν)Zη,

itself, via the extremal path interpretation, a classic model
of ill-condensed matter physics but, mathematically, a deeply
nuanced, intractable and unscalable Everest in its own right
[13]. We begin our own ascent here (to an admittedly low-level
base camp), numerically solving the 3D SHE in pt-pt, pt-line,
and pt-plane geometries, illustrating its undeniable kinship to
the KPZ equation.

II. 3D PT-PT KPZ CLASS

Formal solution of 3D SHE can be cast in the guise of
a Feynman path integral, which, discretized on a lattice and
evaluated at zero temperature, inspires transfer matrix studies
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of DPRM extremal trajectories. Here we examine specifically
the 3D pt-pt problem; the matter is seductively simple to
pose: Consider a directed walk through a 3D cubic lattice,
the ith site of which possesses a random energy εi drawn from
uniform (u), Gaussian (g), or exponential (e) distributions.
The trajectory proceeds from one crystallographic plane
(i.e., “time slice”) to the next, the total energy of a path
of t steps being the sum E(t) = ∑

εi of the site energies
collected along the way. Our walks are oriented, on average,
along the [001] or [111] directions. In the latter instance,
with trajectories cutting diagonally through the lattice, there
are three available sites at each step, all geometrically
equivalent; these extremal paths link far corners of a cube.
In the former case, with walks aligned in an axial direction,
there are five immediate neighbors in the next crystal plane,
four involving a sidestep, which incur an energy cost γ ,
a tunable microscopic elasticity parameter. These extremal
paths, by contrast, connect centers of opposing faces of the
cube. Either way, however, these are pt-pt extremal paths that
we are considering, with both the departure point and terminus
of the trajectory fixed. Averaging over many realizations of
disorder, we are concerned with the statistical fluctuations,
δE = E − 〈E〉, about the mean for the extremal trajectory
through this 3D random energy landscape. Here we consider
(i) u51 DPRM: random site energies uniformly drawn from
the interval [0,1]; travel direction = [001]; elastic energy cost,
γ = 1, for transverse steps, (ii) g51 DPRM: Gaussian energies
of zero mean, variance 1/4, transverse steps incur, again, unit
cost; (iii) g51/2 DPRM, the same, but γ = 1/2; and finally,
(iv) e3 DPRM: proceeds diagonally; unit mean, exponentially
distributed random site energies, no elastic cost and paths
connect far corners of the cube. These four DPRM workhorses
form the foundation of our present analysis of the 3D KPZ
class; three had been employed previously (not g51/2) in
our earlier investigation of the 2 + 1 pt-plane KPZ problem,
which entailed seven models [12]. In fact, we include here
additional 2 + 1 Eden and SHE pt-plane results; see later, for
that particular geometry, as well as a full consideration of the
stationary-state statistics therein. The 3D pt-line KPZ class, a
separate matter, is addressed in the Appendix.

A. Universality: first pass

In Fig. 1 we reveal the 3D pt-pt fluctuation PDFs associated
with our four DPRM models, along with two distinct numerical
integrations of the constrained 2 + 1 SHE, allowing for
different values of the KPZ parameter λ. Our study of the
3D SHE relies upon the Itô interpretation of an elemental,
rescaled version of the stochastic partial differential equation:

∂tZ = ∇2Z + √
εZη + ε

2
Z,

laid out, years ago, by Beccaria and Curci [14], who sought,
back then, to extract 2 + 1 KPZ exponents in a pt-plane
setup. Here we study

√
ε = λ

√
2D/ν3 = 6 and 12, the latter

placing us very deep, indeed, within the strong coupling KPZ
regime. For all the DPRM simulations, and SHE integrations,
we have evolved the system through the forward and rear
light cones of the initial and final points of the trajectory,
averaging over 107 runs, considering paths of t = 500 steps.
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FIG. 1. (Color online) Fluctuation PDFs: 3D radial KPZ class.

The numerical demands of this enterprise are rather severe,
however, and in sharp contrast to the pt-plane problem. For
our zero-temperature DPRMs, the fluctuating quantity is the
total energy E of the 3D pt-pt extremal trajectories. Were the
simulations done at finite temperature, all connecting paths
would contribute, each weighted by the appropriate Boltzmann
factor; the corresponding statistical quantity would then be
the restricted free energy F = lnZ, analog of the height in
the KPZ kinetic roughening problem. Thus, our Eulerian-Itô
integrations of the 2 + 1 SHE bear the same relationship to
the finite-temperature DPRM as numerical studies of the KPZ
equation, itself, to stochastic growth models such as Eden and
ballistic deposition. The fluctuation PDFs of Fig. 1 have zero
mean and unit variance, yet reveal already signature features,
such as the skewness and kurtosis, of the characteristic 3D
pt-pt KPZ limit distribution. Given the fine DPRM/SHE data
collapse, the case for 3D KPZ class universality is clear.

We have included, too, in Fig. 1, the height fluctuation PDF
of kinetic roughened on-lattice Eden A clusters [15], evolved
to a time t = 1000, possessing 38 million particles in the bulk,
and ≈675 000 surface sites. Thus, 15 Eden clusters yield the
same 107 data points characteristic of our 3D pt-pt DPRM/SHE
simulations; in fact, the Eden A trace in Fig. 1 follows from
200 runs, pushing us beyond the 10−6 probabilities managed
via the DPRM/SHE. We regard these radial Eden A simulation
results as illustrative only, however, as they rely upon a helpful,
but brief intermediate temporal window, t ≈ 500–1000, in
which the model sweeps through KPZ values for the growth
exponent [16] β ≈ 0.24+, skewness, and kurtosis. Our efforts
here, motivated in part by recent large-scale off-lattice 3D
Eden D results [17], are suggestive, though limited, since the
small but inescapable anisotropies associated with distinct on-
lattice axial and diagonal Eden A growth velocities ultimately
manifest themselves globally, spoiling KPZ scaling. Even so,
there are occasional, in fact, not terribly rare, instances in
which a rather large, geometrically metastable, Eden A cluster
can be grown, rough but unfaceted, for longer times; Fig. 1
shows (black traces) two such examples at time t = 1750, each
containing 2.2+ million surface particles, nestled beneath our
heavily averaged DPRM/SHE PDFs and in decent agreement
with them down to 10−3.
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FIG. 2. (Color online) 3D pt-pt KPZ class: skewness s and
kurtosis k.

B. Skewness and kurtosis

In Fig. 2 we show for our directed polymers the temporal
evolution of the DPRM skewness s = 〈δE3〉c/〈δE2〉3/2

c and
kurtosis k = 〈δE4〉c/〈δE2〉2

c, characterizing energy fluctua-
tions in the 3D pt-pt extremal path problem. We point out, in
particular, that the kurtosis of the pt-pt g51 DPRM in this higher
dimension seems nearly devoid of any finite-time corrections
(see Fig. 2, upper trace, in blue). We have examined this
interesting behavior in great detail, studying these polymers
for different values of the elasticity parameter, finding that
for γ = 3/4, a kurtosis k ≈ 1/5+ is attained within the first
half dozen steps, remaining essentially flatlined thereafter. The
3D pt-pt DPRM skewness is only slightly less forthcoming
(see Fig. 2, lower curves), where one notes that the g5 DP
remains, again, the model of choice. A straightforward scaling
analysis yields the asymptotic values for s and k recorded
in Table I. Within Fig. 2 (inset), we include results from
our constrained 2 + 1 SHE Itô integration for

√
ε = 12. It

is apparent that the 3D pt-pt SHE is very quickly aware, as
it were, of its KPZ kinship: within 100 integration time steps
with δt = 0.005, the skewness has risen rapidly to ≈0.348,

while the kurtosis plateaus at a value we measure as 0.230.
For the weaker KPZ nonlinearity

√
ε = 6, s and k climb to

nearly these same values before trailing off to postplateau
averages of 0.303 and 0.204, respectively. As is well known
from KPZ integration work (and 3D SHE seems to be no
exception), there is a delicate tradeoff involved balancing the
smallness of the integration time step δt against the size of

λ, numerical instabilities, etc. In any case, averaging over our
four pt-pt DPRM and two SHE model simulations, we obtain
|s| = 0.328 ± 0.014 and k = 0.214 ± 0.008, for the skewness
and kurtosis, respectively, of the 3D KPZ class, confirming the
universality of our initial e3 DPRM estimates [12] for these
key quantities. Recent work [18] on three 3D pt-pt KPZ growth
models, among them single-step (SSC) and on-lattice Eden D,
yield values in the range s ≈ 0.32–0.34 and k ≈ 0.20–0.22,
providing additional corroborative evidence.

C. Distilling universality

To transform the fluctuation PDFs of Fig. 1 into the limit
distributions of the 3D pt-pt KPZ class, it is necessary to extract
several nonuniversal model-dependent parameters, including
(i) f∞, the asymptotic free energy per unit length, analog of
the late time growth velocity v∞ in KPZ stochastic growth,
(ii) A, the static amplitude of the fixed-time k-space height-
height correlator: 〈|h(k)|2〉 ∼ Ak−2−2χ , and, finally, (iii) the
KPZ nonlinearity λ associated with each particular DPRM
model. Knowledge of the last two quantities, A and λ, allows
one to fix the crucial scaling combination θ = A1/χλ, with [12,
19] χ2+1 ≈ 0.39 the static KPZ roughness exponent [19]. With
ξ = (F − f∞t)/θβ , the fundamental statistical quantity, KPZ
wisdom dictates that all connected nth order cumulants 〈ξn〉c of
the fundamental limit distribution P (ξ ) scale as 〈δF n〉c/(θt)nβ .
Hence, looking at cumulant ratios such as s and k only gets one
so far. The highest standard demands direct determination of
f∞ and θ , thus allowing explicit computation of the universal
first and second moments, as well as the 3D KPZ class limit
distributions proper. For the 3D pt-pt e3 DPRM, this entire
process was initiated already [12], with an early e3 DPRM
result published there. Fortunately, the values of θ , as well as
f∞, for u5 and g51 DPs were also calculated, since they were
needed to pin down the 2 + 1 pt-plane KPZ limit distribution.
The requisite technology was introduced by Krug et al. [20] for
the 1 + 1 problem, but the crucial point in the present, unsolved
2 + 1 case is the great utility of building the KPZ toolbox
around a Krug-Meakin (KM) finite-size scaling analysis [21].
Note, in the DPRM context, the KM formula is nothing but a
statistical physics variant of the Casimir effect [22]: Simulating
a pt-plane 2 + 1 DPRM in a rectangular box of transverse
dimensions L × L results in a tiny shift �f upwards (λ < 0
for all DPRM) of the polymer-free energy per unit length:
�f = fL − f∞ = − λA/2L2−2χ ; see Fig. 3, inset, for results.
We have collected in Table I the extracted DPRM values of f∞
and θ , but mention specifically that for the newly considered
g51/2, our analysis, supplemented by an examination [12] of

TABLE I. 3D KPZ universal moments, pt-pt DPRM geometry; equivalently, 3D Eden growth from a point seed.

KPZ system f∞(v∞) θβ 〈ξ〉 〈ξ 2〉c 〈ξ〉/〈ξ 2〉1/2
c |s| k

u51 Kim DP 0.38390 0.71821 −2.41 0.347 4.09 0.338 0.220
g51 DPRM −0.55336 0.98433 −2.286 0.312 4.09 0.329 0.212
g51/2 DPRM −0.66593 0.83954 −2.266 0.319 4.01 0.323 0.207
e3 DPRM −2.64381 4.1481 −2.24 0.304 4.06 0.335 0.212
SHE Itô-6 −0.13988 0.36136 −2.27 0.336 3.92 0.303 0.204
SHE Itô-12 −0.96884 0.21438 −2.22 0.330 3.86 0.348 0.230
Eden A* 0.21979 0.8630 −2.39 0.377 3.89 0.306 0.201
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FIG. 3. (Color online) 3D pt-pt KPZ class: universal second
moment. Inset: KM analysis: g51/2 DPRM, SHE Itô-6, and 2 + 1
Eden A model.

the associated disorder-averaged parabolic DPRM free energy
profile, yields (f∞,A,λ) = (−0.665 925,0.849 36,−0.7415),
so θg51/2 = 0.482 51 for this model. A similar analysis for the
2 + 1 KPZ/SHE with

√
ε = 6, produced θ6 = 1.439 × 10−2.

Recalling [12] that θe3 = 375.3 for our e3 DPRM, we see that
the 3D pt-pt KPZ models studied here cover four orders of
magnitude in this key scaling parameter.

Finally, for the case of Eden, a true radial growth model,
the asymptotic growth velocity is, in fact, given by the KPZ
nonlinearity λ itself, providing a helpful constraint to the fit.
Our results here for Eden A dictate v∞ = λ2+1 = 0.219 79 and
A2+1 = 1.421, so θEA = 0.5411. Noting difficulties specific
to anisotropic 3D KPZ growth models [18], we revisited our
on-lattice Eden system tracking specifically, over 106 runs, the
statistics of the solitary site at the North Pole of the cluster,
i.e., in the axial direction. Our findings in this regard, to which
our 2 + 1 KM Eden analysis is strictly applicable, with A,
λ, and v∞ appropriate to [001] and related directions, have
been recorded in Table I as Eden A*. We see, in particular,
that our axial Eden A* skewness and kurtosis, s = 0.306 and
k = 0.201, are well in line with the DPRM/SHE results.

D. Universal variance 〈ξ 2〉
With v∞ and θ in hand for each of our pt-pt models

(Table I), we can proceed beyond the ratios s and k, and
extract the universal first and second moments, 〈ξ 〉 and 〈ξ 2〉,
characteristic of the 3D KPZ limit distribution. The variance
is obtained as the renormalized amplitude of the DPRM
energy fluctuation: 〈ξ 2〉 = limt→∞〈δE2〉/(θt)2β ≡ a2/θ

2β ≡
c2. Here we use early notation [20], in which the model-
dependent amplitude a2, rescaled by θβ yields the variance of
the underlying limit distribution, i.e., the universal amplitude
c2 [23]. As discussed previously by Kim et al. [5], scaling
corrections to the DPRM variance involve a simple constant
term, i.e., 〈δE2〉 = const + c2(θt)2β. For Eden clusters, the
same insight is due to Wolf and Kertész [24]. Hence, in
analyzing the data sets shown in Fig. 3, we apply a nonlinear
curve fit, with 1/t2β correction, extracting the asymptotic
values for 〈ξ 2〉, recorded in Table I. We note, in particular, that
the asymptotic variance for the e3 DPRM, 0.304, represents
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FIG. 4. (Color online) 3D pt-pt KPZ class: universal first moment.

a 4% shift upwards from the finite time t = 500 value, 0.291,
implying a small 2% change in the distribution width. A
similar finite-time effect is seen in the u5 DPRM, where
the t = 500 value is 0.361; for our g51 and g51/2 DPs,
finite-time scaling corrections are negligible; numerically, at
t = 500, we measure 0.311 for the g51 DPRM, statistically
indistinguishable from our Table I value. Averaging over
DPRM/SHE models, we estimate 〈ξ 2〉3D

KPZ = 0.325 ± 0.016
for the 3D pt-pt KPZ class.

E. Universal mean 〈ξ〉
Here we conclude our analysis of the 3D pt-pt KPZ class,

determining the universal first moment. In this particular case,
scaling corrections seem to be, as a rule, quite strong. We
commence with the standard KPZ ansatz for the fluctuating
height: h(t) = v∞t + (θt)βξ, from which it follows that the
average instantaneous growth velocity, 〈v(t)〉 = 〈dh/dt〉, has
a finite-time correction

�v = 〈v〉 − v∞ = βθβ〈ξ 〉/t1−β

known, independently, by KM long ago; see, too, Ref. [23].
In Fig. 4 we investigate the asymptotics of the DPRM analog,
〈dE/dt〉, as well as the velocity shift within our axial Eden
A*, where the infinite time growth velocity is known precisely.
The universal first moment is given by the scaled, vanishing
difference between the finite-time instantaneous growth veloc-
ity and its asymptotic value: 〈ξ 〉 = limt→∞ �v(t)t1−β/βθβ . It
is clear that our DPs point to a universal first moment for the
3D KPZ class quite close to, but somewhat below −2 1

4 . In
fact, we estimate, averaging over Table I DPRM model values,
that 〈ξ 〉3D

KPZ = −2.28 ± 0.07. Our axial Eden A* results, while
indicating larger corrections to scaling (see Fig. 4), nonetheless
suggest a value not far removed from our DPRM findings (see,
again, Table I).

F. Final pass: 3D pt-pt KPZ limit distribution

In Fig. 5 we collect our DPRM/SHE results for the 3D
pt-pt KPZ class limit distribution. We emphasize that our
numerical characterization of the 3D pt-pt SHE appears here
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FIG. 5. (Color online) Universal limit distribution: 3D pt-pt KPZ
class.

well-complemented by, and in good company with the e3, g5,
and u5 polymer findings. We have also included, for sake of
comparison, our isotropic 3D Eden A fireball results, anchored
at the Eden A* mean. To give an idea of the size of the
finite-time corrections suffered by 〈ξ 〉, we note, in particular,
the value previously reported [12] for the e3 DPRM, −1.85,
is asymptotically found at −2.24, as written in Table I, a
shift of ≈20%. In fact, this is the smallest shift; compare the
g51 directed polymer, which at t = 500, is found at −1.607.
Thus, to be clear, we have (grabbing them by the collar, so
to speak) physically relocated in Fig. 5 each of our t = 500
DPRM/SHE data sets to their independent, model-specific
asymptotic positions. We can manage this because the KM
analysis, in supplying us with both v∞ and θ , has gained
us direct access (see Table I) to the numerical value of the
asymptotic first moment 〈ξ 〉 for each model. Likewise, we
know the individual asymptotic variances 〈ξ 2〉 for each model.
Ideally, all 3D KPZ class models would yield the same number,
but there remain small residual differences; we doubt, in this
context, whether numerical precision much beyond this is
actually possible. To repeat, we have “distilled” the data sets
underlying the finite-time PDFs of Fig. 1, stripping them of
model-dependent baggage via the KM toolbox, rescaling the
PDF width to its asymptotic value, and then translating each
to its independently determined, model-dependent asymptotic
position. All this was done in the service of four universal
numbers: 〈ξ 〉 = −2.28, 〈ξ 2〉 = 0.325, s = 0.328, and k =
0.214, which we have extracted, with great care, from the
3D pt-pt DPRM/SHE. Our goal has been to pin down this 3D
KPZ limit distribution proper. Thus, we calculate and include
within Fig. 5 the relevant Pearson curve [25], possessing our
precisely measured values for the mean, variance, skewness,
and kurtosis, discussed herein. This single curve, which
captures the essence of our net DPRM/SHE analysis, provides,
we believe, the most natural target against which experimental
efforts on the 3D radial KPZ class may genuinely be compared.

A classic distribution characteristic, the mean-width ratio,
was estimated previously by us for the 2 + 1 KPZ pt-plane
geometry; here we have done the same for the 3D pt-pt KPZ
class models (see Table I). We find there the net DPRM/SHE

average 〈ξ 〉/〈ξ 2〉1/2
c = 4.03 ± 0.07, which gives one a visceral

sense of the large horizontal offset of the 3D pt-pt KPZ limit
distribution [26]. The analogous quantity for the 2 + 1 pt-plane
KPZ class is 1.75; see below.

III. REDUX: 2 + 1 PT-PLANE KPZ CLASS

In prior work [12], devoted to the flat interface initial
condition and associated 2 + 1 KPZ class limit distribution,
we made comment of a small, but persistent, dispersion among
models and a slightly “stubborn approach to asymptopia
of the first moment.” These shifts are quite small indeed,
but we return to them here, providing refined estimates.
The procedure is precisely as above: we rely upon the KM
finite-time correction, as well as our known model-dependent
values of v∞ and θ, quantities which are the same regardless
of pt-pt, pt-line, or pt-plane geometries, all discussed in
Ref. [12]. Figure 6 shows our results for various DPRM (e3,
u5, g51) found in this paper, 2 + 1 Eden A also analyzed here,
the KPZ equation itself, and the classic RSOS (“restricted-
solid-on-solid”) model of KPZ kinetic roughening, bedrock
of our previous discussion of 2 + 1 KPZ class universality.
While the numerical derivatives get increasingly noisy in
the asymptotic, large-time limit, it is clear that the models
converge, quite convincingly, to a common value ≈−0.85,
very near the RSOS result. Averaging over our six models,
we arrive at our final estimate of the universal mean of
2 + 1 KPZ class PDF: 〈ξ 〉2+1

KPZ = −0.849 ± 0.022; individual
model values are noted in the figure legend. With variances
previously reported [12], and our newly acquired 2 + 1 Eden
A value, 〈ξ 2〉c = 0.252, we find the 2 + 1 pt-plane KPZ PDF
mean-width ratio: 〈ξ 〉/〈ξ 2〉1/2

c = 1.75 ± 0.03. We note here,
too, that our exhaustive and complementary 2 + 1 pt-plane
SHE integrations for

√
ε = 6, 12 gave values 1.70(3), 1.67(5),

respectively, for this classic ratio. Also, for
√

ε = 10, we find
a limit distribution with an asymptotic skewness s = 0.431
and kurtosis k = 0.362, in fine agreement with our past 2 + 1
KPZ results [12] for that geometry. In addition, tipping our
hat to Beccaria and Curci [14], we have managed a quite solid
2 + 1 SHE estimate for the KPZ exponent β = 0.244(2) in
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FIG. 6. (Color online) Universal first moment, 2 + 1 KPZ
class: DPRM pt-plane geometry; KPZ stochastic growth with flat
interface IC.
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FIG. 7. (Color online) Limit distribution: 2 + 1 pt-plane KPZ class.

this dimension. Our numerical work here on the linear 2 + 1
SHE with multiplicative noise complements our earlier [12]
straight-up Euler integration of the nonlinear KPZ equation
with additive noise. Far from identical twins, these two siblings
have rather distinct personalities in regard to numerics and
certainly in the continuum, a fact much emphasized by the
mathematics community [2], where the formal analysis has
been based firmly on the SHE, rather than the KPZ equation
itself, i.e., an ultraviolet regularization of KPZ via Hopf-Cole
transformation to the SHE [13]. In Fig. 7 we record our
most recent g51 DPRM and 2 + 1 RSOS simulation results,
with averaging now done over nr = 1416 and 348 runs,
respectively, in a system of transverse size L = 104; we
include, as well, our original KPZ Euler integration [12],
involving 456 runs. The 2 + 1 KPZ Pearson curve within Fig. 7
has mean 〈ξ 〉 = −0.849, variance 〈ξ 2〉 = 0.235, skewness
s = 0.424, and kurtosis k = 0.346, representing an average
over all our 2 + 1 pt-plane KPZ class models.

Finally, we mention that our specific 2 + 1 RSOS result,
〈ξ 〉/〈ξ 2〉1/2

c = 1.742, has been seen independently [18], who
find (0.324)−1/2 = 1.757, and similar ratios, 1.793 and 1.762
respectively, for the 2 + 1 KPZ class “etching” and SS [27]
models they consider. In fact, we can do much better than
this: from our previous KM analysis [12], we know that
θRSOS = 0.661 44, so from their nonuniversal amplitude [18]
“g1” = − 0.773, we find an estimate 〈ξ 〉 = g1/θ

β = −0.854,
supporting our own. Similarly, the second moment,
〈ξ 2〉 = g2/θ

2β = 0.1936/(0.661 44)2β = 0.236, as expected,
of course, given our earlier reported [12] value: 0.233. Much
more interesting, perhaps, these authors also examine pt-pt
fluctuations in a 3D curved geometry RSOS variant. In this
case, from their nonuniversal amplitude g1 = −2.116, and our
θRSOS, we have 〈ξ 〉 = −2.337, a number again inaccessible
to them, but in fine agreement with our precise estimate
above for the 3D pt-pt KPZ universal first moment. Likewise,
their nonuniversal RSOSC a2 = 0.272, with an assist from
us, translates into an RSOSC estimate 〈ξ 2〉 = 0.332, in
accord with our comprehensive DPRM/SHE results for the
3D pt-pt KPZ variance. As stated before, the KM analysis
is applicable to all geometries; one does, however, need
to examine fluctuations in the appropriate crystallographic
direction.

IV. UNIVERSAL ASPECTS: 2 + 1 KPZ
STATIONARY-STATE

As emphasized by Prähofer and Spohn [28] in their
seminal work on 1 + 1 KPZ class PNG (“polynuclear growth”)
model, the most fundamental distribution, potentially, is
that characterizing kinetic roughening in the stationary-state,
i.e., at later times, when the system has well-developed
universal correlations dictated by the KPZ equation itself,
having completely lost memory of the initial conditions.
Nevertheless, because of inherent difficulties, this last case has
proved the most challenging analytically. Recently, however,
Imamura and Sasamoto [29] have successfully extracted the
full time evolution of the 1 + 1 KPZ stationary-state (SS)
height fluctuation PDF to its limiting form, known from the
work of Prähofer and Spohn to be the so-called Baik-Rains
(BR) distribution [30] which, via the Painlevé II differential
equation, possesses zero mean (by construction), variance
1.150 39, and skewness 0.359 41. In fact, the last two numbers
had been carefully determined quite early in the KPZ saga
(indeed, some eight years prior to the “discovery” of the
BR PDF) by Krug [20], Hwa and Frey [31], and others
[32,33], who had studied dynamic correlations in the 1 + 1
KPZ stationary state [34]. This limit distribution is of great
importance because it represents the most natural contact point
of the KPZ problem and universality class to field-theoretic,
mode-coupling, and associated methods. This was stressed
by Hwa and Frey [31], who pointed out the crucial role
played by the KPZ stationary-state distribution; these authors,
however, focused their immediate attention on the dynamic
height-height correlation function:

C(r,�t) ≡ 〈[h(ro + r,to + �t) − h(ro,to)]2〉to→∞,

where the angle brackets indicate a statistical average over the
system values of ro, the stationary state is understood via the
large to limit, and the KPZ exponents are equally well fixed
via the complementary asymptotics of the correlator: C(r =
0,�t) ∼ �t2β and C(r,�t = 0) ∼ r2χ . Hwa and Frey argued
that this truncated two-point function could be calculated
exactly by a self-consistent mode-coupling analysis, at least
in 1 + 1, where there exists a helpful fluctuation-dissipation
theorem as well as Galilean invariance, that conspire to fix β =
1
3 and χ = 1

2 . Indeed, the exact form of this scaling function
was elucidated later in a second, more detailed analysis of
the 1 + 1 PNG model by Prähofer and Spohn [35]. Even so,
it was this early work of Hwa and Frey that set the stage for
a long-lived mode-coupling and field-theoretic assault [36]
upon the higher-dimensional KPZ problem that continues, in
various forms [37–40], unabated to the present day. We note, in
particular, current efforts involving the nonperturbative
renormalization group, both in its general handling [40] of
the Kardar-Parisi-Zhang equation and, subsequently, with a
concentrated focus upon the dimension dependence of the
stationary-state scaling functions and attendant amplitude
ratios [41].

A. A key observation

On the numerical side, Takeuchi [42] has revisited the
1 + 1 KPZ class PNG model, returning our attention to
the statistics of the autocorrelation function, i.e., the height
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change, �h(x,�t,to) ≡ h(x,to + �t) − h(x,to), which gets
shifted, rescaled, and relabeled by us here as

ξo = (�h − v∞�t)/(θ�t)β

with v∞ = 〈dh/dt〉 the asymptotic KPZ growth velocity
and θ the model-dependent parameters discussed previously.
Takeuchi’s intriguing analysis reveals that for to large, one
obtains the Baik-Rains and Tracy-Widom distributions in the
limits �t/to � 1 and �t/to � 1, respectively, there being an
interesting universal evolution from one limit distribution to
the other as a function of the dimensionless ratio τ ≡ �t/to.
One of the surprising and very useful lessons learned from
Takeuchi’s work is that the 1 + 1 SS KPZ BR limit distribution
emerges rather freely as the ratio �t/to drops below ≈10−2

or so; i.e., the ratio need not be vanishing small. An additional
revelation of Takeuchi’s 1 + 1 PNG analysis, however, is the
observation that a quite decent snapshot of the Baik-Rains
limit distribution can be had already at to = 4000 in a system
size L = 1000. This state of affairs seems a bit mysterious
at first, since traditional KPZ lore suggests that the stationary
state is not accessed till times to � Lz. With the dynamic KPZ
exponent z = χ/β = 3/2 given exactly in 1 + 1 dimensions,
it is clear that Takeuchi’s bulk system (with L = 1000) is
certainly not dynamically within the steady-state. One might
ask, then, where his PNG system sits, so to speak, in its kinetic
roughening evolution. To address this question, we recall that
a key ratio in this context is the dimensionless quantity, ξ‖/L,

with ξ‖ ≈ (λ
√

At)1/z, the parallel correlation length [20]. Ad-
ditional helpful information can be had via the exact 1 + 1 KPZ
mode-coupling calculation of Frey et al. [43], which suggests
that for λ

√
At/L3/2 ≈ 0.1, the saturation width of a generic,

kinetically roughened KPZ interface has reached ≈90% of its
asymptotic value, normalized to unity in their analysis. For
Takeuchi’s 1 + 1 PNG model, the nonuniversal parameters
are A = 2 and λ = 2/A2 = 1/2, so λ

√
A = 1/

√
2 ≈ 0.707,

the key combination 1/λ
√

A setting the model-dependent time
scale for growth of the parallel correlation length ξ‖. Hence,
in a 1 + 1 PNG simulation with to = 4000 and L = 1000, one
has ξ‖(to)/L ≈ 1/5, and an interfacial width that is, roughly,
90% saturated: in other words, a bulk system that is not in the
steady-state, but nonetheless, with well-developed nonlinear
KPZ fluctuations. In fact, increasing L by a factor of five puts
you further from the steady-state, but without much penalty,
since the Frey et al. plot indicates 50% saturation. The essential
point is to select an amply large to, but a sufficiently small
ratio �t/to � 10−2. This guarantees that the correlations that
evolve from a transient disturbance in the well-developed KPZ
interface, which spread as (λ

√
A�t)2/3, remain amply, and

forever, smaller than the bulk parallel correlation length by
a factor (to/�t)2/3 ≈ 25+. As is well known [20], at scales
sufficiently less than the bulk parallel correlation length, the
fluctuations are, indeed, stationary. Takeuchi has, empirically
via his numerics, revealed that precise scale for us.

We have studied these things for the 1 + 1 RSOS
growth, where A = 0.81 and λ = 0.78 so, quite coinci-
dently, for this model: λ

√
A = 0.702, a near neighbor

of Takeuchi’s PNG. Simulating the 1 + 1 RSOS with
(�t,to,L) = (40,4000,1000), tracking fluctuations of the au-
tocorrelation height differences, we see, not surprisingly, a
decent facsimile of the Baik-Rains distribution. Of course,

FIG. 8. (Color online) 2 + 1 KPZ stationary state: universal
second moment. Inset: determination of the KPZ exponent β2+1 =
0.241(1), via the variance of the stationary-state fluctuations.

making a closer analysis beyond the visual impression, one
finds small finite-time effects, e.g., a variance and skewness
falling a bit short of their asymptotic 1 + 1 KPZ Baik-Rains
values [28], but to the eye, a curve that well approximates the
Painlevé solution. Nevertheless, to access the KPZ exponent
β via the SS height-height autocorrelation function or to press
the matter further and extract more precise asymptotic values
for universal moments, the present �t ≈ 40 is too small,
we need a factor of 10 bigger, which demands to = 40 000,
which works. These, and other aspects of the 1 + 1 KPZ class
stationary-state statistics, we report elsewhere [44].

B. 2 + 1 SS KPZ class: 〈ξ 2
o 〉 and βSS

Aided by Takeuchi’s insights, we examine here the higher-
dimensional analog of 1 + 1 KPZ Baik-Rains PDF, i.e.,
the universal limit distribution characterizing stationary-state
fluctuations of the 2 + 1 KPZ class. We gather our results
for the g51 DPRM, KPZ Euler, and the RSOS models and
discuss estimates for the asymptotic variance, skewness, and
kurtosis of this fundamental 2 + 1 stationary-state KPZ limit
distribution. Construction of this universal PDF, requires,
however, knowledge of the model-dependent parameters v∞
and θβ but, of course, we have those numbers in hand for the
aforementioned KPZ systems (see Table I). Our analysis is
very similar in spirit to that made in previous sections; e.g.,
we show in Fig. 8 the variance 〈ξ 2

o 〉 of the stationary-state
fluctuations for this KPZ trio of models. In the case of 2 + 1
RSOS and g51 DPRM, to = 40 000, while the KPZ Euler
integration (with large nonlinearity λ = 20, as in Ref. [12])
has to = 10 000. Note, in particular, the values of λ

√
A

recorded in Table II, which reveal how much more rapidly

TABLE II. 2 + 1 Stationary-state KPZ: Model results.

KPZ system λ
√

A βSS 〈ξ 2
o 〉c |s| k

g51 DPRM 0.288 0.2421 0.445 0.240 0.18
2 + 1 RSOS 0.454 0.2411 0.480 0.256 0.18
KPZ Euler 3.03 0.2402 0.468 0.236 0.17
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the parallel correlation length ξ‖ grows for the KPZ equation
itself, compared to the DPRM and RSOS models. Noting
the smaller value of λ

√
A for the g5 DPRM, we later ran

many additional simulations for the polymer with to = 80 000,
�t = 500, so τ = 6 × 10−3. With �t/to as the plot abscissa,
an appropriate comparison can be made across the models.
Here one is interested, naturally, in the limit to → ∞ first,
then, secondly, �t → ∞. In our numerics, the ratio �t/to is
kept small but manageable, per Takeuchi’s observation. Thus,
we collect in Table II our model-specific asymptotic estimates
for 〈ξ 2

o 〉, analog of the 1 + 1 KPZ Baik-Rains constant 〈χ2
o 〉,

measured by early practitioners long ago [34]. Averaging
over our three models, we report 〈ξ 2

o 〉 = 0.464 ± 0.016 as
the variance of the 2 + 1 stationary-state KPZ class limit
distribution.

As an additional payoff, we note that the 2 + 1 KPZ
stationary-state height-height autocorrelation function pro-
vides, via the scaling of the variance, rather fine access
to the fundamental scaling index β. Within the Fig. 8
inset, we show the effective exponent, defined as βeff =
ln[w(t)/w(t/2)]/ln2, for the stationary-state KPZ, RSOS, and
DPRM models. As often seen for directed polymers, the
DPRM exponent approaches its asymptotic value, here 0.2421,
from above. Conversely, the KPZ integration generates an
effective exponent that rises from below; our extracted value
for KPZ Euler being 0.2402. Finally, and interestingly, the
2 + 1 RSOS model, which historically has yielded somewhat
larger values (≈0.245, though Ref. [12] observes 0.2422
with more exhaustive averaging) via direct measurements
of the interfacial width in the early-time kinetic roughening
phase, here shows in the stationary state a surprisingly level
approach to asymptopia, intermediate between DPRM and
KPZ Euler behaviors, producing 0.2411. These values are
noted, as well, in Table II, where we report from our net
analysis of the 2 + 1 KPZ stationary-state autocorrelations an
exponent β2+1 = 0.241(1), which agrees with complementary
tour de force simulations done in both transient [16] and
steady-state [19] kinetic roughening regimes. In fact, the
agreement is dead-on in the former case, at the edge in the
latter. That is, by the fundamental KPZ exponent identity
χ + χ/β = 2, this particular value yields, via the error bars,
χ2+1 = 0.387–0.390, while the independent, massive efforts
of Marinari et al. [19] and Kelling-Odor [16], on the closely
related RSOS and 2D driven dimer models, which actually
produce direct measurements of the steady-state exponent,
give unanimously χ2+1 = 0.393 ± 0.003; hence, the value
χ ≈ 0.390 emerges as a boundary point at which the various
methods might share victory. Whether, ultimately, the true 3D
steady-state KPZ exponent lies slightly before or beyond this
razor’s edge, time will tell. From a DPRM/SHE point of a view,
a slightly larger value, χ ≈ 0.39+, would not be too surprising.
However, the classic and very precise hypercubic stacking
results of Forrest and Tang [16], as well as our own KPZ
Euler integrations, which in the transient regime [12] yield
β = 0.2408, and now, here, in the stationary state, 0.2402,
joined by our βRSOS

SS = 0.2411 above, all suggest χ ≈ 0.39−.
Of course, it might be wise to hedge one’s bets a bit since the
sacred KPZ identity is only true as an asymptotic statement.
We’re presently accepting wagers on the matter of 3D
KPZ χ .

C. The RG connection

Interestingly, 〈ξ 2
o 〉 is, as far as we know, the only universal

amplitude that has been calculated analytically for any aspect
of the higher-dimensional KPZ problem. Recently Kloss
et al. [41], hereafter referred to as KCW, have performed
a field-theoretic nonperturbative renormalization group (RG)
calculation of the KPZ stationary state in 1 + 1, 2 + 1, and
3 + 1 dimensions. There they define a truncated, real-space
correlator, simply related to our own: �C(x,t) = C(x,t) −
C(0,0), with asymptotics for the temporal autocorrelation
function �C(x = 0,t) = F∞t2β and static spatial correlator
�C(x,t = 0) = F0x

2χ , introducing the explicit proportional-
ity constants F∞ and F0, the latter, no doubt, a nice gesture to
Baik and Rains [30]. From these quantities, KCW construct
a universal amplitude ratio R = |F∞/(F 1/χ

0 λ)2β | that includes
the KPZ nonlinearity λ, but is devoid of any reference to
the normalization conditions that anchor the RG flows for
both D and ν. Evaluated at the fixed point itself, R becomes
a universal number characteristic of the (d + 1)-dimensional
KPZ class, directly related to the variance of the stationary-
state fluctuations.

In regard to this quantity, the distinction between our auto-
correlation function C and KCW’s �C involves a trivial factor
of two in parsing out F∞. For 1 + 1 KPZ, life is particularly
simple because the Krug-Meakin shift, the k-space correlator,
and the static correlation function, all share the same, identical
prefactor A. Thus, in this dimension, using our own notation
[23], we have F∞ = 1

2 c̃2θ
2β , while F0 = A/2. Recalling that

θ = ( 1
2 )A1/χλ, we find, therefore, R1+1 = 22− 2

3 −1c̃2 = 2
1
3 c̃2.

Note the parenthetic factor of one-half in our definition of
θ ; this wrinkle is specific to 1 + 1 KPZ and is tied to the
shared legacy of KPZ, random matrix, and random sequence
problems [4,28]. Given Krug’s value [34] c̃2 = 0.712, this
implies R1+1 = 0.897, while the KCW lower-order (“NLO”)
and higher-order (“SO”) calculations yield 0.977 and 0.945,
respectively. Of course, in 1 + 1, since c̃2 = 2−2/3〈χ2

o 〉 the
exact value R1+1 = 2−1/3〈χ2

o 〉 = 0.9131 is known precisely,
given in terms of the Baik-Rains constant [28,30], as discussed
by Kloss et al. [41] and recorded in Table II of that reference.
As pointed out by KCW, the accuracy of their higher-order
field-theoretic RG result for the 1 + 1 KPZ case is comparable
to that produced by mode-coupling (MC) analyses; i.e., an
error of 3%–4%, though KCW overshoot the mark, while MC
methods typically yield an underestimate [31,36].

In 2 + 1 and higher dimensions, there are no historical
precedents to respect; here, instead, it is the Fourier integrals
that must be addressed. To connect our 〈ξ 2

o 〉 to the universal
amplitude R2+1 of KCW, we proceed in two steps. First, with
a d-dimensional k-space correlator 〈|hk|2〉 ≡ Ldk−(d+2χ ), the
prefactor of KCW’s static (t = 0) real-space truncated spatial
correlation function �C(x,0), which involves the integral

∫ ∞

0

ddk

(2π )d
ei�k·�x − 1

kd+2χ
,

yields the anticipated spatial dependence (∼x2χ ), but also
the numerical factor �(−χ )/2d+2χπd/2�(χ + d/2). In d = 1,
where χ = 1

2 , this leads to |�(− 1
2 )/4

√
π | = 1

2 ; i.e., the factor
of two seen above in formula for F0. In d = 2, however, where
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[12,19] χ2+1 = 0.39, this same factor produces ≈0.1963,
rather than one-half. The second bit of business concerns
one’s working definition of the parameter A. Previously [12],
and in this paper as well, we have extracted A directly via
the Krug-Meakin (KM) formula: �vL = −Aλ/2L2−2χ . In d

substrate dimensions, and with k-space correlator given as
above, the KM shift is dictated by the Fourier integral

∫ π
L

0

ddk

(2π )d
k2〈|hk|2〉 = Sd

(2π )d

∫ π
L

0
dkk1−2χ ,

where Sd = dπd/2/�( d
2 + 1) for the d + 1 KPZ problem.

Performing the last integral, we retrieve the expected KM
finite size dependence, 1/L2−2χ , along with a second nu-
merical factor, which in d = 1 is unity, but in d = 2 is
π1−2χ/2(2 − χ ) ≈ 0.5272, again for χ2+1 = 0.39 [12,19].
So, in the first instance, we have connected the k-space
correlator to the static real-space correlation function prefactor
F0 and, in the second instance, to our directly measured
KM FSS quantity A. Putting these two pieces together,
we arrive at the direct link between the field-theoretic
RG analysis of KCW and our own numerical KM-based
Monte Carlo efforts: F0 = (0.1963)A/0.5272 = 0.3723A.
Hence, R2+1 = | 1

2 〈ξ 2
o 〉θ2β/[(0.3723A)1/χλ]2β | = 1.7062〈ξ 2

o 〉,
with 2β/χ = 2/z = 1.2422, where z = 1.61, the 2 + 1 KPZ
dynamic exponent. Substituting our value for the universal
2 + 1 SS KPZ variance, 〈ξ 2

o 〉 = 0.464(15), extracted as the
average over g51 DPRM, KPZ Euler, and RSOS model
simulations, we obtain R2+1 = 0.792 ± 0.026, which is to
be compared to the KCW NLO value, 0.940, calculated in
that dimension. As suggested by KCW [41], their NLO result
is likely an overestimate, a somewhat lower value (≈0.91,
should their 1 + 1 calculation be an indicator) obtained via a
more thorough, so-called “SO,” analysis in frequency space.
Likewise, we mention that the KPZ and 2 + 1 RSOS results, in
themselves, with 〈ξ 2

o 〉 = 0.468 and 0.480, respectively, push
R to ≈0.81−, while our findings for a DPRM with uniform,
rather that Gaussian, random site energies yield 〈ξ 2

o 〉 = 0.477,
with associated estimate R2+1 = 0.814. Thus, for the 2 + 1
KPZ/DPRM class, we see agreement between our numerics
and the nonperturbative RG calculation of KCW that, while not
as impressive as the 1 + 1 case, is nonetheless quite suggestive;
all the more so, given KCW’s comment that their method
breaks down just beyond 3 + 1 dimensions.

D. Stationary-state limit distribution, s and k

We have studied, too, the temporal evolution of the skew-
ness and kurtosis of the 2 + 1 RSOS, g51 DPRM, and KPZ
Euler stationary-state fluctuations, recording our asymptotic
estimates in Table II, and calculating average values over this
KPZ trio as s = 0.244 and k = 0.177, respectively. Finally,
in Fig. 9 we reveal our portrait of the 2 + 1 stationary-state
KPZ limit distribution proper, higher-dimensional analog of
the 1 + 1 KPZ class Baik-Rains distribution; here the three
KPZ PDFs are recorded at �t/to = 10−2, the variances of
each data set being rescaled to their model-specific asymptotic
values, indicated in Table II. Overlaid upon the figure is the
3D SS KPZ Pearson curve, with zero mean, variance 〈ξ 2

o 〉c =
0.464, skewness s = 〈ξ 3

o 〉c/〈ξ 2
o 〉3/2

c = 0.244, and kurtosis

FIG. 9. (Color online) Universal limit distribution: 2 + 1 KPZ
stationary-state. Inset: Takeuchi’s minimum [42], manifest within
the skewness of the 2 + 1 g5 DPRM.

k = 〈ξ 4
o 〉c/〈ξ 2

o 〉2
c = 0.177, reflecting our best measured values

for these limit distribution characteristics.

E. Takeuchi minimum: 2 + 1 KPZ class

Within the Fig. 9 inset, we generated a semilog plot for the
2 + 1 g51 DPRM skewness s versus τ = �t/to, in the heart
of the crossover regime between asymptotic stationary-state
(τ � 1) and transient (τ � 1) behaviors. The parameters here
are to = 500, 50 � �t � 5000, so the dimensionless time
0.1 � τ � 10; our 2 + 1 pt-plane simulations are done in
an L × L system with L = 7500, averaging over 36 runs,
generating a data set in excess of 2 billion points for each value
of τ . Our work here is motivated by the efforts of Takeuchi [42]
in the context of the PNG model, where he discovered a
minimum in the 1 + 1 KPZ class skewness, ≈0.22, well below
its asymptotic Baik-Rains and Tracy-Widom GOE values,
0.3954 and 0.2935, respectively [28]. More importantly,
however, the Takeuchi minimum was evident [see Ref. [42],
Fig. 3(b)], in his reanalysis of the tour de force 1 + 1 KPZ
class liquid-crystal experiments, which earlier had revealed
quite spectacular realizations of both the TW GUE and GOE
[7] limit distributions relevant to KPZ kinetic roughening in
that dimension. While the liquid-crystal work did not allow
Takeuchi direct access to the Baik-Rains F0 limit distribution
[45], the skewness minimum did enable him to tease out of the
data a distinct signature of 1 + 1 KPZ class stationary-state
statistics. From an experimental point of view, this is quite an
impressive development, since any aspect, whatsoever, of the
stationary state behavior was long thought to be inaccessible
and well out of reach. Given this encouraging discovery,
we have searched, ourselves, for the Takeuchi minimum in
the 2 + 1 KPZ class problem. Interestingly, in contrast to the
lower-dimensional case, the 2 + 1 stationary-state skewness
is distinctly less than its transient regime counterpart; i.e.,
the numerical relationship reversed. In the inset of Fig. 9, we
have concentrated very specifically on the sweet spot, τ � 1,
of the crossover regime and find for the 2 + 1g51 DPRM, a
Takeuchi minimum in the skewness, sTM = 0.204, at a value
τ = 1.8, it being quite clear that for τ � 1, the stationary-state
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value 0.244 (dashed) is approached from below, and in the
opposite limit, τ � 1, there will follow a long, steep ascent
that rolls over to our value reported earlier [12], 0.424,
characteristic of 2 + 1 KPZ kinetic roughening with flat initial
condition. We have performed a similar (L = 5000; 32 runs)
investigation of the stationary-state skewness exhibited by the
2 + 1 KPZ equation, itself. Our Eulerian integration there
reveals a nearly identical value, sTM ≈ 0.19+ and shape for
the Takeuchi minimum, though the data are a bit noisier than
the g5 DPRM (see this paper’s Supplemental Materials [46]).
While no doubt a coincidence, it is interesting to note the quite
similar values [42,44], 0.225 and, here, ≈ 0.20, characterizing
the Takeuchi minima for the 1 + 1 and 2 + 1 KPZ classes. One
wonders whether the Takeuchi minimum might be measurable
in an actual 2 + 1 KPZ experiment. Recent work [47] on the
kinetic roughening of 2D polymer surfaces, which have cast a
preliminary eye on the height fluctuation PDFs in this higher
dimension, may someday gain access, we hope, to this curious
signature of the stationary-state statistics.

V. SUMMARY

We find the 3D pt-pt, pt-plane, and stationary-state KPZ
classes present numerous intriguing challenges and opportuni-
ties. From an experimental point of view, attention might best
be focused, initially, upon the 2 + 1 pt-plane problem, i.e.,
KPZ kinetic roughening from a flat initial condition, since
large lateral system sizes can provide ready access to the
transient regime skewness s̄ = 0.424 and kurtosis k̄ = 0.346
[12], along with the all-important height fluctuation PDF,
which highlights already (e.g., Fig. 1 in Ref. [12]) these
elemental features of the underlying limit distribution. While
measurement of the asymptotic growth velocity v∞ ought to be
straightforward, direct experimental extraction of the system-
dependent parameter θ = λA1/χ will be difficult. Of course, a
quick (short-cut) determination of θβ could be accessed from
the nonuniversal amplitude a2 of the variance, relying upon
our established value 〈ξ 2〉KPZ

2+1 = 0.235. See Sec. II D., where
we discuss, in detail, such matters; see also Refs. [20,23].
This is the manner in which Takeuchi and Sano analyzed their
1 + 1 flat KPZ class data. In any case, with θβ in hand, (1)
an estimate could then be had for the universal first moment,
compared to our 〈ξ 〉KPZ

2+1 = −0.849, (2) transformation made
of the zero-mean, unit-variance height fluctuation PDF into the
fundamental 2 + 1 pt-plane KPZ limit distribution proper, and
(3) the experimental distribution overlaid with the requisite
Pearson curve. Of course, knowledge of θ is not necessary
to find the mean-width ratio of this limit distribution since
〈ξ 〉/√〈ξ 2〉c = av/β

√
a2, with av , the nonuniversal finite-time

correction amplitude to v∞ [20,23], very likely the most
formidable quantity for the resourceful experimentalist to pin
down, as it requires exhaustive averaging to quell the numerical
derivatives. Our estimate of this characteristic quantity for the
2 + 1 pt-plane KPZ class is (recall Sec. III) 〈ξ 〉/√〈ξ 2〉c =
1.75. Last, concentrating on the temporal correlations hidden
within the dynamically evolving height fluctuations, one can
[42] slice across the huge raw data sets for various values
of to, �t , and τ = �t /to, studying the functional dependence
of skewness s(τ ), per Takeuchi in the 1 + 1 KPZ class
liquid-crystal experiments. Recall, this business demands, in a

first pass, no knowledge of model-dependent parameters, but
might provide access to a precursor signature of the 2 + 1
KPZ class stationary-state statistics. Accessing the higher
dimensional analog (see Fig. 9) of the 1 + 1 KPZ class
Baik-Rains distribution will, however, require some heavy
lifting or a very clever idea indeed.

All this is in marked contrast to the 1 + 1 KPZ class exper-
imental situation, where the flat and circular geometries were,
more or less, on equal footing. In fact, historically, the liquid-
crystal experiments [7] privileged the radial case first, since it
rendered moot the issue of boundary conditions. Furthermore,
the KPZ kinetic roughening equivalence λ = v∞, peculiar to
that curved geometry, greatly facilitated the analysis, leaving
only A to be fixed via the spatial correlation function. In three
dimensions, this equivalence remains valid; however, because
of the strong finite-time corrections inherent to the radial prob-
lem, discussed in Sec. II E and elsewhere [18], an initial exper-
imental foray into the matter might search quite specifically for
the skewness (≈1/3−) and kurtosis (≈1/5+), the latter a partic-
ularly salient indicator of this 3D pt-pt KPZ class; see Sec. II B.
Excellent value, too, is had via simple height fluctuation PDFs,
such as in Fig. 1. Finally, a compelling experimental realization
of the 3D KPZ exponent β ≈ 1/4− would be most welcome,
recent devotion to limit distributions notwithstanding. In any
case, we have, due to Fig. 5, a pretty solid portrait of the 3D
pt-pt KPZ class limit distribution at our disposal.

We stress too, in closing, the benefits of cross-geometry,
isotropic experiments where possible. Once the model-
dependent parameter θ is known, it applies in all KPZ settings:
pt-pt, pt-line, and pt-plane, as well as stationary-state statistics.
Thus, one might determine the KPZ nonlinearity λ from the
asymptotic growth velocity in a radial geometry, and the
parameter A from the rectangular setup; θ is then known.
Admittedly, this is a tall order. On the flip side, however, this
suggests the existence of additional universal quantities that,
while characteristic of 3D KPZ universality more broadly,
are (i) like s and k, independent of θ , but (ii) cut across
KPZ class boundaries, and (iii) are, potentially, of practical
value to the experimentalist, since they can be immune to
scaling eccentricities of individual models. A case in point that
we specifically highlight is the quantity 〈ξ 2〉3D

pt-pt/〈ξ 2〉2+1
pt-plane =

limt→∞〈δE(t)2〉3D
pt-pt/〈δE(t)2〉2+1

pt-plane, a ratio of variances, but
in fact of nonuniversal amplitudes, whose time dependence
can be readily plotted up and tracked and, crucially, avoids the
numerical derivatives. For our own u5 and g51 DPRM models,
we estimate for this quantity, 1.39 and 1.41, respectively,
i.e., quite similar values, despite the fact that the Gaussian
polymer is, figuratively speaking, much closer initially to the
KPZ fixed point than its uniform disorder counterpart. Thus,
this cross-geometry ratio of variances, like the mean-to-width
ratio within an individual KPZ class (note our Table I entries for
u5 and g51 DPRM 3D pt-pt problem) can be quite forgiving.
Similarly, for e3 DPRM, we find 1.43, while for 3D curved and
flat RSOS(C) models [18] a ratio of nonuninversal amplitudes
“g2”: 0.272/0.1936 = 1.405, corroborating our idea. Along
similar lines, we have also examined the θ -independent,
cross-KPZ class ratios: 〈ξ 2〉2+1

SS /〈ξ 2〉2+1
pt-plane = 1.98, following

from the stationary-state models listed in our Table II,
and 〈ξ 2〉3D

pt-line/〈ξ 2〉2+1
pt-plane = 1.137, in the latter instance, with

surprisingly nearly identical values for the e3 and g51 DPRM.
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Of course, from a mathematical point of view, it is
the underlying superuniversal architecture supporting such
structure, ratios, and limit distributions, analogous to Painlevé
II, a Fredholm determinant expression, or novel 1 + 1 DPRM
RG reformulation [48], that we’d like to get our hands on in this
higher dimension. Interestingly, from a biological perspective,
it has been recently suggested [49], via first passage percolation
ideas, that the 2 + 1 flat KPZ class limit distribution might bear
relevance to spatial evolution models of cancer progression
in planar habitats, i.e., a KPZ statistics of “waiting times
to cancer.” [50]. One wonders, naturally then, with the 3D
pt-pt KPZ class limit distribution now well characterized
and in hand, of a related connection to the radial growth of
tumors [51].
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APPENDIX: 3D PT-LINE KPZ CLASS

Beyond the canonical pt-pt and pt-plane formulations, the
DPRM in three dimensions allows for an additional, very
natural subclass, that associated with the pt-line geometry.
In this instance, one is concerned with the globally optimal
directed path which, emanating from the origin, is constrained
to terminate along a fixed line within the plane of a later time
slice. In the KPZ context, the analogous process corresponds
to stochastic growth initiated from a 1D linear source, being
essentially KPZ droplet growth within a groove, i.e., a trough
of triangular cross section. We introduced the 3D pt-line
DPRM earlier [12], where we considered solely the e3 directed
polymer in this geometry, that is, the extremal trajectory
traveling on average in the [111] direction through a random
medium with unit mean, exponentially distributed energies on
the lattice sites. There we discovered a distinct pdf for the
pt-line geometry. We provide, here, additional model results,
establishing universality of this particular limit distribution.
In Table III we show for the e3, g51, and g51/2 DPRM,
as well as the constrained pt-line SHE with λ = 12, our
extracted estimates for the asymptotic values of the first four
moments of the 3D pt-line KPZ class limit distribution. For
the pt-pt problem, our numerical integration of the stochastic
heat equation followed the fate of Z(x = 0,t) subject to the
delta-function initial condition (IC): Z(x,t = 0) = δ(x). Of
course, for the pt-line problem on hand, we have at t = 0: Z =
1 everywhere along, let’s say, the x axis, zero otherwise. In

TABLE III. Universal quantities: 3D pt-line KPZ problem.

KPZ system 〈ξ〉 〈ξ 2〉c 〈ξ〉/〈ξ 2〉1/2
c |s| k

e3 DPRM −1.45 0.245 2.93 0.383 0.282
g51/2 DPRM −1.49 0.254 2.96 0.397 0.302
g51 DPRM −1.497 0.251 2.99 0.398 0.306
SHE Itô-12 −1.44 0.245 2.91 0.407 0.346
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FIG. 10. (Color online) Limit distribution: 3D pt-line KPZ class.

1 + 1 dimensions, recall, it is the sharp wedge IC for F = lnZ,

that appears in the exact solution of the KPZ equation itself.
The constrained 2 + 1 pt-line SHE merely extends this wedge
in a second dimension, while the 3D pt-pt problem rotates it
about the z axis generating a conical IC. Again, we follow
the spatiotemporal evolution of Z(0,t); i.e., the probabilistic
weight of an endpoint above the origin. It should be stressed
that for the complementary zero-temperature Gaussian g51/2&1

DPRM, which we consider on a cubic lattice and proceeding
in the [001] direction, we gain, thanks to the formulation of
Kim et al. [5], a factor of L over our e3 simulations, where
each run generates only a single pt-line extremal path. This
is evident in Fig. 10, where we consider the universal limit
distribution governing the statistics of the shifted, rescaled 3D
pt-line DPRM (free) energy fluctuation:

ξ ′ = F − f∞t

(θt)β

with f∞, as before, the polymer’s asymptotic free energy per
unit length and θβ , the key model-dependent scale factor;
see Table I in the main body of the paper for values. We
emphasize, again in this context, that the parameters f∞, A,
λ, and therefore θ = A1/χλ cut across different geometric
classes (pt-pt, pt-line, and pt-plane); i.e., once determined by
Krug-Meakin in the pt-plane setup, the same f∞ and θβ applies
to them all. In any case, one notes immediately in Fig. 10 the
data collapse for the four systems, with probabilities extending
down to 10−7, two orders of magnitude or so better than our
efforts in the most challenging pt-pt geometry, but still shy
of the 10−9 or so achieved for the pt-plane problem, which
contribute, per run, a very welcome L2 data points to the
ensemble average. For the pt-line case discussed here, we made
2500 runs each for the Gaussian polymers, g51/2 and g51, 6500
runs for the λ = 12 SHE, and finally, 107 realizations of the
e3 DPRM. Our analysis for the g51/2&1 and SHE12 were done
in an L × L × t rectangular box with L = 104, t = 500, and
periodic BC.

In regard to our individual model results for the 3D pt-line
KPZ class (see Table III), we observe that the asymptotic
values recorded there for the mean, variance, skewness, and
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kurtosis show quite good agreement. Averaging over models,
we obtain 〈ξ 〉 = −1.469 ± 0.025, and 〈ξ 2〉c = 0.2485, with an
associated mean-to-width ratio 〈ξ 〉/

√
〈ξ 2〉c = 2.94, intermedi-

ate to the pt-pt and pt-plane values, 4.03 and 1.75, respectively,
for this characteristic quantity. In addition, we note for this pt-
line geometry, an average asymptotic skewness, |s| = 0.396,
and kurtosis, k = 0.309, not far from our initial finite-time t =
500 values [12], 0.402 and 0.305, respectively, first reported
for the e3 DPRM. We mention, too, preliminary results, not

shown, for the u5 DPRM in three dimensions, which yield,
consistently, |s| = 0.408 and k = 0.322, for this 3D pt-line
directed polymer subject to uniform random noise. Finally, we
have begun examining 3D RSOS KPZ kinetic roughening in
a groove, which indicates |s| = 0.381, though the kurtosis
appears a bit low. As is customary, we have fitted our
DPRM/SHE data of Fig. 10 with the Pearson curve possessing
the requisite, carefully determined values for the first four
moments of the 3D pt-line KPZ universal limit distribution.
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