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Many critical properties of the Hintermann-Merlini model are known exactly through the mapping
to the eight-vertex model. Wu [J. Phys. C 8, 2262 (1975)] calculated the spontaneous magnetizations
of the model on two sublattices by relating them to the conjectured spontaneous magnetization and polarization
of the eight-vertex model, respectively. The latter conjecture remains unproved. In this paper we numerically
study the critical properties of the model by means of a finite-size scaling analysis based on transfer matrix
calculations and Monte Carlo simulations. All analytic predictions for the model are confirmed by our numerical
results. The central charge c = 1 is found for the critical manifold investigated. In addition, some unpredicted
geometric properties of the model are studied. Fractal dimensions of the largest Ising clusters on two sublattices are
determined. The fractal dimension of the largest Ising cluster on the sublattice A takes a fixed value Da = 1.888(2),
while that for sublattice B varies continuously with the parameters of the model.
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I. INTRODUCTION

The exact solutions [1,2] of the two-dimensional (2D)
Ising model have significantly promoted the research of
phase transitions and critical phenomena. Subsequently, the
Ising model had become one of the most well-known lattice
model in statistical physics. Another noted Ising system, the
Baxter-Wu model [3], is defined on a triangular lattice with
pure three-spin interactions. The model was proposed by Wood
and Griffiths [4] and exactly solved by Baxter and Wu [3] by
relating the model to the coloring problem on a honeycomb
lattice. The solution gives the critical exponents yt = 3/2
(α = 2/3) and yh = 15/8 (η = 1/4), which are exactly the
same as those of the four-state Potts model [5,6], which can
be derived via the Coulomb gas theory [7–9]. This means that
the Baxter-Wu model belongs to the universality class of the
four-state Potts model. The critical properties of the four-state
Potts model are modified by logarithmic corrections [10,11]
due to the second temperature field, which is marginally
irrelevant [11,12]. With the two leading temperature fields
simultaneously vanishing, the leading critical singularities of
the Baxter-Wu model [13] do not have logarithmic factors.
Deng et al. generalized the Baxter-Wu model in [13], where the
spins are allowed to be q states (q can be larger than 2) and the
up and down triangles can have different coupling constants.
Both generalizations lead to discontinuous phase transitions.

Hintermann and Merlini [14] considered an Ising system
on the Union Jack lattice (as shown in Fig. 1)

− H

kBT
=

∑
�

s(K1σ1σ2 + K2σ2σ3 + K3σ3σ4 + K4σ4σ1),

(1)

where the sum takes over all the square unit cells and Ki

(i = 1,2,3,4) are the coupling constants. The model is similar
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to the Baxter-Wu model in the sense that both are Ising
systems with pure three-spin interactions. However, the critical
properties of the Hintermann-Merlini (HM) model are much
more complicated. For the ferromagnetic case (Ki > 0), the
model has fourfold degenerate ground states, as shown in
Fig. 2. The nature of the phase transition breaking the Z4

symmetry of the order parameter cannot be determined by
the dimensionality of the system and the symmetry properties
of the ground states [15]. The exponents may vary with
some tuning parameter without changing the symmetry of
the order parameter. Such behavior has been found, e.g.,
in the Ashkin-Teller model [16,17], the eight-vertex model
[18,19], the 2D XY model in a fourfold anisotropic field [20],
and the ferromagnetic Ising model with antiferromagnetic
next-nearest-neighbor couplings on a square lattice [21–23].

Through mapping to the eight-vertex model [18,19], the
free energy of the HM model has been found exactly [14].
The critical manifold and critical exponent yt varying with
the ratio of couplings were obtained. Based on the conjec-
tured spontaneous magnetization [24] and the spontaneous
polarization [25] of the eight-vertex model, Wu calculated the
spontaneous magnetizations of the model on two sublattices.
The results show that the two magnetizations possess different
critical exponents [26]. The spontaneous magnetization of
the eight-vertex model was derived later [27]; however, the
spontaneous polarization remains a conjecture. It is thus
necessary to verify the results numerically.

In present paper we study numerically the critical behavior
of the ferromagnetic HM model with K1 = K3 > 0 and
K2 = K4 > 0. The numerical procedure includes transfer
matrix calculations and Monte Carlo simulations. The critical
properties we study include not only the verification of the
analytic predictions, but also the fractal structure of spin
clusters.

The paper is organized in the following way. In Sec. II we
summarize the theoretical results of the model. In Sec. III we
introduce the transfer matrix method and present the associated
numerical results. In Sec. IV we describe the algorithm used
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FIG. 1. Definition of the Hintermann-Merlini model. The lattice
consists of two sublattices: The spin on sublattice A is denoted by σ

and the spin on sublattice B is denoted by s. For a square unit cell,
there are four spins σ1, σ2, σ3, and σ4 on sublattice A and one spin s

on sublattice B.

in Monte Carlo simulations and give the associated numerical
results. In Sec. V we define Ising clusters on two sublattices
and numerically determine the fractal dimensions of the
corresponding largest clusters, respectively. We summarize in
Sec. VI.

II. EXACT SOLUTIONS

In this section we summarize the analytical results for
the HM model [14,26]. Mapping of the model to vertex
model can be accomplished by assigning arrows between
the nearest-neighbor Ising spins of sublattice A (Fig. 3): If
the two spins beside the arrow are the same, the arrow is
rightward (or upward); otherwise it is leftward (or downward).
There is a two-to-one correspondence between the Ising spin
configurations and the arrow configurations.

After taking the sum over the spin s (in the center of the
unit cell), the Boltzmann weights of the vertices are

a = cosh(K1 + K2 + K3 + K4),

b = cosh(K1 − K2 + K3 − K4),
(2)

c = cosh(K1 − K2 − K3 + K4),

d = cosh(K1 + K2 − K3 − K4).

Thus the model is mapped to the symmetric eight-vertex model
[18,19], which has been exactly solved by Baxter. For the
ferromagnetic case considered in the present paper, the critical
manifold is given by

a = b + c + d, (3)
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FIG. 2. (Color online) Four ground states of the ferromagnetic
HM model.
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FIG. 3. (Color online) Mapping of the HM model to the eight-
vertex model and the Boltzmann weights of the vertices. The Ising
spins shown here are the spins on sublattice A, namely, the σ spins.

which leads to Kc = ln(1 + √
2)/2 for the uniform case

(K = K1 = K2 = K3 = K4).
The singularity of the free energy density is governed by

fsing ∝ |T − Tc|π/u (4)

when π/2u is not an integer (the case that π/2u is an integer
is not considered in the present paper). Here Tc is the critical
temperature and 0 � u � π is given by [26]

cos u = − tanh

[
1

2
ln

ab

cd

] ∣∣∣∣
Tc

if a > b,c,d or b > a,c,d,

(5)

cos u = tanh

[
1

2
ln

ab

cd

] ∣∣∣∣
Tc

if d > a,b,c or c > a,b,d. (6)

For the ferromagnetic case that we consider, u is determined
by (5). Since fsing ∝ ξ 2 and ξ ∼ |T − Tc|−1/yt , the critical
exponent yt is thus found

yt = 2u

π
. (7)

For the uniform case, (7) gives yt = 4/3.
A very interesting critical property of the HM model is that

the spontaneous magnetizations MA and MB of sublattices A

and B possess different critical exponents

MA ∝ (Tc − T )βa , MB ∝ (Tc − T )βb . (8)

The critical exponents βa and βb were obtained by Wu [26],

βa = π

16u
, βb = π − u

4u
. (9)

[It should be noted that the author switched the two critical
exponents in Eq. (16) of [26].] According to the scaling law,
this leads to two magnetic exponents yh1 and yh2,

yh1 = 2 − βayt = 15

8
,

(10)

yh2 = 2 − βbyt = 3π + u

2π
.

Here yh1 has a fixed value 15/8, while yh2 varies continuously
with the parameters of the model.

In following sections we will numerically study the critical
properties of the model. The critical points and critical expo-
nents will be numerically verified. In particular, Wu’s result of
βb (yh2) is based on the unproved conjecture of the spontaneous
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FIG. 4. (Color online) Definition of the row-to-row transfer
matrix, where periodic boundary conditions are applied, namely,
σL+1 = σ1 and σ ′

L+1 = σ ′
1.

polarization [25] of the eight-vertex model, thus numerical ver-
ification is necessary. Our numerical studies are focused on the
subspace that K1 = K3 = K and K2 = K4 = K ′. By defining
r ≡ K ′/K , the critical manifold and exponents are expressed
as functions of r . It is worth noting that there is a symmetry
for the transformation r → 1/r . At a special point r∗ =
3.348 258 180 5 and its dual 1/r∗ = 0.298 662 751 2, u =
3π/4, the analytic results give yt = 1/2,yh1 = 15/8 = yh2.
This is the four-state Potts point.

III. TRANSFER MATRIX CALCULATIONS

As shown in Fig. 4, we define the row-to-row transfer matrix

T	σ,	σ ′ =
∑
{s}

L∏
i=1

exp[si(K1σiσi+1 + K2σi+1σ
′
i+1

+K3σ
′
i+1σ

′
i + K4σ

′
i σi)]

(11)

= 2L

L∏
i=1

cosh(K1σiσi+1 + K2σi+1σ
′
i+1

+K3σ
′
i+1σ

′
i + K4σ

′
i σi),

where 	σ = (σ1,σ2, . . . ,σL) and 	σ ′ = (σ ′
1,σ

′
2, . . . ,σ

′
L) are the

states of two neighboring rows, respectively. Here periodic
boundary conditions are applied. For a system with M rows,
the partition sum is found to be

Z = Tr(T M ), (12)

with the periodic boundary condition 	σM+1 = 	σ1 applied. In
the limit M → ∞, the free-energy density is determined by
the leading eigenvalue �0 of T

f = 1

L
ln �0. (13)

For the HM model, the dimension of the matrix T is
dT = 2L. To numerically calculate the eigenvalues of T ,
we use the sparse matrix technique, which sharply reduces
the requirement of computer memory for storing the matrix
elements. (For details of this technique, see [28–31].) We are
able to calculate the eigenvalues of T with L up to 22. In
our calculations, we restrict the system size L to even values
because the ordered configurations, as shown in Fig. 2, do not
fit well in odd systems.

The critical properties can be revealed by calculating three
scaled gaps Xi(K,L):

Xi(K,L) = 1

2π
ln

(
�0

�i

)
, (14)

where �i (i = 1,2,3) are three subleading eigenvalues of the
matrix T , respectively. According to the conformal invariance

theory [32], the scaled gap Xi(K,L) is related to a correlation
length ξi(K,L),

Xi(K,L) = L

2πξi(K,L)
, (15)

where ξi(K,L) governs the decay of a correlation function
Gi(r). According to the finite-size scaling [33], the gap in the
vicinity of a critical point scales as

Xi(K,L) = Xi + a1(K − Kc)Lyt + a2(K − Kc)2L2yt

+ · · · + buLyu + · · · , (16)

where Xi is the corresponding scaling dimension, which is
related to an exponent yi = 2 − Xi according to the conformal
invariance [32]. Here u is an irrelevant field and yu < 0 is the
corresponding irrelevant exponent; a1, a2, and b are unknown
constants.

We focus on the energy-energy correlation Gt (r) and two
magnetic correlations GA(r) and GB(r). Generally speaking,
the magnetic correlation function is defined as G(r) = 〈s0sr〉.
For the HM model, since the spontaneous magnetizations on
the two sublattices behave differently, we examine two types
of magnetic correlation functions: GA(r) with s0 and sr on the
A sublattice and GB(r) on the B sublattice.

Let �1 be the largest eigenvalue in the subspace that
breaks the spin-up–spin-down symmetry, which means that
the associated eigenvector 	v1 satisfies

	v1 = −F 	v1, (17)

where F is the operator flipping spins. Thus the scaled gap
X1(K,L) is identified as Xh1(K,L) and the corresponding
correlation is GA(r).

Let �2 and �3 be the second and third largest eigenvalues
in the subspace keeping the spin-up–spin-down symmetry. It
is not a priori clear which of the two corresponding gaps
is the thermal one Xt (K,L) or the magnetic one Xh2(K,L).
Based on the magnitudes of Xt = 2 − yt and Xh2 = 2 − yh2,
we identify X2(K,L) and X3(K,L) as Xh2(K,L) and Xt (K,L),
respectively.

Figures 5 and 6 illustrate Xh1(K,L) and Xh2(K,L) versus
K in the uniform case, respectively. We then numerically solve
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FIG. 5. (Color online) Scaled gap Xh1(K,L) versus K for a
sequence of system size L for the uniform HM model, whose critical
point is Kc = ln(1 + √

2)/2 = 0.440 687.
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FIG. 6. (Color online) Scaled gap Xh2(K,L) versus K for a
sequence of system size L for the uniform HM model (r = 1), whose
critical point is Kc = ln(1 + √

2)/2 = 0.440 687.

the finite-size scaling equation

Xi(K,L) = Xi(K,L − 2) (18)

for i = h1,h2, respectively. The solution Kc(L) satisfies

Kc(L) = Kc + auLyu−yt + · · · . (19)

Here a is an unknown constant. Since yu < 0 and yt � 0,
Kc(L) converges to the critical point Kc with increasing system
sizes. Equation (19) is used to determine the critical point in
our numerical procedure. For the uniform case, we obtain
Kc = 0.440 686 79(5), which is in good agreement with the
exact solution Kc = ln(1 + √

2)/2. We have also estimated
the critical points of the cases with r = K ′/K = 2,3,4, and 5,
where K = K1 = K3 and K ′ = K2 = K4. Both Xh1(K,L) and
Xh2(K,L) have been used to estimate the critical points; we list
the best estimations in Table I. Our numerical estimations of
Kc are consistent with the theoretical results to a high accuracy.
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FIG. 7. (Color online) Scaled gap Xt (K,L) versus K for a
sequence of system size L for the uniform HM model (r = 1), whose
critical point is Kc = ln(1 + √

2)/2 = 0.440 687.

Exactly at the critical point Kc, (16) reduces to

Xi(Kc,L) = Xi + buLyu + · · · , (20)

which is used to determine the scaling dimensions Xh1 and
Xh2. For the uniform case r = 1, it gives Xh1 = 0.125 000(1)
and Xh2 = 0.1666 66(1), which are consistent with the analytic
results (Table I). We applied the same procedure to r =
2,3,4,5. The numerical estimations and the associated analytic
results are consistent; see Table I.

We also calculate the scaled gap Xt (K,L) in the vicinity
of the critical point. The scaling behavior of Xt (K,L) seems
different from that of Xh1 or Xh2, as shown in Fig. 7 for the
uniform case. This is the result of a1 = 0 in Eq. (16). The
location of the minimum of Xt (K,L) for a given L can be
denoted as Kc(L), which converges to the critical point Kc

when L → ∞. This property can also be used to estimate Kc,
e.g., as was done in [34]; however, we do not do this in the
present paper. By calculating Xt (K,L) at the estimated Kc, we
obtain the scaling dimension Xt according to (20). The results
are listed in Table I.

TABLE I. Critical points, critical exponents, and scaling dimensions of the HM model. Here r = K ′/K (with K = K1 = K3 and
K ′ = K2 = K4) and r∗ = 3.348 258 180 5 . . . . We use the following denotations: TP, theoretical predictions; MC, numerical results based on
Monte Carlo simulations; and TM, numerical results based on transfer matrix calculations. The critical exponents and the scaling dimensions
are related to yt = 2 − Xt , yh1 = 2 − Xh1, and yh2 = 2 − Xh2.

r 1 2 3 r∗ 4 5

Kc TP 0.4406867935 0.3046889317 0.2406059125 0.225147108 0.2017629641 0.1751991102
TM 0.44068679(5) 0.3046889(1) 0.2406059(1) 0.2251472(2) 0.2017629(1) 0.1751991(2)

yt TP 4/3 1.39668184 1.47604048 3/2 1.53960311 1.58921160
MC 1.332(2) 1.397(2) 1.478(3) 1.500(1) 1.540(3) 1.590(2)

Xt TP 2/3 0.60331816 0.52395952 1/2 0.46039689 0.41078840
TM 0.66666(1) 0.603318(1) 0.52396(1) 0.50000(1) 0.46040(2) 0.41079(1)

yh1 TP 15/8 15/8 15/8 15/8 15/8 15/8
MC 1.874(1) 1.874(2) 1.876(2) 1.874(2) 1.877(3) 1.874(2)

Xh1 TP 1/8 1/8 1/8 1/8 1/8 1/8
TM 0.125000(1) 0.125000(1) 0.125000(1) 0.12499(1) 0.12500(1) 0.12498(3)

yh2 TP 11/6 1.84917046 1.86901012 15/8 1.88490078 1.89730290
MC 1.833(1) 1.848(2) 1.870(2) 1.875(1) 1.886(2) 1.896(4)

Xh2 TP 1/6 0.15082954 0.13098988 1/8 0.11509922 0.10269710
TM 0.166666(1) 0.150829(1) 0.130990(1) 0.12500(1) 0.115099(1) 0.102696(2)

c TP 1 1 1 1 1 1
MC 1.000000(1) 1.000000(1) 0.99998(3) 1.0000(1) 1.0000(2) 0.9999(1)
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The finite-size-scaling behavior of the free-energy density
at the critical point determines the central charge c according
to [35,36]

f (L)  f (∞) + πc

6L2
. (21)

Fitting the data of the free-energy density according to (21),
we obtain the central charge c = 1.000 000(1) for the uniform
case. For the other cases, the numerical estimations of the
central charge are listed in Table I. The central charge for
all r takes the fixed value c = 1, as expected for transitions
breaking fourfold symmetry.

Furthermore, we consider the four-state Potts point r =
r∗ = 3.348 258 180 5 . . . . A finite-size scaling analysis based
on transfer matrix calculations is performed at this point.
The numerical estimations obtained are listed in Table I. No
logarithmic corrections are found, as in the Baxter-Wu model.

IV. MONTE CARLO SIMULATIONS

The Baxter-Wu model has been simulated by the Metropolis
algorithm [37], the Wang-Landau algorithm [38], and a cluster
algorithm [13,39]. The cluster algorithm is similar to the
Swendsen-Wang algorithm [40] for the Potts model. In this
algorithm, the triangular lattice is divided into three triangular
sublattices. By randomly freezing the spins on one of the
sublattices, the other two sublattices compose a honeycomb
lattice with pair interactions; then a Swendsen-Wang-type
algorithm can be formed to update the spins on this honeycomb
lattice. In the present paper we suitably modify this cluster
algorithm to simulate the HM model.

The algorithm is divided into three steps.
Step 1. Update the spins on sublattice A. Let the spins on

sublattice B be unchanged (frozen) and the interactions of the
spins on sublattice A reduce to pair interactions.

A. Bonds. A vertical (horizontal) edge on sublattice A

belongs to two triangles. The interactions of the left (up)
and right (down) triangles can be denoted by Kl and Kr ,
respectively, which may take the values K1,K2,K3, or K4.
Place a bond on this edge with probability p = 1 − e−2Kl−2Kr

if the products of spins in both the left (up) triangle and the
right (down) triangle are 1, p = 1 − e−2Kl if the product in
only the left (upper) triangle is 1, p = 1 − e−2Kr if the product
in only the right (down) triangle is 1, and p = 0 otherwise.

B. Clusters. A cluster is defined as a group of sites on
sublattice A connected through the bonds.

C. Update spins. Independently flip the spins of each cluster
with probability 1/2.

Step 2. Update the spins on sublattice B and half of the
spins on sublattice A. This step is very similar to step 1, but
we freeze only half of the spins on sublattice A, which are
labeled A1 (Fig. 8). The other spins (on sublattice B + A2) are
updated, whose interactions also reduce to pair interactions
when A1 spins are frozen.

Step 3. Update the spins on sublattice B and the other half
of the spins on sublattice A. In this step, the spins labeled A2

(in Fig. 8) are frozen and the other spins (on sublattice B + A1)
are updated.

In a complete sweep, all the spins are updated twice.

B

B B B

B B B

B B

2A1A 1A

1A 1A

1A 1A

1A 1A

2A 2A

2A

2A2A

2A

2A

FIG. 8. (Color online) When B spins are frozen, the interactions
of A spins (A1 and A2 spins) reduce to pair interactions; when A1

spins are frozen, the interactions of B + A2 spins reduce to pair
interactions; when A2 spins are frozen, the interactions of B + A1

spins reduce to pair interactions.

In the simulations, the sampled variables include the
specific heat C and the magnetizations MA on sublattice A

and MB on sublattice B. The specific heat is calculated from
the fluctuation of energy density E,

C = L2(〈E2〉 − 〈E〉2)

kBT 2
, (22)

where L is the linear size of the system and angular brackets
denote the ensemble average. The magnetizations are defined
as

MA =
〈∣∣∣∑N

i=1 σi

∣∣∣〉
N

, (23)

MB =
〈∣∣∣∑N

i=1 si

∣∣∣〉
N

, (24)

where N = L2 is the number of total sites on sublattice
A or B.

In order to demonstrate our numerical procedure based
on the Monte Carlo simulations, we take the uniform case
(K = K1 = K2 = K3 = K4) as an example. The cluster algo-
rithm is very efficient, which easily allows us to do meaningful
simulations for the system with linear size up to L = 384. All
the simulations are performed at the critical point Kc. After
equilibrating the system, 107 samples were taken for each
system size. Using the Levenberg-Marquardt algorithm, we fit
the data of C according to the finite-size scaling formula [33]

C(L) = C0 + L2yt−d (a + bLy1 ), (25)

where bLy1 is the leading correction-to-scaling term with
y1 < 0 the leading irrelevant exponent. Here d = 2 is the
dimensionality of the lattice and C0, a, and b are unknown
parameters. The fitting yields yt = 1.332(2), which is in good
agreement with the exact result yt = 4/3.

The finite-size scaling behaviors of the magnetizations MA

and MB are

MA = Lyh1−d (a + bLy1 ), (26)

MB = Lyh2−d (a′ + b′Ly ′
1 ), (27)
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FIG. 9. (Color online) A log-log plot of the magnetizations
MA and MB versus system size L for the HM model at
the critical point Kc = ln(1 + √

2)/2 for the uniform case
(K = K1 = K2 = K3 = K4).

respectively. A log-log plot of MA and MB versus L is shown
in Fig. 9. The fits yield yh1 = 1.874(1) and yh2 = 1.833(1),
where yh1 and yh2 are in good agreement with the analytic
predictions yh1 = 15/8 and yh2 = 11/6, respectively.

We also simulate the r = 2, 3, 4, 5, and r∗ cases. The
numerical estimations of yt ,yh1,yh2 and the corresponding
analytic predictions are listed in Table I. They are in good
agreement. In these fits, no logarithmic corrections to scaling
are found.

V. FRACTAL STRUCTURE OF THE MODEL

In addition to calculating the critical exponents yt , yh1,
and yh2, we also investigate the geometric properties of the
model. The configurations of the HM model are represented
by Ising spins. Thus we can define Ising clusters for the model
as in the Ising model [41]. To do so, each sublattice is viewed
as a square lattice. For two nearest-neighbor Ising spins on
a sublattice, they are considered to be in the same cluster
if they have the same sign. Here, by “nearest neighbor” we

 100
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FIG. 10. (Color online) A log-log plot of Sa and Sb versus system
size L for the HM model at the critical point Kc = ln(1 + √

2)/2 for
the uniform case (K = K1 = K2 = K3 = K4).

TABLE II. Fractal dimensions of the HM model. Here Da is the
fractal dimension of the A cluster, Db is the fractal dimension of the
B cluster, r = K ′/K (with K = K1 = K3 and K ′ = K2 = K4), and
r∗ = 3.348 258 180 5.

r 1 2 3 r∗ 4 5

Da 1.888(1) 1.889(1) 1.890(3) 1.889(2) 1.888(1) 1.888(2)
Db 1.925(1) 1.931(1) 1.939(1) 1.941(1) 1.945(2) 1.951(2)

mean that the neighborhood of the site is the same as that
of a site in a square lattice. This definition is applied to the
two sublattices respectively, thus there are two types of Ising
clusters. For clarity, we call the Ising cluster on sublattice
A the A cluster and the Ising cluster on sublattice B the B

cluster.
The simulations are also performed at the critical points.

The sizes of the largest A cluster and the largest B cluster are
denoted by Sa and Sb, respectively. They satisfy the finite-size
scaling

Sa = LDa (a + bLy1 ), (28)

Sb = LDb (a′ + b′Ly ′
1 ), (29)

which means that the largest A cluster and the largest B

cluster are fractals, with Da and Db the fractal dimensions,
respectively. Figure 10 is an illustration of Sa and Sb versus
system size L for the uniform case. Fitting the data according
to (28) and (29), we find Da = 1.888(1) and Db = 1.925(1).

The same procedure was applied to r = 2, 3, 4, 5, and
r∗. The results obtained are listed in Table II. The fractal
dimension of the A cluster has a fixed value Da = 1.888(2),
while that of the B cluster varies with the ratio r .

VI. CONCLUSION

We have numerically studied the critical properties of the
HM model by means of finite-size scaling analysis based on
the transfer matrix calculations and Monte Carlo simulations.
For the critical points and the critical exponents yt (Xt ), yh1

(Xh1), and yh2 (Xh2), our numerical estimations are in good
agreement with the corresponding analytic predictions [14,26].
The analytic prediction for yh2 is based on the conjectured
spontaneous polarization of the eight-vertex model, which re-
mains unproved. Our numerical results verified the correctness
of the prediction.

In addition, the central charge of the model was found
to be c = 1. This is consistent with the fact that yh1 = 15/8
and yt and yh2 vary continuously with the parameters, which
is related to the fourfold degeneracy of the ground states of
the model. Usually, logarithmic corrections [10,23,42] show
up in the four-state Potts point for the model with fourfold
degenerate ground states due to the second temperature field.
However, we did not see such logarithmic corrections in the
four-state Potts point of the HM model. This is the same as the
Baxter-Wu model, in which the amplitude of the marginally
irrelevant operator is zero.

Furthermore, two unpredicted critical exponents were
found to describe geometric properties of the model. We
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defined clusters based on the Ising spin configurations on
the two sublattices of the model. The fractal dimension of
the largest cluster on sublattice A takes the fixed value
Da = 1.888(2), while the fractal dimension of the largest
cluster on sublattice B varies continuously with the parameters
of the model.
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[30] H. W. J. Blöte and M. P. Nightingale, Phys. Rev. B 47, 15046

(1993).
[31] X. F. Qian, M. Wegewijs, and H. W. J. Blöte, Phys. Rev. E 69,
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