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We propose a simple and analytically solvable model for a motor that generates mechanical motion by
exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation
of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological parameters.
Furthermore, we find that the efficiency at maximum power of the motor may show discontinuities.
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I. INTRODUCTION

The framework of equilibrium thermodynamics provides
several examples of entropic forces including osmotic pres-
sure, the hydrophobic force in aqueous solutions, and the
elastic forces arising in models of freely jointed polymers such
as rubber [1]. More recently, physicists have started studying
entropic effects in out-of-equilibrium phenomena such as
transport of particles through channels [2], and exploited the
entropic forces to construct an efficient sorting mechanism
[3]. However, all of these processes require energy from an
external driving force. Entropic effects in copolymerization
mechanisms have also been considered [4]. There, the ther-
modynamic affinity driving these nonequilibrium processes
results from the interplay between the information stored in
the monomer sequence and the free energy per monomer. This
affinity contains an entropic contribution which depends on the
enthalpic force and is thus not accessible to direct experimental
manipulation [5].

In this paper we propose to use entropy to fuel an engine
that generates mechanical motion in an out-of-equilibrium
setting. For this purpose we introduce a simple analytically
solvable model in which the thermodynamic driving force
is of a purely entropic nature and directly controllable. We
believe that our toy model provides the minimal setup that
allows to characterize analytically entropic driving forces out
of equilibrium. More specifically, we consider a Markovian
jumping process on a two-dimensional network as a model
of diffusion in a generic landscape, such as the one depicted
in Fig. 1, with exponentially increasing available phase space
along the direction of positive average slope.

We show analytically using stochastic thermodynamics and
coarse graining that, with few restrictions on the topology
and kinetics of the process, the system exhibits a positive
steady-state velocity in the radial direction when a time-scale
separation between the two directions exists. The resulting
dynamics can thus be interpreted as that of a motor pumping
particles uphill against a mechanical gradient powered by a
purely entropic force originating from the increasing phase
space volume of the slow coordinate. We calculate as a function
of the opposing force the increase in the phase space volume
required to achieve steady operation. Furthermore, we show
numerically that the pumping effect is surprisingly robust
even when the time-scale separation assumption is not strictly

fulfilled. In other words, we demonstrate that an effective
description in terms of equilibrium free energies provides a
good approximation to the nonequilibrium dynamics for a wide
range of network topologies and kinetic parameters.

We study the efficiency at maximum power (EMP) of
our model motor and show that the qualitative behavior of
this quantity can differ severely from the one observed in
one-dimensional isothermal engine models traditionally con-
sidered in the context of EMP [6–8]. Especially, we show that
the EMP can exhibit discontinuities. Finally, we demonstrate
by using the Fokker-Planck formalism how our findings can
be generalized to systems with continuous phase space.

II. MODEL

We consider a diffusion process on a two-dimensional
potential energy landscape as depicted in Fig. 1. The con-
tinuous phase space model can be approximately mapped into
a Markovian jumping process on a network with the local
minima of the potential energy landscape defining the nodes
or microstates of the network, and the minimal energy paths
between the minima corresponding to the edges or reversible
transitions between microstates, as illustrated schematically
in Fig. 1 [9]. For simplicity, we therefore restrict the main
discussion to a discrete Markov process on the resulting
two-dimensional network model. However, our analysis can
easily be extended to systems with continuous phase space
such as the billiard model studied in Ref. [10], and all the
conclusions of the paper thus apply to this class of systems as
discussed in Sec. IV.

We denote the microstates of the radially symmetric
network by m = (r,φ), where the slow radial coordinate r

can be thought of as a reaction coordinate that represents the
macroscopic level of description after coarse graining. The
number Nr of microstates comprising the available phase space
of a given macrostate r increases exponentially as Nr = kr ,
where k is some integer. The transition rate for going from
state m to state m′ is denoted by wmm′ . For simplicity, we
consider a potential that is constant along the φ direction and
increases linearly in the radial direction. In this case, the local
detailed balance condition for transitions between macrostates
r and r ′ = r + 1 takes the form wmm′/wm′m = exp(−β�E),
where β = 1/T is the inverse temperature, and the mechanical
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FIG. 1. (Color online) A generic potential energy landscape in
two dimensions with exponentially increasing accessible phase space
associated to the radial direction r . The motion along r is subject
to an average negative force hindering the motion. Diffusion on the
potential energy surface can be described by a Markovian jumping
process on the corresponding two-dimensional network.

gradient �E > 0 is independent of r . The Boltzmann constant
kB is set to unity.

The evolution of the probability Pr to find the system
in macrostate r is governed by the coarse-grained master
equation [11]

Ṗr = −(Wr,r+1 + Wr,r−1)Pr + Wr+1,rPr+1 + Wr−1,rPr−1.

Here, the effective transition rates Wr,r±1 for going from r to
r ± 1 are obtained by summing over the relevant transitions
between microstates, i.e.,

Wr,r±1 =
∑

φr ,φr′ ,r ′=r±1

w(r,φr )(r ′,φr′ )Pφr |r , (1)

where Pφr |r is the conditional probability to find the system
in microstate (r,φr ) given that the macrostate is known to be
r . For fast dynamics along the φ coordinate, this probability
attains the equilibrium value Peq

φr |r = 1/Nr = k−r , and Eq. (1)
becomes

Wr,r±1 = k−rnr,r±1〈wmm′ 〉nr,r±1 , (2)

where nr,r ′ is the number of connections between state r

and r ′, and 〈wmm′ 〉nr,r′ denotes the average rate for these
transitions. The modified local detailed balance relation after
coarse graining thus reads

Wr,r+1

Wr+1,r

= k
〈wmm′ 〉nr,r+1

〈wmm′ 〉nr+1,r

= e−β�F , (3)

where we have introduced the change in the free energy F ,

�F = �E − T �S = �E − T log(k), (4)

associated with a transition from r to r + 1. From Eqs. (3)
and (4) it is evident that the entropic force T �S =
T log(Nr+1/Nr ) = T log(k) arising from the topology of the
network is able to generate motion against an external
bias �E < T log(k) whenever the available coarse-grained
phase space increases exponentially, i.e., Nr = kr . However,

FIG. 2. (Color online) In the model network each state in layer r

is connected to two new states in r + 1 by two edges with transition
rates w±

1 and w±
2 , respectively. Transitions between neighboring states

in r take place with rates wr .

the critical value k∗ required to generate motion increases
exponentially with the opposing force as k∗ = exp[�E/T ].
We emphasize that our formalism is also valid in the more
general case of a position dependent force �E(r). In this case,
the rate of the exponential increase of Nr has to be chosen such
that �F (r) > 0 for all r .

We now assume that each macrostate r is connected to the
state r + 1 by kr+1 transitions, i.e., nr,r+1 = kr+1, such that
every microstate in r is on average connected to k microstates
in r + 1 (see, e.g., Fig. 2). If, moreover, the average transition
rate 〈wmm′ 〉nr,r′ is independent of r , the two-dimensional
problem with fast equilibration along the φ direction reduces
to a one-dimensional asymmetric random walk along the r

direction. The velocity in the long-time limit is thus position
independent and given by

vTSS
r = Wr,r+1 − Wr+1,r = 〈wmm′ 〉nr,r−1 (e−β�F − 1), (5)

as follows from Eqs. (2) and (3). We note that, in this limit,
our model is equivalent to simple molecular motor models
where the motors are described as continuous or discrete
asymmetric random walks [6,7,12]. In these models both
the chemical driving force and the mechanical load force
are spatially periodic, which allows for a nonequilibrium
steady-state description of the process when periodic boundary
conditions for the probability are imposed. Analogously, in
our model the load force �E is assumed constant, while the
entropic force T �S is independent of r when the phase space
volume associated with the r direction grows exponentially.
We do not enforce periodic boundaries in our model, and the
resulting dynamics is thus not stationary in the sense Ṗr �= 0
but rather in the sense of constant velocity. We will therefore
in the following refer to the regime described by Eq. (5) as a
nonequilibrium steady state associated to the operation of an
entropic motor.
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FIG. 3. (Color online) The average position 〈r〉 as a function of
time for various values of the opposing force �E and two different
system sizes n as specified in the legend. The dashed (black) lines
correspond to the analytical expression, Eq. (6), for the steady-state
velocity. For each curve, the horizontal dashed line denotes the
equilibrium value of 〈r〉. Parameter values are w−

1 = 1, w−
2 = 0.5,

w+
1,2 = w−

1,2e
−�E , and wr = 22r . The values of n are chosen such that

the simulation times lie within a reasonable range.

In the following we discuss the conditions under which
the strict mathematical time-scale separation (TSS) leading to
Eqs. (2)–(5) is valid and show that steady-state operation can
be obtained even when the assumption of TSS is relaxed.

A. Requirement of time-scale separation

We now consider the model system depicted in Fig. 2.
Each state in r is connected to two states in r + 1, i.e., k = 2,
and we denote by w+

i (w−
i ), with i = 1,2, the microscopic

forward (backward) transition rate which is independent of
r . The dynamics within a given layer r is a symmetric
random walk on a finite lattice with Nr = 2r sites and jumping
rates equal to wr . The slowest eigenvalue λr governing
the diffusive relaxation towards equilibrium within r thus
scales as λr ∼ wrN

−2
r = wr2−2r . Consequently, in order to

ensure strict TSS between the dynamics along the r and φ

directions, the rates along φ must scale as wr = w122r with
the first-layer rate fulfilling w1 � maxi=1,2(w+

i + w−
i ). Under

these assumptions the velocity in the long-time limit is given
by Eq. (5),

vTSS
r = 1

2 (w−
1 + w−

2 )(e−β(�E−T �S) − 1), (6)

where �S = log(2). The prediction of Eq. (6) is verified by
numerical simulations as shown in Fig. 3, where we plot
the average position 〈r〉 as a function of time for different
values of the slope �E. For �E < T �S, the dynamics
exhibits a short transient regime followed by a linear increase
in position with the slope given by Eq. (6), as expected.
Finally, the velocity decreases due to finite-size effects as
〈r〉 approaches its equilibrium value. We emphasize that the
steady-state dynamics characterized by Eq. (6) is independent
of the system size and is therefore, for finite systems, de-
scribing a transient nonequilibrium regime of almost constant
speed. In the limit where n diverges, this regime becomes
a genuine out-of-equilibrium steady state. This regime has

FIG. 4. (Color online) The average position 〈r〉 as a function of
time for various values of the asymmetry parameter f = w±

2 /w±
1

and for various time scales along the φ direction quantified by wr ,
as specified in the legend. The dashed line denotes the equilibrium
value of 〈r〉 for �E = 0.05�S and n = 20. Parameters are w−

1 = 1
and w+

1 = e−�E .

to be distinguished from the long-time relaxation process
to equilibrium governed by the slowest eigenvalue of the
transition matrix. This is illustrated in Fig. 3 by the fact that the
extent of the linear regime increases with the system radius n.
For �E > T �S, however, no steady-state regime is present,
and the equilibrium distribution as well as the relaxation to
equilibrium is independent of the system size.

In order to explore the robustness of the entropic motor we
performed numerical simulations of the system for different
values of the rates wr that do no strictly satisfy the TSS
condition and for different system asymmetries quantified
by the ratio f = w±

2 /w±
1 < 1. In Fig. 4 we plot the time

evolution of 〈r〉 when all the rates wr are of the same order of
magnitude as the fastest transition rates w±

1 along r (wr = 1,
dashed lines). For comparison we also show the resulting
dynamics in the case of complete TSS (solid lines) and in
the absence of connections along φ (wr = 0, dotted-dashed
lines). We note that in the special case w±

1 = w±
2 (f = 1), the

equilibration along the φ direction is fulfilled automatically
due to the symmetry of the problem, and the velocity is thus
independent of wr . For small asymmetries we therefore expect
〈r〉 to depend weekly on wr as shown in Fig. 4 (f = 0.9, plus
symbols). In more asymmetric systems the entropic force is
clearly unable to generate steady-state motion for vanishing
wr . However, strikingly, even for very high asymmetries
(f = 0.001, square symbols), the merely moderately strong
connections wr = 1 ensure an approximately constant velocity
that is close to the optimal value vTSS, Eq. (6). Such a
robustness is attributed to the interplay of local topology and
the fast decaying eigenmodes of the dynamics along φ. The
density fluctuations imposed by the asymmetric kinetic rates
exhibit a periodic structure due to the self-similar geometry
of the problem and thus decay on time scales shorter than the
typical times 1/w±

1,2 for movement between macrostates. As
a result, the conditional probability distribution Pφr |r along φ

becomes quasistationary with an associated entropy S ′ � S =
log(Nr ) = r log(k), which in turns yields a nearly constant
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velocity v′ � vTSS obtained by replacing �S with �S ′ in
Eq. (6). Based on these considerations we therefore conclude
that a steady power output can be generated by entropic forces
for a wide range of network topologies and transition rate
distributions as long as these do not systematically build up
density inhomogeneities in Pφr |r that decay slower than the
characteristic time scales for microscopic transitions along the
slow coordinate.

III. EFFICIENCY AT MAXIMUM POWER

We now turn to the question of how efficiently the proposed
entropic motor is performing mechanical work. The system is
by construction tightly coupled [6,8,12,13], and the efficiency
η = v�E/(vT �S) of the motor is thus independent of its
velocity v. The efficiency attains the maximum value 1 at
thermodynamic equilibrium corresponding to a vanishing free
energy, �F = 0, and velocity, v = 0. In this quasistatic limit
the power output Pout = v�E is thus zero and therefore of
limited practical interest. We hence turn to calculating the
efficiency at maximum power (EMP), which is obtained by
optimizing the output power with respect to the opposing force
�E with the velocity given by Eq. (6). In order to fully specify
the problem we introduce the Arrhenius parametrization of
the jumping rates, w±

i = w0 exp[β(−�E0
i ∓ �Eθ±

i )] for i =
1,2, which is appropriate for describing diffusion over a high
barrier [14]. Here, �E0

i is the barrier height for pathway i in the
absence of force, i.e., for �E = 0, and w0 is a microscopic rate
constant assumed to be the same for both transitions. The so-
called load sharing factors θ±

i denote the position of the energy
barrier or transition state for motion in the forward and back-
ward directions, respectively, and must fulfill θ+

i + θ−
i = 1

in order to satisfy local detailed balance.
For a given driving �S, the EMP η∗ is calculated as

η∗ = �E∗/(T �S), where the optimal load force �E∗ fulfills
dPout/d�E = 0. In the linear regime, �S 
 1, the EMP to
first order in �S is given by

η∗ = 1

2
+

[(
1

2
− θ+

1

)
+ w

(
1

2
− θ+

2

)]
�S

8(1 + w)
, (7)

where w = exp[β(�E0
1 − �E0

2)] quantifies the difference in
the zero-force barriers for the pathways. The first term is the
universal value 1/2 of the EMP in the linear regime, while the
second term reduces to the well-known result for one barrier
for w = 0,∞ [6–8,15].

Far from equilibrium, the EMP can exhibit very different
behaviors. If the physical nature of the two pathways gives
rise to significantly different activation barrier positions, i.e.,
the load parameters satisfy θ+

1 
 θ+
2 , the EMP exhibits a

discontinuity as a function of �S for a range of values of w

as illustrated in Fig. 5(a). For w � 1, i.e., even for comparable
zero-force barrier heights, the EMP η∗ is continuous and
largely equivalent to the one obtained for one barrier with load
parameter θ+

1 (crosses), since for small θ+ the barrier lies close
to the initial state and is thus little affected by the external load.
For larger values of w, however, the second barrier located at
θ+

2 becomes low enough to dominate the power output for
small �S [see Fig. 5(b)], which for sufficiently large w and
increasing �S gives rise to two local maxima in Pout, as shown
in Fig. 5(c). As �S is increased further, the global maximum

FIG. 5. (Color online) (a) The efficiency at maximum power η∗

for entropy-generated power as a function of the entropic driving �S

for different barrier height ratios parametrized by w = exp[β(�E0
1 −

�E0
2 )]. (b)–(d) Power output Pout (green, solid line) as a function of

the load �E for different values of the input �S for w = 5. The
crosses (blue) and the plus symbols (red) denote the contributions
from the first and second pathway, respectively. For small �S, the
maximum of Pout is dictated by the second pathway (b), (c). As �S

increases, the first pathway becomes dominant (d). The values of the
load factors are θ+

1 = 0.045 and θ+
2 = 0.45, respectively.

of the output power again coincides with the local maximum
corresponding to θ+

1 [see Fig. 5(d)], and the resulting EMP
depicted in Fig. 5(a) is thus discontinuous. Finally, as w is
increased beyond a critical value, the barrier associated to θ+

2
dominates the output Pout even as �S → ∞. As a result, the
EMP is continuous and qualitatively equal to that obtained
for a system with one transition state positioned at θ+

2 (plus
symbols), as illustrated in Fig. 5(a).

IV. FOKKER-PLANCK FORMALISM

In this section we demonstrate using the continuous phase
space framework how entropic forces arising from an exponen-
tial increase in the phase space volume can generate motion
against a mechanical gradient. We consider an overdamped
Brownian motion in a two-dimensional potential energy
landscape V (x,y) as, e.g., the one depicted in Fig. 6, where x

represents the macroscopic degree of freedom corresponding
to a reaction coordinate affected by a mechanical load force,
and y is the degree of freedom to be coarse grained. The
probability distribution function (PDF) P (x,y) describing
diffusion in the potential V (x,y) obeys the Fokker-Planck
equation,

∂tP (x,y) = −∇ · �J (x,y), (8)

where the components of the probability current vector �J =
(Jx,Jy) are given by

Ji = −
∑

j=x,y

[Dij (∂jV + ∂j )]P, i = x,y. (9)

Here, Dij denote the components of the diffusion matrix [14].
Under the assumption of time-scale separation between the
two coordinates, with y being the fast coordinate, the PDF can
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FIG. 6. (Color online) A flat potential of the form (14) with
exponentially increasing phase space boundaries b(x) = b0 exp[rx]
for b0 = 50, r = 0.1, and f0 = 10.

be written as

P (x,y) = P (x)P(y|x) � P (x)Peq(y|x), (10)

where the conditional probability for being at y given x attains
the equilibrium value

Peq(y|x) = e−β[V (x,y)−F(x)]. (11)

Here, we have defined the local free energy at x,

F(x) = −β−1 log
∫

dy e−βV (x,y). (12)

Inserting (11) into (9) and tracing out the y coordinate in (8)
yields the coarse-grained Fokker-Planck equation for the x

direction,

∂tP (x) = ∂x[Dxx(∂xF(x) + ∂x)]P (x), (13)

where the effective nonequilibrium potential for motion along
x is given by the free energy defined in (12). In the case of
diffusion in a two-dimensional narrow channel, Eq. (13) is
known as the Fick-Jacobs equation [2,16,17].

A. Flat potential

Let us consider as a specific example a potential of the form

V (x,y) =
{

U0(x) if y ∈ [−b(x),b(x)],

∞ otherwise,
(14)

where the potential energy U0(x) = f0x along x is linearly
increasing with the load force f0 > 0, and the potential along
y is zero within a bounded region of the phase space given by
the function b(x), and infinite otherwise. The free energy (12)
thus becomes

F(x) = U0(x) − β−1 log[2b(x)], (15)

and the resulting effective force fx in the x direction after
coarse graining is

fx = −∂xF(x) = −f0 + β−1b′(x)/b(x). (16)

In the case of linearly increasing boundaries, i.e., b(x) = b0x,
the total force is

fx = −f0 + 1/(βx), (17)

which is positive for x < x0 = 1/(βf0) and negative for
x > x0. Hence, in the long-time limit the system reaches
thermodynamic equilibrium characterized by the mean po-
sition 〈x〉 = x0. In analogy to the case of the discrete system
considered above, we thus conclude that linear phase space
growth is not sufficient to generate steady motion along
the macroscopic coordinate. However, if the growth of the
boundaries is exponential, b(x) = b0e

rx , as depicted in Fig. 6,
the resulting force,

fx = −f0 + r/β ≡ −f0 + fs, (18)

is positive for values of r larger than the critical value
r∗ = f0β, thus generating a nonvanishing positive steady-state
velocity, vx = fx/Dxx , along x. The resulting motor is thus
equivalent to an entropic engine pumping particles uphill
against a load force f0 with efficiency η = f0/fs = r∗/r ,
where fs = r/β is the entropic driving force.

B. Quadratic potential

Another example of the entropic motor in the continuous
phase space formalism is provided by the broadening harmonic
potential illustrated in Fig. 7 and given mathematically by

V (x,y) = U0(x) + a(x)y2/2, (19)

where the exponential increase of the available phase space
in the coarse-grained coordinate is reflected in the function
a(x) = a0e

−rx . The free energy in this case becomes

F(x) = U0(x) + β−1 log[a(x)/2π ]/2, (20)

while the corresponding force

fx = −f0 + β−1r/2 (21)

is again able to generate steady-state motion for r > r∗ = 2βf0

with velocity vx and efficiency η as given above.
We have thus shown that application of the coarse-graining

approach in stochastic thermodynamics to systems with con-
tinuous phase space yields an effective description equivalent
to the one obtained on networks. Furthermore, the analysis
of the efficiency at maximum power can be carried out in a
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FIG. 7. (Color online) Quadratic potential (19) with a0 = r =
0.05 and f0 = 10.
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similar manner in the two classes of systems, yielding results
qualitatively similar to those in Fig. 5 for an appropriate choice
of the potential V (x,y).

V. CONCLUSIONS

Traditional engines most often rely on chemical or thermal
energy sources to perform mechanical work. In contrast,
we have studied a model engine driven by purely entropic
forces arising from the topology of the underlying phase
space. Our model applies to the large class of physical
systems in which a reaction coordinate is associated with an
exponentially increasing phase space volume. One example
of such systems is a paramagnet with a large but finite
number N of spins in a magnetic field. The system can
be initially prepared in a configuration with all the spins
pointing up, by applying a positive and large magnetic field.
After flipping the magnetic field direction, and introducing
the reaction coordinate r , which denotes the number of spins
pointing in the unfavorable (up) direction, the number of
microstates associated with r will increase exponentially as
Nr = N !/[(N − r)!r!] during long time intervals. Another
example is provided by the freely-jointed-chain model for
long polymers in the entropy-dominated regime [1]. In this
case, the macroscopic coordinate is the polymer end-to-end
distance r which follows a Gaussian distribution. By applying
a large force to the free ends, the polymer can be prepared in
a completely stretched configuration, where r � bN , with N

the number of monomers and b the fixed bond length. After a
force quench, the phase space volume comprising a macrostate
with r < bN will grow faster than exponentially for long time
intervals, until the polymer extension becomes of the order of
the new equilibrium value.

Assuming time-scale separation between the reaction co-
ordinate and the coarse-grained coordinate, we have char-
acterized analytically, both in the case of discrete as well
as continuous phase space, the conditions under which the
dynamics of our model corresponds to a nonequilibrium
steady-state describing the operation of a motor. Our nu-
merical simulations on Markovian network models show
that force generation in such entropically fueled systems is
surprisingly robust to variations in network topologies and
kinetic constraints. The formalism can be straightforwardly
generalized to systems with several coarse-grained coordinates
in which larger entropic driving forces can be generated.
Furthermore, we have demonstrated that the efficiency in
the regime of maximum power operation exhibits features
such as discontinuities. The result that the efficiency can
change dramatically across such a discontinuity potentially
has important implications for the operation of autonomous
nanomotors driven by two physically distinct processes.

In conclusion, our work suggests that the important question
of the interplay between the energy landscape and the topology
in general network structures could be successfully addressed
in the future in the context of stochastic thermodynamics.
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