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Energy transfer in a molecular motor in the Kramers regime
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We present a theoretical treatment of energy transfer in a molecular motor described in terms of overdamped
Brownian motion on a multidimensional tilted periodic potential. The tilt represents a thermodynamic force
driving the system out of equilibrium and, for nonseparable potentials, energy transfer occurs between degrees of
freedom. For deep potential wells, the continuous theory transforms to a discrete master equation that is tractable
analytically. We use this master equation to derive formal expressions for the hopping rates, drift and diffusion,
and the efficiency and rate of energy transfer in terms of the thermodynamic force. These results span both strong
and weak coupling between degrees of freedom, describe the near and far from equilibrium regimes, and are
consistent with generalized detailed balance and the Onsager relations. We thereby derive a number of diverse
results for molecular motors within a single theoretical framework.
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I. INTRODUCTION

Biological systems use specialized proteins to convert and
utilize chemical energy. These molecular motors operate far
from equilibrium, with minimal inertia, and in the presence
of significant thermal fluctuations [1–3]. Insights into their
mechanisms are being provided by single-molecule exper-
iments [4–9] and the artificial synthesis of molecules that
mimic motor proteins [3,10–12]. Energy transfer in molecular
motors has been described by a variety of stochastic theoretical
approaches [2,13–15]. A general theory would unify these
treatments and provide an opportunity to clarify fundamental
aspects of molecular motor operation.

Theoretical descriptions of molecular motors can be
broadly categorized into three types: (i) one-dimensional stud-
ies of Brownian motion on asymmetric, often time-dependent,
periodic potentials [2]; (ii) discrete master equation treatments
[14–20]; and (iii) descriptions of Brownian motion on a mul-
tidimensional free-energy landscape [13,21]. Type (i) theories
build on the Feynman ratchet, a model used to demonstrate
the impossibility of fluctuations leading to directed motion at
equilibrium [2]. The addition of a linear or time-dependent
potential drives the system out of equilibrium and enables
directed motion. Type (ii) theories are based on generalizing
discrete master equation treatments of chemical reactions
[15,16,19]. In these master equations, the ratio between
forward and backward kinetic rates is constrained by imposing
generalized detailed balance [17,22,23]. Master equation
theories have been used to develop detailed phenomenological
models of specific molecular motors [18–20]. Type (iii)
theories are based on the idea that chemical reactions can
be described as Brownian motion over a potential barrier [24].
This means that both chemical and mechanical coordinates
can be incorporated within the same theoretical framework:
Brownian motion on a multidimensional time-independent
potential [13,21]. In this approach, energy coupling between
degrees of freedom occurs for nonseparable potentials. Type
(iii) theories are a candidate for a general theory of energy
transfer in molecular motors.

The continuous diffusion equation for Brownian motion
on a multidimensional potential is not analytically tractable
in general [25,26]. This makes it difficult to connect type

(iii) theories with experiments, phenomenological models,
and established results from nonequilibrium thermodynamics.
However, analytic solutions can be derived in special cases. For
example, in the case of strong coupling, the multidimensional
theory reduces to a one-dimensional description along the
coupled coordinate [13,27,28]. Analytic solutions can also be
found if the degrees of freedom uncouple in a transformed
frame [28]. We recently developed an alternative approach
that spans both the regime of strong coupling and the more
general weakly coupled case [29]. In this treatment, the
continuous probability density is expanded in a localized
Wannier basis to derive a discrete master equation that is
analytically tractable. This is the classical analog of the
tight-binding model of quantum mechanics and applies for
multidimensional nonseparable periodic potentials.

In this paper, we formally connect type (iii) theories with a
number of well-established results for molecular motors. We
consider the particular case of overdamped Brownian motion
on a multidimensional tilted periodic potential. Using the
tight-binding approach, we expand the continuous theory in
the Wannier states of the potential to explicitly transform to a
master equation that can be interpreted in terms of infrequent
hopping between localized discrete states. For nonseparable
potentials, this master equation describes hopping transitions
that directly couple different degrees of freedom enabling
energy transfer. We extend our previous treatment of this
problem [29] by expanding in the Wannier states of the
tilted periodic potential rather than the untilted periodic
potential. This generalizes the validity of the master equation
from the weak-tilting regime to Kramers’ regime. We use
the master equation to derive a range of formal results for
molecular motors. We show that our results are consistent with
well-established nonequilibrium thermodynamics results such
as generalized detailed balance [17,22,23] and the Onsager
relations [30,31].

This paper is organized as follows. In Sec. II we introduce
the continuous theory for diffusion on a multidimensional
tilted periodic potential and its applicability to molecular
motors. In Sec. III we expand in the Wannier states of the
potential to derive a discrete master equation. In Sec. IV
we consider the master equation hopping rates and connect
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with Kramers’ escape rate and generalized detailed balance.
In Sec. V we derive the force-flux relation, and in Sec. VI
we derive the power-efficiency trade-off. In Sec. VII we
consider the eigenvalue spectrum of the master equation and
the drift and diffusion. In Sec. VIII we determine the entropy
generation. In Sec. IX we connect our results with coupled
chemical reactions. We conclude in Sec. X.

II. CONTINUOUS THEORY FOR MULTIDIMENSIONAL
DIFFUSION

We consider Brownian motion on a multidimensional
potential described by the Smoluchowski equation [25]

∂P (r,t)
∂t

= LP (r,t), (1)

where P (r,t) is the probability density of finding the system
at position r at time t . Each degree of freedom is a generalized
coordinate capturing the main conformal motions of the
molecules and representing displacements in real space or
along reaction coordinates [24]. In the overdamped limit of
negligible inertia, the evolution operator is defined by

L =
∑

j

1

γj

∂

∂rj

[
kBT

∂

∂rj

+ ∂V (r)

∂rj

]
, (2)

where kB is the Boltzmann constant, T is the temperature, γ is
the friction coefficient that may have a different constant value
for each degree of freedom, and j is the coordinate index.

The free-energy potential V (r) has both entropic and me-
chanical contributions [21] and can, in principle, be determined
by single-molecule experiments [32] or molecular-dynamics
simulations (e.g., [33]). We assume a potential in the form of
a periodic part with period a and a linear tilt [21], i.e.,

V (r) = V0(r) − f · r, (3)

with

V0(r) = V0(r + aj r̂j ) = V0(r + a). (4)

The linear potential drives the system out of thermal equilib-
rium [2,29]. It represents a constant macroscopic thermody-
namic force due to an external mechanical force or an entropic
force such as a concentration gradient across a membrane or
an out-of-equilibrium chemical concentration. Energy transfer
occurs when the force in one coordinate induces drift in
another. This is only possible when the potential V (r) contains
a nonseparable term [13]. Energy transfer in a two-dimensional
tilted periodic potential has been demonstrated numerically
[34].

The above formalism provides a from-first-principles math-
ematical framework that encompasses all energy transfer in
molecular motors, including energy conversion in cytoskele-
tal motors, rotary motors such as ATP synthase, and ion
pumps. This theory also provides a physical picture of a
molecular-scale system undergoing Brownian motion on a
multidimensional time-independent potential that directs the
average behavior of the system enabling energy coupling
between degrees of freedom for nonseparable potentials.

III. TRANSFORMATION TO A DISCRETE MASTER
EQUATION

For the case of deep potential wells, the system is strongly
localized around the minima of the potential and it is physically
intuitive that the continuous theory can be approximated by a
discrete equation describing hopping between potential wells.
The transformation from a continuous diffusion equation to a
discrete master equation represents a significant simplification
of the system dynamics and has been attempted by other
authors [17,21–23,35–37]. In our approach, we expand the
continuous theory in a localized Wannier basis. This treatment
is analogous to the tight-binding model of a quantum particle
in a periodic potential [38]. Our previous treatment of this
problem expanded the continuous theory in the Wannier states
of the untilted periodic potential [29]. The untilted basis is
useful for weak tilting where the force is a small perturbation
to the potential. Here, we expand in the Wannier states of
the tilted periodic potential. Using the tilted basis extends the
validity regime of the master equation beyond weak tilting.

The evolution operator L is periodic, so we invoke Bloch’s
theorem [38]. The eigenequation for the Smoluchowski equa-
tion (1) is

Lφα,k(r) = −λα,kφα,k(r), (5)

where the eigenfunctions φα,k(r) have the Bloch form

φα,k(r) = eik·ruα,k(r), (6)

and uα,k(r) has the periodicity a of the periodic potential.
The evolution operator is not Hermitian in general, so the
eigenvalues λα,k have both a real and imaginary part. The
real part is to be interpreted as a decay rate and is due to the
Hermitian component of the operator L, so Re(λα,k) � 0 [25].
For weak to moderate forcing, the potential minima are well
defined and the eigenvalues separate into bands denoted by
the band index α. The wave vector k is confined within the
first Brillouin zone and, with periodic boundary conditions at
infinity, is continuous. We construct a biorthonormal set from
the eigenfunctions of L and its adjoint L† [25]. The adjoint
operator is

L† =
∑

j

1

γj

[
kBT

∂2

∂r2
j

− ∂V (r)

∂rj

∂

∂rj

]
, (7)

and has the eigenequation

L†φ†
α,k(r) = −λ

†
α,kφ

†
α,k(r), (8)

where the eigenfunctions φ
†
α,k(r) also have the Bloch form.

The eigenfunctions satisfy the orthonormality relation∫
d r φ

†∗
α,k(r)φα′,k′(r) = δαα′δ(k − k′). (9)

Establishing completeness for a non-Hermitian operator is not
straightforward. For the purpose of this work, we assume the
completeness relation [25]∑

α

∫
B

dk φ
†∗
α,k(r)φα,k(r ′) = δ(r − r ′), (10)

where the integral in Eq. (10) is denoted by B to indicate that
it is over a single Brillouin zone. The adjoint eigenvalues can
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be chosen to satisfy

λ
†
α,k = λ∗

α,k. (11)

The ground state of the adjoint operator is spatially indepen-
dent with λ

†
0,0 = 0 = λ0,0.

The eigenfunctions φα,k(r) and φ
†
α,k(r) are delocalized over

the entire spatial extent of the system. It is convenient to
transform to the localized Wannier states

wα,n(r) = D

∫
B

dk φα,k(r)e−ik·An (12)

and

w†
α,n(r) = D

∫
B

dk φ
†
α,k(r)e−ik·An, (13)

where A is a diagonal matrix with Ajj = aj , n is a vector of
integers, and D = ∏

j (aj/2π ). The Wannier states are a real,
discrete, and biorthonormal set. We expand the probability
density as

P (r,t) = 1

D

∑
α,n

pα,n(t)wα,n(r) (14)

to transform Eq. (1) to the discrete form
dpα,n(t)

dt
=

∑
α′,n′

σα,α′,n,n′pα′,n′(t). (15)

The coupling matrix is

σα,α′,n,n′ = 1

D

∫
d r w†

α,n(r)Lwα′,n′(r) (16)

= κα,n−n′δαα′ , (17)

where κα,n are the Fourier components of the eigenvalues, i.e.,

κα,n = −D

∫
B

dk λα,ke
ik·An. (18)

Both the coefficients pα,n(t) and the coupling matrix are real.
The coupling matrix is diagonal in the band index α, so
each eigenvalue band evolves independently and the system
dynamics can be interpreted in terms of intraband hopping
between localized Wannier states.

The band structure of eigenvalues enables a separation of
time scales between the rapidly decaying higher bands and the
slowly evolving lowest band governing the long-time behavior
of the system. Retaining only the lowest band and dropping
the band subscript for the remainder of the paper, we write the
resulting master equation

dpn(t)

dt
=

∑
n′

[κn−n′pn′(t) − κn′−npn(t)] , (19)

where we have used that
∑

n κn = 0. If the potential wells
of the tilted periodic potential are deep compared to the
thermal energy kBT , the Wannier states are well localized.
In this case, the hopping rates with small |n| dominate
and the summation in Eq. (19) need only be extended over
nearest neighbors.1 Furthermore, the Wannier states wn(r)
are approximately the Gaussian harmonic oscillator states of

1Nearest-neighbor sums will also be used in the derivation of
Eqs. (32), (33), and (38).

the potential minima and the adjoint states are approximately
w

†
n(r) ∝ exp[V (r)/kBT ]wn(r). Taking the Wannier states to

be positive, pn(t) is positive and can be interpreted as the
probability that the system is localized in the nth potential
well.

IV. HOPPING RATES

One of the main benefits of the tight-binding approach is
that the discrete master equation is derived explicitly, providing
expressions for the hopping rates κn in terms of the potential,
i.e.,

κn = 1

D

∫
d r w†

n(r)Lw0(r). (20)

The hopping rate κn, and in fact the coupling matrix σα,α′,n,n′ ,
enables direct coupling between different degrees of freedom
when the potential V (r) is nonseparable. In contrast, when
the potential V (r) is additively separable in all degrees of
freedom, the operator L is additively separable, the Wannier
states are multiplicatively separable, and the hopping rates
κn describe only transitions occurring independently in each
dimension. The degrees of freedom are then uncoupled, and
energy transfer cannot occur.

The hopping rates (20) depend in general on the particular
form of the periodic potential V0(r) and have a complicated
functional dependence on the thermodynamic force f . How-
ever, in the regime of deep potential wells, there is a connection
between nonequilibrium transport in a tilted periodic potential
and Kramers’ problem of thermal escape from a potential
minimum of a deep bistable potential [24,39–44]. This enables
a simple approximate tilt dependence of the hopping rates to be
derived, as follows. The physical justification for the master
equation (19) closely parallels the physical argument in the
derivation of Kramers’ relation [39,42]: rapid relaxation within
potential wells accompanied by slow transitions between
wells. For deep potential wells, the hopping rates κn for
nearest neighbors, i.e., for |nj | = 0 or 1, dominate and can
be approximated by assuming a double-well potential that
matches the full potential in the vicinity of the two relevant
minima. We consider the states with n = 0 and n = m,
where |mj | = 0,1. The master equation (19) can then be
approximated by retaining only terms involving p0(t) and
pm(t). We write

dp0(t)

dt
= κ−mpm(t) − κmp0(t), (21)

dpm(t)

dt
= κmp0(t) − κ−mpm(t). (22)

Solving this two-state system gives the two eigenvalues λ0 = 0
and

λ1 = κm + κ−m. (23)

Equation (23) shows that, for deep wells, the hopping rates
can be determined from the first eigenvalue of the double-well
approximation to the potential. If the most probable path for
the transition occurs along a straight line between the minima
and contains a single dominant saddle point, the eigenvalue λ1

can be determined analytically using the WKB method [42].
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This gives Kramers’ escape rate with the tilt dependence,

κn = eαn f ·An/kBT κ0
n, (24)

where κ0
n = κ0

−n is the rate (20) with f = 0 [29], and in
Eq. (24) we have neglected terms in the exponent that are
second order in f [27,45–47]. The loading coefficient αn

describes the position of the saddle point between consec-
utive minima and satisfies 0 � αn � 1 and αn + α−n = 1.
For simplicity, we take αn = 1/2 (unless otherwise stated).
This choice reduces the possibility of interference between
transition paths. Therefore, for the remainder of this paper, we
assume the form

κn = e f ·An/2kBT κ0
n. (25)

The hopping rates (25) can be used to determine the
tilt dependence of the ratio between forward and backward
hopping rates, i.e.,

κn

κ−n
= e f ·An/kBT . (26)

Equation (26) is consistent with generalized detailed balance
for tilted periodic potentials [17,22,23] and is well known
in the context of elementary chemical reactions [48]. In our
treatment, condition (26) is not imposed as a constraint on the
theory but is an analytic result derived from the Smoluchowski
equation (1) in the limit of deep potential wells.

V. FORCE-FLUX RELATION

Solving the master equation (19) to determine physical
properties of the system provides an opportunity to test the
theory against established nonequilibrium thermodynamics
results. In particular, the average rate of hopping is given by
the spatial drift

v = d〈n〉
dt

=
∑

n

n
dpn(t)

dt
. (27)

Using the master equation (19) and the functional form of the
hopping rates (25), the drift can be determined to be

v =
∑

n

nκn =
∑

n

nκ0
ne f ·An/2kBT . (28)

Equation (28) shows the functional dependence of the drift on
the thermodynamic force, and vanishes for f = 0. Interpreting
Xj = fjaj/T as the generalized thermodynamic forces and vj

as the conjugate fluxes, Eq. (28) represents a generalized force-
flux relation. Near equilibrium, |Xj |/kB � 1 and Eq. (28)
reduces to

v =
∑

n

nκ0
n

∑
j

Xjnj

2kB

. (29)

The components of Eq. (29) can be written as

vj =
∑
j ′

Ljj ′Xj ′ , (30)

where

Ljj ′ =
∑

n

njnj ′κ0
n

/
2kB = Lj ′j (31)

satisfies the Onsager relations [30,31].

In the conceptually simpler two-dimensional case, the
force-flux relation (28) becomes

vx = 2κ0
(1,0) sinh(Xx/2kB) + 2κ0

(1,1) sinh(Xx/2kB + Xy/2kB)

(32)

vy = 2κ0
(0,1) sinh(Xy/2kB) + 2κ0

(1,1) sinh(Xx/2kB + Xy/2kB),

(33)

where we have assumed only nearest-neighbor transitions and
that |κ0

(1,−1)| � |κ0
(1,0)|,|κ0

(0,1)|,|κ0
(1,1)|. The hopping rates κ0

(1,0)

and κ0
(0,1) represent transitions occurring independently in each

dimension. Identifying Xz = Xx + Xy as the thermodynamic
force along the coupled coordinate, the hopping rate κ0

(1,1)
represents transitions occurring along the coupled coordinate
and transferring energy between degrees of freedom.

VI. POWER-EFFICIENCY TRADE-OFF

Energy transfer processes are characterized by a trade-off
between output power and efficiency [49]. For a molecular
motor, the power-efficiency trade-off can be determined from
the force-flux relation and may have important biological con-
sequences [50,51]. In the two-dimensional case, we consider
that the linear potential is downhill in direction x (Xx > 0)
and uphill in direction y (Xy < 0). Energy transfer from x to y

is thermodynamically viable when the coupling transitions are
downhill, i.e., Xz = Xx + Xy > 0. The efficiency of energy
transfer can be determined by the ratio of the power output
Pout = −vyXyT to input Pin = vxXxT , i.e.,

η = Pout

Pin
= −vyXy

vxXx

. (34)

Equation (34) satisfies 0 � η � 1 and can be written explicitly
in terms of Xj by inserting Eqs. (32) and (33). In the strong-
coupling regime, the independent hopping transitions are neg-
ligible, i.e., |κ0

(0,1)|,|κ0
(1,0)| � |κ0

(1,1)|, and a one-dimensional
treatment is possible along the coupled coordinate Xz. In this
case, as Xx → −Xy , the fluxes vanish, the system approaches
thermal equilibrium along the coupled coordinate, and η →
1 [27]. The independent transitions due to κ0

(1,0) and κ0
(0,1)

represent dissipative leak processes that by-pass the coupling
mechanism [28,48]. Equation (34) can be interpreted as a
trade-off between power output Pout and efficiency η. Figure 1
shows the power-efficiency trade-off (a) near equilibrium and

(a)

P
o
u
t
/(

P
o
u
t
) m

a
x (b)

η
0 0.5 10 0.5 1

0

0.5

1

FIG. 1. Normalized output power vs efficiency for (a) Xx/kB =
0.1 and (b) Xx/kB = 10 with (dotted) κ0

(0,1) = 0, (dashed) κ0
(0,1) =

0.01κ0
(1,1), and (solid) κ0

(0,1) = 0.1κ0
(1,1). Other parameters are κ0

(1,0) =
κ0

(0,1).
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FIG. 2. Efficiency at maximum power for κ0
(1,0) = κ0

(0,1).

(b) far from equilibrium. The dotted lines correspond to the
case of strong coupling. The faster the leak processes, the
lower the efficiency of the motor.

The power-efficiency trade-off can be used to determine
the efficiency at maximum power [27,28,52]. The efficiency
at maximum power is bounded above by 1/2 and decreases
with increasing rate of the leak processes and with the driving
force. This is shown in Fig. 2. If αn 	= 1/2, the efficiency at
maximum power does not necessarily decrease with increasing
driving force and the efficiency at maximum power can exceed
1/2 [28].

VII. EIGENVALUES, DRIFT, AND DIFFUSION

The eigenvalue band structure plays a key role in determin-
ing the system properties. The master equation (19) can be
transformed to the diagonal form

dck(t)

dt
= −λkck(t), (35)

where the eigenstates are

ck(t) =
∑

n

pn(t)e−ik·An, (36)

and the eigenvalues are

λk = −
∑

n

κne
−ik·An. (37)

Including only nearest-neighbor hopping, Eq. (37) can be
determined in the two-dimensional case to be

λ(kx ,ky ) = 4κ0
(1,0) sin (kxax/2) sin (kxax/2 + iXx/2kB)

+ 4κ0
(0,1) sin(kyay/2) sin(kyay/2 + iXy/2kB)

+ 4κ0
(1,1) sin(kxax/2 + kyay/2)

× sin(kxax/2 + kyay/2 + iXz/2kB). (38)

Equation (38) defines the lowest Bloch band for deep potential
wells. The gradient of the imaginary part at the origin is
proportional to the drift, i.e.,

v ∝ ∇kIm(λk)|k=0, (39)

k
y
a

y

−

+

+

+

+
(a r )

−

+

(a i )

−

+

+

(b r )

kx ax

−
+

(b i )

−
+

+

(c r )

− +

(c i )

-2 0 2-2 0 2-2 0 2

-2

0

2

-2

0

2

FIG. 3. Contour plots of the (upper) real and (lower) imaginary
parts of λ(kx ,ky )/κ

0
(0,1) (arbitrary units). The symbols + and − denote

maxima and minima, respectively. The plots (ar ) and (ai) correspond
to Xx/kB = 0.1, κ0

(0,1) = 100κ0
(1,1); (br ) and (bi) to Xx/kB = 0.1,

κ0
(0,1) = 0.2κ0

(1,1); and (cr ) and (ci) to Xx/kB = 1, κ0
(0,1) = 0.2κ0

(1,1).
Other parameters are Xy/kB = −0.05 and κ0

(1,0) = κ0
(0,1).

and the curvature of the real part at the origin is proportional
to the time derivative of the covariance matrix [44], i.e.,

d(〈njnj ′ 〉 − 〈nj 〉〈nj ′ 〉)
dt

∝ ∂2Re(λk)

∂kj ∂kj ′

∣∣∣∣
k=0

. (40)

Figure 3 shows contour plots of the real and imaginary parts
of the eigenvalues throughout the first Brillouin zone for (a)
weak coupling near equilibrium, (b) strong coupling near
equilibrium, and (c) strong coupling far from equilibrium.
From (a) to (b), the drift goes from vy < 0 to vy > 0 despite the
fact that Xy < 0. Only quantitative differences are observed
far from equilibrium.

VIII. ENTROPY GENERATION

The entropy of the system in the lowest Bloch band is

S(t) = −kB

∑
n

pn(t) ln pn(t). (41)

Taking the time derivative yields

dS(t)

dt
= −kB

∑
n

dpn(t)

dt
ln pn(t). (42)

With the master equation (19), Eq. (42) can be written as
[53–56]

dS(t)

dt
= dSe(t)

dt
+ dSi(t)

dt
, (43)

where the entropy supplied to the system from the environment
is

dSe(t)

dt
= −kB

∑
n,n′

κn′−npn(t) ln

(
κn′−n

κn−n′

)
, (44)

and the rate of entropy produced by the system is

dSi(t)

dt
= kB

∑
n,n′

κn′−npn(t) ln

(
κn′−npn(t)

κn−n′pn′(t)

)
� 0, (45)
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which is zero for reversible processes and positive for
irreversible processes. Inserting the ratio (26) of forward to
backward hopping rates, and identifying the drift (28), the
entropy flow (44) to the system has the form

dSe(t)

dt
= − f · Av

T
. (46)

In the steady state, pss
n (t) is independent of n and t ,

dSss(t)/dt = 0, and the rate of entropy production for the
system is

dSss
i (t)

dt
= f · Av

T
= −dSss

e (t)

dt
� 0. (47)

Inserting the generalized thermodynamic forces Xj = fjaj/T

(see Sec. V), the rate of entropy production can be written in
the familiar form [14,53]

dSss
i (t)

dt
=

∑
j

vjXj . (48)

The entropy produced by the system provides a connection
to nonequilibrium fluctuation theorems [3,57], as follows. The
form of Eq. (47) suggests that the change of entropy of the
system due to a hop by n sites is

�Sn = f · An
T

. (49)

According to the master equation (19), the probability that
a hop by n sites occurs within a time �t is given by κn�t .
The potential is time-independent so the time-reverse of that
process is a hop by −n sites. The probability of a backward
hop by n sites occurring within a time �t is given by κ−n�t

and the associated change in entropy of the system is �S−n =
−�Sn = − f · An/T . Therefore,

P (�Sn)

P (�S−n)
= κn

κ−n
, (50)

where P (�Sn) = κn�t is the probability of a hop by n sites
occurring in time �t and producing entropy �Sn. Using the
ratio of forward to backward hopping rates (26), Eq. (50)
becomes

P (�Sn)

P (�S−n)
= e�Sn/kB . (51)

Equation (51) describes the relative probabilities of discrete
hopping events in a form that is consistent with nonequilibrium
fluctuation theorems.

IX. COUPLED CHEMICAL REACTIONS

To provide a concrete two-dimensional example, consider
a coupled chemical reaction system composed of the three
elementary reactions [48],

A ⇀↽ B, C ⇀↽ D, A + C ⇀↽ B + D, (52)

numbered 1 to 3 from left to right. Chemical reactions (at room
temperature) can be described via Brownian motion along
continuous reaction coordinates but are also often treated as
discrete due to the deep potential wells binding the molecules
[43]. The thermodynamic forces driving the system are the
Gibbs free energies �Gj , and thermodynamic consistency

requires �G1 + �G2 = �G3. The net rate for each chemical
reaction is

rj = R
f

j − Rb
j = R

f

j (1 − e�Gj /kBT ), (53)

where R
f

j and Rb
j are the forward and backward reaction rates,

respectively, given by the usual mass-action expressions in
terms of species activities and reaction rate constants. In our
formalism, the generalized thermodynamic forces are Xj =
−�Gj/T and the generalized fluxes vx = r1 + r3 and vy =
r2 + r3 are given by the force-flux relations (32) and (33).
This is consistent with the reaction rate expressions (53) and, in
addition, predicts the force dependence of the rates R

f

j and Rb
j .

As described in Sec. VI, if reaction 1 is spontaneous (�G1 <

0), and reaction 2 is nonspontaneous (�G2 > 0), reaction 3
enables energy transfer between reactions 1 and 2 and this
occurs spontaneously when �G3 < 0.

In the long-time steady state, the rate of entropy produced
by the system is given by Eq. (48) and can be written as

dSss
i (t)

dt
=

2∑
j=1

vjXj =
3∑

j=1

rj

�Gj

T
. (54)

The right-hand side of Eq. (54) is the sum of the rate of
entropy produced for each of the three chemical reactions in
Eq. (52) [48]. Equation (54) provides insight into the power
and efficiency expressions of Sec. VI: the power output is
proportional to the entropy produced in the system due to the
driven process while the power input is proportional to the
entropy produced in the system due to the driving process.
Furthermore, transitions along the coupled coordinate can be
interpreted as enabling the thermodynamically spontaneous
process to drive the thermodynamically nonspontaneous pro-
cess.

X. CONCLUSION

We have described energy transfer in a molecular motor in
terms of overdamped Brownian motion on a multidimensional
tilted periodic potential. Using a tight-binding approach, we
derived a discrete master equation valid for long times and deep
potential wells. This master equation is consistent with the
Onsager relations and nonequilibrium fluctuation theorems,
and predicts a range of other results for molecular motors.
Our approach unifies these results within the single theoretical
framework of Brownian motion on a multidimensional free-
energy potential. This framework provides a compelling
candidate for a general theory of energy transfer in a molecular
motor.

Possible extensions to our work include (i) detailed com-
parisons with experiments and phenomenological models; (ii)
energy transfer between a tightly bound degree of freedom and
a weakly bound one [2,21]; (iii) multistep systems [21]; (iv)
large tilts where long-range hopping transitions occur [58];
and (v) the inclusion of inertial forces [25].
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