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Role of network junctions for the totally asymmetric simple exclusion process

Adélaı̈de Raguin,1,2,3,4,5 Andrea Parmeggiani,1,2,3,4,5 and Norbert Kern1,2
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We study the effect of local regulation mechanisms on stochastic network traffic, based on simple examples.
Using the totally asymmetric simple exclusion process on a multiloop structure in which several segments share
a single junction, we illustrate several mechanisms: (i) additional segments improve transport but the effect
saturates due to blockage, (ii) bias reduces the overall transport and leads to several regimes, (iii) “pumping”
particles out of the junctions, via a locally increased hopping rate, allows us to compensate the bottlenecks but
becomes futile beyond a characteristic rate which we determine. We provide a generic discussion of combinations
of these effects, including phase diagrams in terms of the control parameters.
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I. INTRODUCTION

Stochastic transport is a topic which is of primordial
interest, both from a fundamental theoretical point of view
as well as in many concrete and applied situations. The
latter arise in a wide spectrum of topics, which range from
the transmission of information packages over the internet,
through forced diffusion of colloids, right to the motion
of groups of pedestrians. The exchange of ideas between
theory, experimental research, and applications has been
especially fruitful for those situations where the transport
takes place on one-dimensional (1D) structures or their quasi-
one-dimensional extensions. This case is also particularly
interesting since it is the one where the collisions between the
moving objects (particles, persons, etc.) become most relevant,
illustrating that the excluded volume interactions are at the
heart of the collective phenomena which regulate many flow
phenomena.

A paradigmatic model, which has been widely used due
to both its simplicity and its versatility, has yielded much
insight into such collective processes. In its simplest form,
its only ingredients are the stochastic motion of particles
along a 1D lattice, subject to excluded volume. This so-called
totally asymmetric simple exclusion process (TASEP) was
initially formulated to model protein translation [1], but it
has since been transposed, adapted, and extended to represent
many different systems. These include the forced motion of
colloids in narrow channels [2,3], spintronics [4], the physics
of molecular motors moving along the cytoskeleton [5–7],
but also everyday problems such as road congestion [8],
pedestrian traffic, and evacuation strategies for buildings or
airplanes [9]. TASEP is well studied, both on open and
closed linelike topologies, and an analytical solution is known
[10–13]. Remarkably, it is also known that a simple mean-field
treatment, despite its conceptual shortcomings, leads to exact
results in many cases. This explains in part why the model
has been applied so successfully, and makes it also an ideal
candidate for fundamental theoretical work.

One essential aspect of many transport processes, whether
they occur on the level of everyday life (roads, paths, etc.), in

a more abstract medium (internet), or on a microscopic scale
(colloids, molecular motors), is that the relevant underlying
linelike structures are organized in a network. One such
case which is of particular interest is intracellular transport,
which is crucial to any living cell [14–17]. It can be very
boldly summarized as the motion of nanometric biological
machines (motor proteins), which stochastically move along a
complex structure of interlinked filaments (the cytoskeleton).
Although the biological complexity of these processes by far
exceeds any model based on simple rules, it does appear that
a generalization of TASEP captures important aspects of the
collective behavior of molecular motors on biofilaments, as
has been shown very recently in experiment [18].

The theoretical study of TASEP on complex networks
is recent [19–22]. The quest for an analytical solution in
the presence of branching remains a major challenge, even
for simpler systems in equilibrium [23]. To our knowledge,
no exact solution is available for TASEP on any branched
structure. Nevertheless, it has been shown that significant
insight can be gained into the collective processes on very
complex topologies. The junctions, i.e., the sites where the
segments of a network are interlinked, have been shown to
play a crucial role since they constitute bottlenecks for the flow
of particles. Blockages have been seen to arise, depending on
the overall density of particles. They induce a traffic-jam-like
back-lag of particles, and therefore affect the transport far
beyond a local scale. Indeed, one may argue that understanding
the processes at the junctions is a key to rationalizing the
overall transport on the network [20,24].

Rather than tackling complex networks head on, we resort
here to analyzing simple topologies in order to construct a solid
understanding, which can later be transposed to large-scale
complex networks. Note also that it has been demonstrated [20]
that, in the absence of bias, this simple topology also directly
yields a complete understanding of stationary mean-field
transport on regular random networks. We combine analytical
arguments with kinetic Monte Carlo simulations using random
sequential update. In particular, we explore scenarios for the
behavior of particles and tracks close to the junction which
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affect their propensity for congestion: (i) multiple tracks,
(ii) biased selection of tracks as particles leave the junction,
and (iii) a locally increased activity at the junction site. We
finally discuss combinations of these scenarios.

II. A BRIEF REMINDER: TOTALLY ASYMMETRIC
SIMPLE EXCLUSION PROCESS ON BRANCHED

TOPOLOGIES

To explore the role of junctions, we base our analysis on
a simple but generic model, TASEP [1], the simple rules
of which have made it a paradigm for out-of-equilibrium
transport.

A. Totally asymmetric simple exclusion process

The rules defining TASEP are very simple indeed: particles
move along a linear structure, taken to be a 1D lattice. They
advance in a fixed direction by stochastic hops, for which the
excluded volume condition requires the forward neighboring
site to be empty. This is graphically summarized, for a single
segment, in Fig. 1. If we wish to consider an open system, this
can be achieved by imposing entrance and exit rates α and β,
respectively [13].

One particularly interesting feature of TASEP is that the
transport through a segment is determined by collective
effects, making the behavior entirely nontrivial. For example,
the current-density characteristic J (ρ), which is often used
to characterize the transport properties, is nonlinear due
to the interactions between particles. Nevertheless, a sound
understanding has been established through various techniques
for TASEP on a single segment, ranging from a mean-
field description, through a phenomenological description of
collective effects in terms of a domain-wall (DW) theory, up to
complete exact solutions of the underlying stochastic processes
[10–13,25–27]. Remarkably, these analytical solutions of
TASEP have shown that, despite the strong hypotheses, many
mean-field results are in fact exact in the thermodynamic limit,
making it particularly easy to exploit the model for concrete
problems.

As soon as branching is introduced, however, no exact so-
lution is known, and the effect of branching on the structure of
such a solution in 1D out-of-equilibrium stochastic processes
is in fact a topic of current research [23]. Nevertheless, it has
been shown that it is possible to extend the mean-field analysis
to branched structures, with excellent predictions when com-
pared to kinetic Monte Carlo simulations [24,28–30]. This
has recently allowed us to model the stochastic transport on
large networks for TASEP [20], including additional features
relevant for modeling the transport of molecular motors along
the cytoskeletal network [21,22]. The approach is based on

FIG. 1. Schematic illustration of a TASEP segment with open
boundary conditions. The attempt rate for a particle to enter is α, and
the exit rate β. Particles hop from left to right, and interact through
their excluded volume. We use p = 1 throughout.

the observation that, in a mean-field spirit, the entry and exit
rates α and β for an open system can be regarded as coupling
the segment to an entrance reservoir of density α and an exit
reservoir of density 1 − β [13], and that these rates directly
depend on the local connectivity [24]. This makes it possible
to decompose the transport on a branched structure into single
segments, for which the transport is coupled via the density on
the junction sites.

Here, we shall follow this strategy in our analysis, and
extend it to consider how the local properties of the junction
allow us to influence the overall transport. Before proceeding
further, we prepare our arguments by very briefly summarizing
the main results for TASEP on a single segment.

B. TASEP on a single segment

For TASEP transport through a single segment, three
distinct phases arise, for which the current is limited by
the input rate, the output rate, or the bulk of the segment,
respectively (see Fig. 1). In all phases, the density is seen to be
essentially homogeneous throughout the segment, except for
a small boundary zone, which occupies a negligible zone in
sufficiently large segments [13]. It is set as

ρ =
⎧⎨
⎩

ρLD = α (α < β,α < 1/2),
ρHD = 1 − β (β < α,β < 1/2),
ρMC = 1/2 (α,β > 1/2)

and the resulting phases are sketched in Fig. 2.
Owing to the homogeneous density throughout the segment,

the mean-field current can be obtained in all cases from the
bulk density as

J = ρ (1 − ρ),

just as is the case for a closed ring with periodic boundary
conditions.
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FIG. 2. Phase diagram of a single TASEP segment with open
boundary conditions. According to the entry (exit) rates α (β), one of
three transport regimes is established: in the LD (low density) phase
the current is entry limited, in HD (high density) it is exit limited,
and in MC (maximum current) it is bulk limited. LD-HD represents
coexisting phases, separated by a domain wall.
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FIG. 3. Schematic illustration of TASEP on a closed-loop (figure-
of-eight) topology. Particles interact through excluded volume. The
effective entrance rate α and exit rate β are set through the density at
the junction ρ̃ (see main text).

C. TASEP with a junction

The simplest topology involving a junction is the one where
two TASEP rings share one site, the junction site (see Fig. 3).
For this case, a mean-field analysis has shown [24] that the
presence of the bottleneck caps the current through the junction
at a plateau value J = 4

9 , for overall densities in the range
1
3 < ρ < 2

3 . Remarkably, for densities outside this range the
junction has no effect whatsoever on the current. The current
plateau is seen to correspond to a phase coexistence, in which
both rings carry a downstream LD and an upstream HD section,
and it can be viewed as a particle jam just upstream of where
the particles enter the junction.

If a bias is introduced, such that one ring is favored over the
other, then this causes the total current through the junction to
drop. The current plateau is split up into two different zones,
the first one corresponding to a coexistence in the favored ring,
the second one in the disfavored ring. The analysis presented
in our previous work is based on the following approach.

D. Effective entrance and exit rates

The main idea behind the mean-field approach of analyzing
transport on the network can be summarized as treating each
segment as an open TASEP system, for which the behavior is
well understood. The condition of current conservation at the
junction then couples the segments, and the relevant coupling
parameter turns out to be the occupancy of the junction site
(ρ̃ [24]). On a mean-field level, it amounts to setting the
effective entrance and exit rates of a given segment as

α = ρ̃α

cα,out
and β = 1 − ρ̃β, (1)

where ρ̃α,β are the occupancies of the vertex at the entry and
exit of the segment, respectively, and cα,out is the out degree of
the vertex at the segment entry, i.e., the number of segments
fed by this vertex. Essentially, the condition on α expresses the
fact that the particles on the incoming vertex jump onto either
of the (equivalent) segments it connects to; the condition on β

stems from the excluded volume criterion on the junction site.
Adapting the effective rates to more general scenarios will

be the key to what follows.

III. BOOSTING TRANSPORT VIA EXTRA SEGMENTS

Adding extra segments would appear to be the simplest way
to improve the throughput of particles through the junction,
but there is a drawback to this strategy: since adding extra
segments also reinforces the bottleneck effect at the junction,
it is not obvious to which extent this will increase the transport
efficiency. We address the question for the simplest possible
case, considering any number N of rings sharing a junction
site, and we analyze the current through the junction as a
function of the overall density (see Fig. 4).

The mean-field analysis can be carried out as in the case
of the twofold ring. It proceeds by establishing the effective
rates, identical for all segments, as

α = ρ̃

N
and β = 1 − ρ̃. (2)

One then has to solve for the density ρ̃ on the junction site by
matching the currents entering and leaving each segment. We
do not present a detailed calculation here since the result may
also be obtained as a special case of the more complete problem
considered below, and for which Appendix A provides some
detail. One finds that

ρ̃(ρ) =
⎧⎨
⎩

Nρ if ρ � 1
N+1 (LD),

N
N+1 if 1

N+1 < ρ < N
N+1 (LD-HD),

ρ if ρ � N
N+1 (HD),

(3)

where LD-HD represents the coexistence phase giving rise to
the current plateau. The corresponding total current J̃ through
the junction is found to be

J̃ (ρ) =

⎧⎪⎨
⎪⎩

Nρ(1 − ρ) if ρ � 1
N+1 (LD),

N2

(N+1)2 if 1
N+1 < ρ < N

N+1 (LD-HD),
Nρ(1 − ρ) if ρ � N

N+1 (HD).
(4)

All rings behave identically, and we recover the behavior for
the twofold ring recalled earlier for the case N = 2. The
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FIG. 4. Current J̃ through a junction shared by N loops, as a
function of the overall density ρ. Lines are mean-field predictions,
symbols are results from kinetic Monte Carlo simulations. We
superpose data obtained with segments of length L = 100 (open
symbols) and L = 1000 (full symbols) in order to illustrate how
finite size effects reduce with segment size.
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FIG. 5. Maximum (plateau) currents as a function of the number
of segments sharing a junction. The saturation is due to the fact that the
increased transport capacity through extra segments is progressively
compensated by an increased blockage at the junction site. Data points
are from simulation (L = 100 sites per segment), the solid line is the
mean-field prediction [Eq. (4)].

current-density profiles obtained from kinetic Monte Carlo
[31] simulations match these predictions extremely well (see
Fig. 4). The figure also opposes simulations from a rather small
(L = 100) system and a larger one (L = 1000), to illustrate
that the small remaining discrepancies can be attributed to
finite size effects. This validates the mean-field predictions for
sufficiently large systems.

Here, we are interested in the question to which extent an
increased number of segments will allow to increase the overall
current. We therefore look at the maximum current through the
junction J̃max, which can be achieved with N segments: this is
the plateau value, as it can be read off at the center (ρ = 1

2 ).
Figure 5 confronts the mean-field predictions to results from
kinetic Monte Carlo simulations, which are again in excellent
agreement. It shows that this highest achievable junction
current monotonously increases as the number of segments N

is increased, but saturates at J̃ = 1, as also predicted by Eq. (4).
Consequently, we can establish that there is no optimum

number of segments. On the contrary, adding further segments
helps the transport, but only marginally so once a significant
number of segments is already present. This reflects the fact
that, although additional segments do lead to an extra current,
it also increases the blockage at the junction site which in turn
reduces the current through any given segment. These effects
ultimately balance, stabilizing the current asymptotically at
J̃ = 1 for a large number of segments sharing the junction.

IV. REGULATING MULTIPLE SEGMENTS
THROUGH BIAS

In many situations we must expect to encounter a bias,
i.e., a situation where junctions feed some of their outgoing
segments more than others. This can be formalized by way
of distinct rates, which may be seen as a simple way of
representing complex effects, either at the junction (selection
mechanism) or in the details of how the segments are connected
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FIG. 6. Currents at the junction and in the bulk of each loop
for a fourfold topology with four distinct (nondegenerate) bias
parameters (σ1 = 10

20 , σ2 = 6
20 , σ3 = 3

20 , σ4 = 1
20 ). The currents

through individual loops progressively saturate, starting from the one
with the strongest bias. At high density, the bias becomes futile, i.e.,
all loops carry the same current, despite the bias.

to the junction (ease with which a particular segment can be
accessed, etc.). The notion of a bias, previously introduced
for a twofold loop [24], has been shown to reduce the total
current through the junction. This implies that the flow is
optimal when both outlets are equivalent. However, rather
counter-intuitively, both segments carry the same current
above half-filling (ρ > 1

2 ) whatever the bias, thereby making
the bias futile.

We formalize the idea of a bias by attributing a parameter
σs to each outgoing segment of a given junction. We choose
to enumerate the loops in order of decreasing bias, such that

σ1 � σ2 � · · · � σN, where
N∑

s=1

σs = 1. (5)

The normalization condition accounts for the fact that all
particles attempt to hop into some segment.

The full mean-field analysis again proceeds along the lines
of [24] (we provide further guidance through the analysis in
Appendix A). Key predictions are expressions for the currents
through the segments, as well as for the total current through
the junction J̃ , as a function of the overall density ρ (see
Fig. 6). The latter presents as many plateaus as there are distinct
bias parameters (see Fig. 6, but also Fig. 7) for the junction
occupancy. In the example, all loops have a different bias,
and each plateau arises from a coexistence zone in one loop.
The picture generalizes the one given previously for a biased
twofold loop: as extra particles are added to the system and
are redistributed according to the bias, they provoke a LD-HD
coexistence first in the most favored loop. When this segment
has entirely shifted to a HD phase, all others still remain in
a LD phase. As further particles are added, the second loop
enters coexistence until it saturates, then transits to a HD phase,
and so on.

In essence, one can identify a plateau zone for each
bias parameter σ ∈ {σ1, . . . ,σN }, which we denote P̄ (σ ) =
[ρ(σ )

− ,ρ
(σ )
+ ], and which is associated with a LD-HD coexistence

in the loop corresponding to the bias parameter σ . Each such
plateau is then followed by a zone of decreasing current,
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FIG. 7. Junction occupancy ρ̃ as a function of the overall density
for a fourfold topology with four distinct (nondegenerate) bias
parameters (same parameters as Fig. 6). The four successive plateaus
are labeled by the associated bias parameters σ ∈ {σ1, . . . ,σ4}.
The associated density ranges are P̄ (σ ) = [ρ(σ )

− ,ρ
(σ )
+ ], whereas the

subsequent range between successive plateaus are denoted as P (σ ) =
[ρ(σ )

+ ,ρ(σ )
∗ ]; see Appendix B [and in particular Eqs. (B3) and (B4)] for

the corresponding expressions.

which we denote P (σ ) = [ρ(σ )
+ ,ρ

(σ )
∗ ]. ρ∗ also corresponds to

the beginning of the following plateau.
We refer to Appendix B for the expressions specifying these

ranges since the notation is a little technical if one wishes
to retain full generality, and in particular the possibility of
degenerate bias parameters. Here, we restrict the discussion
to highlighting the main features which follow from the
expressions for the current and the associated density zones
[for a full discussion, see Eq. (B10)].

First of all, as the number of segments increases, Eqs. (B7)
and (B8) show that all plateaus are pushed towards lower
densities: the current saturates earlier for higher connectivities.
Second, for a higher number of loops, the regime of futile bias,
previously known for a twofold loop, generalizes but shifts to
higher densities: all individual currents are identical from the
last plateau on (see Fig. 6).

V. PUMPING PARTICLES OUT OF THE JUNCTION VIA
LOCALLY INCREASED HOPPING RATES

The previous considerations have provided further evidence
that the role of the junctions themselves is crucial in setting
the current through complex topologies, and that blockages
at the junctions play a key role. Here, we explore the idea
that it is the crowding of the junction site which must be
tackled if we want to improve the overall flow, and we therefore
introduce the notion of “pumping” particles out of the junction.
By this we simply mean that particles located at a junction
site are attributed a higher rate for attempting a hop. We do
not intend to model any concrete physical system, but we
point out that this is indeed a very natural idea: socially
responsible pedestrians will adapt their behavior if told to
move out of junctions as quickly as possible, traffic control
through policemen (or internet routers) may be thought to have
the effect of making drivers (or packages) leave junctions as
quickly as possible, and one can also speculate on microscopic

mechanisms for motor proteins to be more efficient in leaving
a junction between filaments, for example, due to biochemical
regulation or simply to the fact that more tracks to which the
motors can bind are available nearby the junctions. Here, we
examine the consequences of such pumping without linking
the discussion to any particular system in order to highlight
the potential relevance of our results for TASEP networks in
general.

Here, we account for the increased activity of particles on
the junction site by increasing its hopping frequency ν-fold
with respect to the regular hopping rate in the bulk of the
segments. In this case, the effective rate at which particles are
supplied from the junction to any given segment is then given
by

α = ν
ρ̃

N
,

and therefore it is also increased ν-fold with respect to the
regular TASEP. The exit rate, on the other hand, at which
particles attempt to leave any segment to move into the junction
remain unchanged (β = 1 − ρ̃) since it is only due to steric
exclusion on the junction site. From this observation we can
now produce mean-field predictions analytically. Following
the usual procedure [24], we first determine the junction
density ρ̃ as a function of the overall density ρ, based on the
above effective rates, from which we then deduce the currents.
This procedure also yields the corresponding domains for
which the respective phases are present, as in a phase diagram.
From this a natural distinction between two regimes arises
naturally, which we discuss separately.

A. Efficient pumping (ν � N)

In this first regime, we shall demonstrate that pumping
indeed increases the current. To analyze the problem, we first
establish the density at the junction as

ρ̃(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

Nρ

ν
if ρ ∈ [

0,
ν
N

1+ ν
N

]
(LD),

1
1+ ν

N

if ρ ∈ [ ν
N

1+ ν
N

, 1
1+ ν

N

]
(LD-HD),

ρ if ρ ∈ [
1

1+ ν
N

,1
]

(HD),

(6)

which then allows us to deduce the junction current J̃ as a
function of ρ:

J̃ (ρ) =

⎧⎪⎪⎨
⎪⎪⎩

N ρ(1 − ρ) if ρ ∈ [
0,

ν
N

1+ ν
N

]
(LD),

ν
(1+ ν

N
)2 if ρ ∈ [ ν

N

1+ ν
N

, 1
1+ ν

N

]
(LD-HD),

N ρ(1 − ρ) if ρ ∈ [
1

1+ ν
N

,1
]

(HD).

(7)

In this regime, the current plateau is raised by pumping:
pumping is therefore efficient in the plateau region, and has no
effect outside the plateau. It is also clear from this result that
the density region for which the LD-HD coexistence phase
arises contracts progressively as ν increases. It is reduced to a
point for ν∗ = N , which ensures coherence with the following
regime of saturated pumping.

B. Saturated pumping (ν � N)

Once the pumping rate attains the threshold ν∗ = N , a
discontinuity arises in terms of the density at the junction
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site, which is given by

ρ̃ =
{

Nρ

ν
if ρ < 1/2 (LD),

ρ if ρ > 1/2 (HD)

with a density degeneracy in the MC phase (8)

ρ̃ ∈
[

N

2ν
;
N

ν

]
if ρ = 1/2 (MC).

For the particular value of half-filling (overall density ρ = 1/2)
mean-field predictions indicate that an infinity of densities are
possible at the junction (see the vertical line in Fig. 9).

In this regime of saturated pumping, the resulting current
is simply seen to saturate to that of standard TASEP

J̃ = Nρ (1 − ρ), (9)

independent of the actual pumping rate. Pumping beyond the
threshold ν∗ thus has no further effect.

C. Discussion

The currents J̃ (ρ) for successively increased pumping are
shown in Fig. 8, where we also compare mean-field predictions
to simulation results. The agreement is very good, with some
deviations at the transition regions where the system switches
between phases. We can attribute these deviations to finite size
effects, on the basis of the discussion accompanying similar
observations in Fig. 3.

The critical threshold for the pumping rate ν∗ = N ,
revealed by the mean-field analysis, is also apparent in Fig. 8.
Below this value the effect of pumping is simply to extend
the density range for which the junction does not hinder the
current, as is seen by the widening LD and HD zones. This
happens at the expense of the intermediate density range,
governed by LD-HD coexistence, for which the plateau value
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FIG. 8. Junction current J̃ versus overall density ρ, here for a
fivefold loop (N = 5), for various pumping rates ν. The pumping
initially raises the plateau current while reducing the relevant density
zone. The underlying LD-HD phase is ultimately reduced to the single
point ρ = 1/2, where it corresponds to a MC phase. This happens
at a pumping rate ν∗ = N , and further pumping no longer increases
the current. Deviations from predictions are attributable to finite size
effects (data are for segments of length L = 100), as discussed before.
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FIG. 9. Density at the junction ρ̃ versus overall density ρ, for a
fivefold topology (N = 5). For the saturated pumping regime, the
mean-field results do not reproduce Monte Carlo data for densities
around half-filling (ρ = 1/2), a discrepancy which is attributed to the
presence of the MC phase (see discussion in the text). In the regime of
efficient pumping (ν � N ), the small discrepancies from mean field
predictions are finite size effects.

is raised due to pumping. Recall also that the current is
degenerate, in the sense that any overall density ρ in this zone
leads to the same density at the junction ρ̃, and therefore to the
same current.

The picture changes as the threshold ν∗ = N is exceeded:
from this point on, the current-density relation J̃ (ρ) is that
of N independent loops, and the junction is no longer a
limiting factor. This is because the current through any
segment has reached its maximum value, limited by the bulk
of the segments. Consequently, increasing the pumping at
the junction can no longer increase the current any further.
In this regime of saturated pumping, the full TASEP bulk
current is recovered in all segments, implying that the junction
no longer acts as a bottleneck. Increasing the pumping rate
further, however, can then only depopulate the junction site
and produce a boundary layer effect in the adjacent sites, as
we discuss below.

A finer appreciation is provided in terms of the junction
occupancy ρ̃ as a function of the overall density ρ, which
we confront with simulations in Fig. 9. The agreement is very
good for efficient pumping (ν � N ), and we have checked that
it further improves as the segment length is increased (data not
shown). This is different for the regime of saturated pumping
(ν � N ): there it becomes apparent that what is predicted to
be a discontinuous vertical jump at half-filling (ρ = 1/2), but
appears in fact more like a crossover region of finite width.
Here, the deviation from mean-field predictions is significant,
and it does not decrease significantly for longer segments,
showing that these deviations can not be attributed to simple
finite size effects.

Note that this is not inconsistent with the good match for
the current: the density of interest (ρ = 1/2) corresponds to
the maximum in the current, and therefore any small deviation
in density only leads to second order deviations in the current.
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FIG. 10. Role of pumping on the effective rates, represented on
the phase diagram for a twofold topology, without pumping (ν = 1)
and with pumping (ν = 5) and with the borderline value (ν = 2) for
which we cross over from efficient to saturated pumping. Shown are
the successive points representing the successive pairs of effective
rates (α,β) as the overall density ρ is progressively increased. The
slope is −N/ν, and therefore decreases as the pumping rate increases.
Above the threshold ν∗ = N , the effective rates (α,β) cross the MC
zone. The notation X:Y indicates the phase in either loop, whereas
X-Y stands for the coexistence of two phases on the same segment,
where they are separated by a domain wall.

In order to rationalize the behavior close to half-filling,
it is useful to visually contrast the regimes of efficient and
saturated pumping in terms of the behavior of the individual
segments. Here, we do so for a twofold loop (figure-of-eight),
for simplicity and for comparison with a later scenario. Since
varying the total density affects the junction occupancy ρ̃,
this in turn changes the relevant effective rates (α,β). We
therefore map out these rates, obtained from simulations run
at a succession of linearly spaced overall densities. The data
are shown in Fig. 10. On the ground of mean-field arguments,
the points are expected to follow straight lines, which is seen
directly from the definition of the effective rates (α = νρ̃/N ,
β = 1 − ρ̃, whence β = 1 − N α

ν
).

First of all, these plots highlight the origin of the critical
value for the pumping rate in terms of the single segment
phase diagram: below ν∗ = N the effective rates cross the
LD-HD coexistence line, whereas above this value they evolve
through the MC phase (see Fig. 10). Agreement with mean-
field predictions is excellent for efficient pumping (ν � N ),
but rather poor for saturated pumping (ν � N ), especially for
those points close to the MC phase, but also for those in the
HD region.

It is instructive to explore the reasons for these deviations.
Note first of all that in the MC phase the effective rates do
not provide a condition to fix the junction occupancy ρ̃ as
a function of the overall density since the transport becomes
boundary independent in this phase. Instead, all values given
by Eq. (8) are compatible with the conditions for a MC
phase, which is reflected in the vertical line of the mean-field
prediction for ρ̃(ρ) (see Fig. 9). This indeterminacy implies
an additional degree of freedom susceptible to fluctuations. In

particular, density fluctuations at the junction site will occur
around an average value of ρ = 1/2, and hence their effect
must be to explore both sides of the vertical transition line
for ρ̃ (ρ = 1/2). This would lead to an interpolation between
mean-field predictions for ρ̃(ρ) on either side of the transition
line ρ = 1/2, and this is indeed consistent with the data from
simulation (see Fig. 9). In essence, this degeneracy predicted
from mean-field arguments may be viewed as indicating the
very points where the mean-field approach must be expected
to break down as soon as fluctuations are present.

For a finer analysis, inspired by the idea of boundary layers,
we turn to the occupancies of the sites next to the junction,
for which we can make refined mean-field predictions (see
Appendix C). Figure 11 displays the densities on the sites
directly downstream and upstream from the junction site, i.e.,
on the first and last sites of the segments, for the case of a
twofold loop.

To this end, we use refined predictions for these boundary
sites, directly adjacent to the junction. They exploit the fact that
the mean-field arguments given above assume constant density
profiles along the segment, which is essentially true except for a
boundary layer of a few sites at the nonlimiting boundaries. At
these sites (exit in a LD segment, entry in a HD segment, both
in a MC segment), a better estimate can be made by deducing
the local density from the condition that the local current
must match the mean-field current through the homogeneous
portion of the segment. The straightforward procedure is
documented in Appendix C, and the corresponding predictions
are used in Fig. 11 (full lines). The main observation is that
without pumping, at any overall density ρ, the exit sites have
an increased occupancy as compared to the entrance sites.
This indeed reflects the bottleneck effect and the back-lag of
particles into the segments.

Pumping allows us to reverse this situation, as is seen in
Fig. 11 (third line): for ν/N = 5/2 the density at the entry
sites is now higher than at the exit sites, at any density ρ. This
points to a reversal of the bottleneck effect: the junction is no
longer an obstacle, and it empties the exit sites so fast that the
dynamics of the bulk can not refill it. Conversely, the entry
sites are now so efficiently filled by the junction that the bulk
can not absorb this surplus.

To summarize, we can conclude that the effect of actively
“pumping” particles out of the junction, via an increased
hopping rate on the junction site, is to raise the current plateau,
up to the threshold ν∗ = N . Beyond this threshold, pumping
fully compensates the topological handicap of sharing the
junction site between several segments. Saturated pumping,
beyond the value ν∗ = N , no longer increases the current.

VI. PUMPING VERSUS BIAS

It is now intriguing to consider a yet more complex junction
which combines all previously introduced ways of modulating
the transport at the junction. What is the overall flow through
such a junction? Can the current drop due to the bias be
compensated by pumping and, if so, to which extent and under
which conditions? What phases arise? In the following, we
show how to analyze this general scenario. In particular, we
show that the maximum current (MC) phase plays an important
role and leads to new features.
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FIG. 11. (Color online) Local density at the junction and at the neighboring sites as a function of the overall density, for pumping rates
ν = 1,2,5 on a twofold topology. “Entry” stands for the entry site of the segments (directly fed from the junction site), whereas “exit” stands
for the exit sites, i.e., the last sites in the segment, which feed the junction. Without pumping, the bottleneck effect is apparent in that the exit of
segments is more likely to be occupied than the entrance sites. With ν = 5 the entrance sites are fuller, whereas the exit sites (and in particular
the junction) are depopulated. This is characteristic for the effect of pumping. Dashed lines are mean-field predictions; continuous lines are
refined mean-field predictions taking into account boundary layer effects on the boundary sites, as discussed in the text. See Appendix D for
the fully detailed expressions used to plot the graphs.

A. Pumping and bias

The question we address here is to which extent pumping
particles out of the junction via an increased hopping rate can
compensate the loss in transport efficiency, which is caused
both by a multiple connectivity and by a bias. The approach
we present is general and covers the full problem of pumping
through an N -fold junction, each with an arbitrary bias; we
will comment on this general case below. Full details of
the calculation are provided in Appendix A for a simpler
version, an N -fold loop with two distinct bias parameters.
In the following, we choose to highlight the case of a twofold
loop, for which we can represent the resulting phase diagrams
graphically.

Note first that, in the absence of bias (σ1 = σ2 = 1/2),
the critical pumping rate ν∗ = 1

σ
= N characterizes the point

where the MC phase appears, in both segments, and replaces
the LD-HD coexistence at intermediate densities. When a bias
is introduced there are now two critical values for pumping, as
transport through either of the loops saturates:

ν∗
1 = 1

σ1
<

1

σ2
= ν∗

2 .

We must therefore distinguish three cases, depending on how
many of the segments in LD-HD coexistence have already
saturated into a MC phase: this naturally extends the notions
of efficient and saturated pumping to a system with bias.
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FIG. 12. Complete phase diagram of a twofold loop. Phase
space parameters are the pumping rate ν and the overall density
ρ. Depending on the pumping rate we distinguish the regimes of (i)
weak pumping (0 < ν < 1

σ1
), intermediate pumping ( 1

σ1
< ν < 1

σ2
),

and strong pumping ( 1
σ2

< ν). (a) Strong bias, (b) intermediate bias,
(c) vanishing bias, for comparison with the above figures. Note that
the scale of the ν axes differs between these figures.

For a twofold loop we have three independent parameters:
one bias parameter (σ1 and σ2, but with σ1 + σ2 = 1), the
pumping rate (ν), and the overall density (ρ). Here, we choose
to fix the bias and analyze the system as a function of the other
two parameters: we establish a “phase diagram” based on two
parameters, the pumping rate ν and the overall density ρ (see
Fig. 12).

We first present the mean-field phase diagram for a strong
bias (σ1 = 0.9, σ2 = 0.1) in order to show the new features
which arise from the simultaneous action of pumping and bias
[see Fig. 12(a)]. As an example, we first focus on low values
of the pumping rate. The succession of phase transitions as a
function of overall density is seen to be exactly as it was in
the absence of pumping: we transit from LD:LD to HD:LD to
HD:HD, passing through two coexistence regions attributed to
the favored then to the disfavored loop. For strong pumping,
ν > 1/σ1, however, the favored loop is now pushed into a MC
phase, whenever the overall density allows this. Therefore,
there now is an extended density region for which a MC phase
arises in the favored loop. As soon as this is achieved, pumping
ceases to be efficient in this loop, and its current no longer
increases with ν. As the pumping rate exceeds ν∗

2 = 1/σ2, the
LD-HD coexistence in the disfavored loop has been replaced
entirely by a HD phase.

The topology of this phase diagram remains valid for a
weaker bias [Fig. 12(b)], only the extent of the zones is
modulated by the range of the corresponding pumping rates
ν, as is illustrated by comparing Figs. 12(a) and 12(b); for
comparison, we also show the phase diagram in the absence
of bias [Fig. 12(c)].

A complementary point of view is obtained by analyzing the
current at the junction as a function of the overall density (see
Fig. 13) for each of the pumping regimes introduced above.
The agreement between mean-field theory and simulation is
very good, except for one zone which must be singled out:
when at least one loop is in the regime of saturated pumping,
there is a density zone for which simulations reveal a current
which significantly exceeds the mean-field predictions. This
zone is localized around the transition from LD:LD to MC:LD,
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FIG. 13. Current at the junction J̃ versus overall density ρ in
a twofold topology of L = 100 sites, with bias 0.9: 0.1. Several
pumping rates are shown for comparison (ν = 1, 5, 13).
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FIG. 14. Currents at the junction and in the bulk of each loop
versus the overall density ρ in a twofold loop of L = 100 sites, bias
0.9:0.1. Parameters for the graphs have been chosen to represent
the respective regimes of pumping. Note that the scales are not the
same for all subfigures, in order to ensure visibility. Deviations from
mean-field predictions arise in the disfavored loop, but are attributed
to the presence of the MC phase in the favored loop (see discussion
in the text).

i.e., the density for which the favored loop switches to a MC
phase [ρ ≈ 1

2Nσ1
in Fig. 14(c)].

In essence, we attribute this deviation to the presence of the
MC phase, in a way similar to the case of pumping through
loops without bias (Sec. V). The novelty here is that with a bias
the discrepancy is also visible for the current, in contrast to the
nonbiased case. To this end, the arguments employed in Sec. V
suggest that any density fluctuations have different effects in
both loops. In the favored section, the current carried by the MC
phase is at the maximum of the parabola J (ρ) = ρ (1 − ρ),
and therefore density fluctuations can only produce second
order deviations in the current. The disfavored loop, however,
is still in a LD phase, as is indeed observed in kinetic Monte
Carlo simulations, and hence not in a current extremum. We
must therefore expect density fluctuations to have a first-order
effect on the current through this loop. The partial currents
in each loop (Fig. 14) corroborate these interpretations: the
discrepancy does indeed not arise in the MC segment itself,
but rather in the disfavored loop.

To provide further details, we again turn to the density at the
junction ρ̃ and at neighboring sites as a function of the overall
density, which we have already seen to be a finer indicator. See
Fig. 15 for the various regimes. Again, we call upon the refined
mean-field arguments introduced above in order to predict
the local density at the entrance and exit sites. These refined
predictions are overall in good agreement with Monte Carlo
simulations, but deviations arise for densities in the vicinity
of the MC:LD zone, in keeping with the observations made
with respect to Fig. 11. They are striking at the entry site for
strong pumping, as one would expect, since pumping has a
direct effect on these sites.

VII. DISCUSSION AND CONCLUSIONS

TASEP transport on branched topologies is particularly
sensitive to the local dynamics at the junction sites where
segments meet. This is where bottleneck effects arise and
constitute a handicap for efficient transport. On the other hand,
this sensitivity offers an intriguing way to regulate the overall
transport by small adjustment of the local rules. We have
used a topology of multiple loops sharing one junction site, in
order to explore various scenarios for how the local properties
affect transport: (i) adding extra segments to facilitate the flow,
(ii) giving preference to certain segments via a bias, and
(iii) facilitating the departure of particles from the junction
site (“pumping”).

As extra loops are added, the overall flow is enhanced, but
only a limited improvement can be achieved. Due to saturation
at the junction, any further gain by adding additional loops
becomes marginal.

Biasing the particles to preferential segments allows us to
boost the flow locally, but leads to a drop in the overall current.
Beyond a critical density, which depends only on the number
of loops, the bias becomes futile, in the sense that all loops
carry an identical current.

An accelerated departure from the junction site by actively
pumping particles out of the junction site can compensate the
bottleneck effect. In the absence of bias we have identified two
distinct regimes: (i) pumping is efficient for small pumping
rates (where pumping increases the current in the coexistence

042104-10



ROLE OF NETWORK JUNCTIONS FOR THE TOTALLY . . . PHYSICAL REVIEW E 88, 042104 (2013)

FIG. 15. (Color online) Local density at the junction and at its neighboring sites, the entry and exit sites for the segments, as a function of
the overall density. We have analyzed a twofold loop with a bias of 0.9:0.1; simulations are for segments of length L = 100. The dashed lines
indicate straightforward mean-field predictions, the continuous lines are the improved predictions from refined arguments acknowledging the
particular role of the boundary sites. See Appendix D for details of mean-field predictions (some refined arguments are used again).

phase), but (ii) becomes saturated at a critical value set by
the local vertex connectivity (where bulk dominated flow is
established in all loops, such that further pumping no longer
increases the current).

We have provided a generic mean-field approach for the
most general case, which allows us to deduce the transport
properties as a function of the overall density for any com-
bination of these scenarios. These predictions are generally
in excellent agreement with results from kinetic Monte Carlo
simulations, with one restriction: when there is a bias, the
favored loop may enter a MC phase. For densities close to this
regime, the mean-field predictions underestimate the current,
pointing to an emerging role of long-range correlations. For
other cases, a refined mean-field prediction is required for the
entry and exit sites of the segment, which are immediately

adjacent to the junction site. This reflects the importance of
boundary layers in certain regimes which, once accounted for,
again lead to good predictions.

The aim of this work has been to explore various scenarios
of how the overall flow can be regulated by fine-tuning the
dynamics on the junctions of a network. We have therefore
not intended to discuss any particular experimental situation,
but there is direct potential for applying such arguments. One
may, for example, think of recent experiments on molecular
motors stepping along biofilaments, for which it has recently
become possible to design tailor-made network structures
in vivo, on which the motion of motors can be observed in great
detail [32]. In particular, the notion of a bias arises inevitably in
such a setup due to effects of steric hinderance at crosslinking
points, and it is intriguing to ask how such effects will affect the
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overall delivery of cargos. The network topology has already
been shown to be an important feature for transport, but it
emerges here that the local dynamics on the junctions provide
another way to modify the flow of matter and, potentially, to
regulate how material is distributed.
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APPENDIX A: MEAN-FIELD CALCULATION

In this appendix, we reproduce the main results from
mean-field arguments, following the spirit of [24]. The detailed
calculations are not reproduced since they are straightforward,
but we indicate the main steps.

The standard mean-field analysis is constructed from
assumptions: absence of correlation between successive sites
(which implies the decorrelation between distinct loops) and
a homogeneous density profile along a given segment. Our
calculations are based on the current conservation at the
junction.

Here, we consider the case of N loops, classified in two
types of n1, n2 loops with respective bias σ1, σ2, and we allow
for arbitrary pumping at the junction. The approach essentially
consists in envisaging all the possible combinations of phases
(LD:LD, LD:HD, etc.) for the loops. For each loop, we express
the effective entry (exit) rates α (β) as a function of the density
at the junction ρ̃. This allows us to test the compatibility
of phase combinations thanks to the conditions on α and β

from the single-segment TASEP phase diagram. Some phase
combinations are eliminated by contradictory conditions, and
others are possible within certain parameter ranges.

For concreteness we provide details for one example: the
LD:LD phase. The conditions can be read off directly from the
phase diagram of a single TASEP segment (see Fig. 2):

αs < βs and αs <
1

2
(A1)

for all segments s. Since αs = νσsρ̃ and βs = 1 − ρ̃ [24] we
have

ρ̃ <
1

1 + νσs

and ρ̃ <
1

2νσs

for all s. (A2)

We have also assumed σ1 > σ2 without any loss of generality,
and thus two conditions hold: ρ̃ < 1

1+νσ1
and ρ̃ < 1

2νσ1
. As a

result,

if ν > 1
σ1

⇒ ρ̃ < 1
2νσ1

,

if ν < 1
σ1

⇒ ρ̃ < 1
1+νσ1

.
(A3)

Then, the overall density ρ is just the average over the
densities in each loop, which depend on the density at the
junction ρ̃. From this we obtain ρ̃(ρ). We find

ρ = 1

N

2∑
s=1

nsρs (A4)

with ρs = νσsρ̃ and
∑2

s=1 nsσs = 1, and thus

ρ̃ = N
ν
ρ . (A5)

The current J̃ at the junction is the sum of all currents
through the loops, each given by Js = ρs(1 − ρs). Knowing
that each bulk density ρs is fixed either by the entrance or the
exit rates, depending whether the loop is in a LD or a HD
phase, we find the current as

J̃ =
2∑

s=1

nsJs. (A6)

Consequently,

J̃ = Nρ − (Nρ)2
2∑

s=1

nsσ
2
s . (A7)

APPENDIX B: MULTIPLE BIAS: GENERAL CASE

The role of a bias has been illustrated and discussed in
Sec. IV. Here, we provide the full mean-field solution for a
junction shared by N loops, to each of which we attribute an
individual bias parameter σs .

In the main text, we have introduced the idea that the
presence of a bias leads to a succession of transitions in
the loops, according to their bias: the most favored loop
enters LD-HD coexistence (with a current plateau) before
switching into a HD phase (with decreasing current), then
the next most likely loop, and so on. This simple statement
requires a little thought in terms of providing a notation for
the general expressions, which must also cover the possibility
of degenerate bias (several loops being equally likely). This
can be achieved by distinguishing those segments which have
already established a HD phase from those still in a LD phase.

The criterion for a loop (or several loops) carrying a given
bias parameter σ ∈ {σ1, . . . ,σN } to display coexistence is
given by

α(σ ) = β(σ ), i.e., σ ρ̃(σ ) = 1 − ρ̃(σ ), (B1)

which translates to

ρ̃(σ ) = 1

1 + σ
(ρ ∈ P̄ (σ )) (B2)

for the junction occupancy ρ̃(σ ) characterizing this plateau.
In order to establish the density range corresponding to this
plateau,

P̄ (σ ) = [ρ(σ )
− ,ρ

(σ )
+ ], (B3)

some further thought is necessary.
We first consider the subsequent density range,

P (σ ) = [ρ(σ )
+ ,ρ(σ )

∗ ], (B4)

for which this particular loop has already reached a HD phase
but no further loop has attained coexistence yet: this happens at
the end of the corresponding density zone ρ

(σ )
∗ (which also cor-

responds to the onset of the following plateau for the next bias:
ρ

(σi )∗ = ρ
(σi+1)
− ). In P (σ ) the overall density can be written as

ρ = 1

N

∑
s

ρs = 1

N

[ ∑
s∈HD

ρ̃ +
∑
s∈LD

σsρ̃

]
(B5)

= 1

N

[
n(s:σs�σ ) +

∑
s:σs<σ

σs

]
ρ̃ (ρ ∈ P (σ )),
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where n(s:σs�σ ) is the count of segments with a bias σs at
least as favorable as the given bias σ (recall that we have
ordered the bias parameters, such that σ1 � σ2 � · · · � σN ).
Therefore, the junction occupancy ρ̃ is related to the overall
density ρ through

ρ̃(σ ) = N ρ

n(s:σs � σ ) + ∑
s:σs<σ σs

(ρ ∈ P (σ )). (B6)

The bounds ρ
(σ )
± of the density range P̄ (σ ) for which

there is coexistence in the loop(s) with bias σ can now be
determined from the intersection of the corresponding plateau
value ρ̃(σ ) [Eq. (B2)] with the adjacent linear zones [Eq. (B6)]
immediately left and right. This establishes the plateau range
as

ρ
(σ )
− = n(s:σs>σ ) + ∑

s:σs�σ σs

N (1 + σ )
, (B7)

ρ
(σ )
+ = n(s:σs�σ ) + ∑

s:σs<σ σs

N (1 + σ )
. (B8)

The currents through the segments can now be deduced
using the effective rates, i.e., more precisely, from βs = 1 − ρ̃

for HD segments and from αs = σs ρ̃ for those in LD.
Therefore, the total current through the junction is

J̃ =
∑
s∈HD

ρ̃(1 − ρ̃) +
∑
s∈LD

σsρ̃ (1 − σsρ̃) (B9)

=
∑

s:σs�σ

ρ̃(1 − ρ̃) +
∑

s:σs<σ

σsρ̃ (1 − σsρ̃). (B10)

This is the mean-field prediction used in Fig. 6. Note that it
has been established assuming that no segments are in LD-HD
coexistence, but it trivially also covers this case: the condition
for coexistence on a segment being αs = βs , i.e., σsρ̃ = 1 −
ρ̃, implies that it does not matter whether the corresponding
segments are counted in the LD or the HD contributions.

This expression for the current also shows that the first
current plateau is optimal, in the sense that all successive
plateaus correspond to weaker currents. The optimal density
region is therefore

1

N (1 + σ1)
< ρ <

n(s:σs=σ ) + ∑
s:σs<σ1

σs

N (1 + σ1)
. (B11)

Finally, we point out in passing that the case of degenerate
loops, i.e., several loops being fed with the same bias
parameter, introduces no further subtleties when using this
notation. It is handled by the above discussion, provided
only that one remembers to account for all of those loops
in the sums above and/or in the segment counts, such as
n(s:s>σ ). The point at which the MC phase arises in the next
loop(s), leading to saturation, naturally extends the notion of
efficient and saturated pumping to a multiloop system with
bias.

APPENDIX C: REFINED MEAN-FIELD ARGUMENTS

The mean-field analysis of TASEP segments employed
most commonly is based on a homogeneous density

throughout the segment. Both exact theories and simulations
show that this is indeed the case, except for small boundary
zones, where boundary layers in the density profiles allow us
to match the currents as required.

As an example, consider a single segment in a LD phase,
with entrance rate α and exit rate β. The mean-field prediction
is a homogeneous density ρ = α, which is consistent at the
entry but can not hold at the exit: if the last site were at
this density, the exit current would be ρ β, which would
not generally match the entrance current J = α (1 − ρ) =
α (1 − α). The solution to this apparent paradox lies in a
boundary layer close to the exit, a very localized zone where
the density profile varies continuously along the segment in
order to ensure current conservation between neighboring
sites:

ρi (1 − ρi+1) = J = ρL β, (C1)

where i = 1 . . . L is the number of the site along the segment.
This is known to lead to density variations only in localized
boundary layers [33], and the simplistic picture of a homoge-
neous density is therefore in fact valid.

Here, we use the above relation in order to deduce the
density at the exit site ρL as

ρexit = ρL = α (1 − α)

β
. (C2)

In the N -fold loop, the effective entry and exit rates are given
by the density ρ̃ at the junction site, as

α = ν σ ρ̃ and β = 1 − ρ̃. (C3)

Using these rates in the boundary layer argument then leads to
refined expressions for the density at the exit site:

ρ
(s)
exit = 2σ (s)ρ(1 − 2σ (s)ρ)

1 − 2ρ

ν

(LD). (C4)

For a HD phase the density at the entry site can be been
obtained from equivalent arguments:

ρ
(s)
entry = 1 − 1 − ρ

νσ (s)
(HD). (C5)

APPENDIX D: RECAPITULATING
THE MEAN-FIELD RESULTS

Here, we summarize all mean-field results as we have
established them for the various cases discussed in the main
text, including several refined predictions (see above). The
curves shown in Figs. 11 and 15 are based on these expressions.
For ease of reference, we organize the results for each scenario
in the form of a table (see Tables I and II).

All entries in these tables correctly reduce to those in Table I
for neutral pumping and no bias (ν = 1 and σ1 = σ2 = 1/2).
Refined mean-field predictions incorporating the effect of
boundary layers, as discussed in the main text, are given where
appropriate. In those entries, the refined predictions appear
first, followed by the nonrefined predictions.
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TABLE I. Mean-field expressions, in absence of bias (σi = 1/N ), in an N -fold loop. Refined mean-field results are indicated by an asterisk.
Figure 11 exploits these results for a twofold loop (N = 2).

Phase Density interval J ρentry ρexit ρ̃

Without pumping (ν = 1)
LD:LD 0 < ρ < 1

N+1 Nρ(1 − ρ) ρ ρ(1−ρ)
1−Nρ

(*) Nρ

LD-HD:LD-HD 1
N+1 < ρ < N

N+1
N2

(N+1)2
1

N+1
N

N+1
N

N+1

HD:HD N

N+1 < ρ < 1 Nρ(1 − ρ) 1 − N (1 − ρ) (*) ρ ρ

With pumping (ν > 1)
LD:LD 0 < ρ < 1

2 Nρ(1 − ρ) ρ ρ(1−ρ)

1− Nρ
ν

(*) Nρ

ν

MC:MC ρ = 1
2

1
2 ∈

[
1
2 ,

2ν/N+1
2ν/N

]
(*) ∈

[
ν/N

2(2ν/N−1) ,
1
2

]
(*) ∈ [ 1

2ν/N
, 1

2 ]

HD:HD 1
2 < ρ < 1 Nρ(1 − ρ) 1 − 1−ρ

ν/N
(*) ρ ρ

TABLE II. Mean-field expressions for a twofold loop with two distinct bias parameters (σ1 > σ2). Refined mean-field results are indicated
by an asterisk.

Phase Density interval J

{
ρentry,1

ρentry,2

} {
ρexit,1

ρexit,2

}
ρ̃

Weak pumping (ν < 1
σ1

< 1
σ2

)

LD:LD 0 < ρ < ν

2 (1+νσ1) 2ρ − (2ρ)2
(
σ 2

1 + σ 2
2

) {
2σ1ρ

2σ2ρ

} { 2σ1ρ(1−2σ1ρ)

1− 2ρ
ν

(∗)
2σ2ρ(1−2σ2ρ)

1− 2ρ
ν

(∗)

}
2ρ

ν

LD-HD:LD 1
2

ν

1+νσ1
< ρ < 1

2
1+νσ2
1+νσ1

ν−ν2σ 2
2

(1+νσ1)2

{ νσ1
1+νσ1

2σ2ρ

} {
1

1+νσ1
(∗)

σ2
σ1

(1 − νσ2
1+νσ1

) (∗)

}
1

1+νσ1

HD:LD 1
2

1+νσ2
1+νσ1

< ρ < 1
2 2 ρ − (2ρ)2(1+ν2σ 2

2 )

(1+νσ2)2

{
2ρ

1+νσ2
2νσ2ρ

1+νσ2

} ⎧⎨
⎩

2ρ

1+νσ2
νσ2 2ρ

1+νσ2
(1− νσ2 2ρ

1+νσ2
)

1− 2ρ
1+νσ2

(∗)

⎫⎬
⎭ 2ρ

1+νσ2

HD:LD-HD 1
2 < ρ < 1

1+νσ2

2νσ2
(1+νσ2)2

{
1

1+νσ2
νσ2

1+νσ2

} {
1

1+νσ2
1

1+νσ2

}
1

1+νσ2

HD:HD 1
1+νσ2

< ρ < 1 2ρ(1 − ρ)

{
ρ

1 − 1−ρ

νσ2

} {
ρ

ρ

}
ρ

Intermediate pumping ( 1
σ1

< ν < 1
σ2

)

LD:LD 0 < ρ < 1
2

1
2σ1

2ρ − (2ρ)2(σ 2
1 + σ 2

2 )

{
2σ1ρ

2σ2ρ

} { 2σ1ρ(1−2σ1ρ)

1− 2ρ
ν

(∗)
2σ2ρ(1−2σ2ρ)

1− 2ρ
ν

(∗)

}
2ρ

ν

MC:LD 1
2

1
2σ1

< ρ < 1
2

1+νσ2
2 2 (2ρ) − (2ρ)2 − 1

2

{
1 − σ2

4σ1(2ρ− 1
2 )

(∗)

2ρ − 1
2

} ⎧⎪⎨
⎪⎩

νσ2

4(νσ2−2ρ+ 1
2 )

(∗)
(2ρ− 1

2 )( 3
2 −2ρ)

1− 2ρ− 1
2

νσ2

⎫⎪⎬
⎪⎭

2ρ− 1
2

νσ2

HD:LD 1
2

1+νσ2
2 < ρ < 1

2 2ρ − (2ρ)2 (1+ν2σ 2
2 )

(1+νσ2)2

{
1 − 1− 2ρ

1+νσ2
νσ1

(∗)
ν2σ2ρ

1+νσ2

} ⎧⎨
⎩

2ρ

1+νσ2
νσ2 2ρ

1+νσ2
(1− νσ2 2ρ

1+νσ2
)

1− 2ρ
1+νσ2

(∗)

⎫⎬
⎭ 2ρ

1+νσ2

HD:LD-HD 1
2 < ρ < 1

1+νσ2

2νσ2
(1+νσ2)2

{
1 − σ2

σ1(1+νσ2) (∗)
νσ2

1+νσ2

} {
1

1+νσ2
1

1+νσ2

}
1

1+νσ2

HD:HD 1
1+νσ2

< ρ < 1 2ρ(1 − ρ)

{
1 − 1−ρ

νσ1
(∗)

1 − 1−ρ

νσ2
(∗)

} {
ρ

ρ

}
ρ

Strong pumping ( 1
σ1

< 1
σ2

< ν)

LD:LD 0 < ρ < 1
2

1
2σ1

2ρ − (2ρ)2
(
σ 1

1 + σ 2
2

) {
2σ1ρ

2σ2ρ

} {
2σ1ρ(1−2σ1ρ)

1− 2ρ
ν

(∗)

2σ2ρ

}
2ρ

ν

MC:LD 1
2

1
2σ1

< ρ < 1
2 2 (2ρ) − (2ρ)2 − 1

2

{
1 − σ2

4σ1(2ρ− 1
2 )

(∗)

2ρ − 1
2

} {
νσ2

4(νσ2−2ρ+ 1
2 )

(∗)

2ρ − 1
2

}
2ρ− 1

2
νσ2

MC:MC ρ = 1
2

1
2

{
∈ [ 2σ1−σ2

2σ1
,

1+2(νσ1−1)
2νσ1

]
∈ [ 1

2 ,
1+2(νσ2−1)

2νσ2
]

} {
∈ [ νσ2

4(νσ2− 1
2 )

, 1
2 ]

1
2

}
∈

[
1

2νσ2
, 1

2

]

HD:HD 1
2 < ρ < 1 2ρ(1 − ρ)

{
1 − 1−ρ

νσ1
(∗)

1 − 1−ρ

νσ2
(∗)

} {
ρ

ρ

}
ρ
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