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Effect of short-range order on transport in one-particle tight-binding models
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We investigate transport properties of topologically disordered three-dimensional one-particle tight-binding
models, featuring site-distance-dependent hopping terms. We start from entirely disordered systems into which
we gradually introduce some short-range order by numerically performing a pertinent structural relaxation using
local site-pair interactions. Transport properties of the resulting models within the delocalized regime are analyzed
numerically using linear response theory. We find that even though the generated order is very short ranged,
transport properties such as conductivity or mean free path scale significantly with the degree of order. Mean free
paths may exceed the site-pair correlation length. It is furthermore demonstrated that while the totally disordered
model is not in accord with a Drude- or Boltzmann-type description, moderate degrees of order suffice to render
such a picture valid.
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I. INTRODUCTION

Since its introduction the Anderson model has been a
paradigm in the investigation of disordered quantum systems
[1]. However, most existing amorphous materials are not
amorphous due to disordered on-site potentials on a periodic
lattice (Anderson model) but feature a spatially disordered
site configuration. A model class for such systems has been
introduced and to some extent analyzed by Lifshitz [2]. In
both system classes the phenomenon of Anderson localization
occurs, i.e., at some (or all) energies energy eigenstates
extend only over a finite spatial range called the localization
length. Three-dimensional systems may feature localized and
extended states that are energetically separated by the mobility
edges. The lowest- (and highest-) energy eigenstates of an
energy band are usually localized at all nonzero degrees of
disorder, while the states in the center of the spectrum may
be delocalized [1]. There also exists a degree of disorder at
which all eigenstates become localized, called the Anderson
transition. While there is an enormous amount of literature
on Anderson transitions [1,3], mobility edges, [4–11] and
localization lengths [1,12], there seems to be less work on the
quantitative description of transport behavior (conductivities,
diffusion constants, mean free paths, etc.) in the delocalized
regime. This is probably due to the fact that electronic transport
on the macroscopic scale in doped semiconductors or glassy
systems is almost always dominated by thermally activated
hopping processes between localized energy eigenstates at the
lower band edge [5,13,14]. At feasible temperatures in stan-
dard materials the Fermi distribution simply gives only non-
negligible probability to localized states at the lower band edge
(highly doped but weakly compensated semiconductors may
be an exception here [13,15]). However, transport mediated
by the delocalized center of the spectrum, which is the subject
of the present paper, may be of importance for electronic
conduction in amorphous metals or phononic heat conduction
in amorphous materials [16]. Many of the quantitative results
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on transport in the delocalized regime are either on extremely
weakly disordered systems, i.e., crystals comprising some
defects [17–20], or on the Anderson model [21–23]. These
investigations find localized and/or diffusive behavior in the
limit of large time and length scales. Remarkably diffusive and
even weakly localized behavior has been found on finite time
scales (at high frequencies) also in strictly periodic (quantum)
systems of the Lorentz gas type [24–26]. However, the present
paper addresses truly nonperiodic systems and finds ballistic
behavior (mean free path) for the short and diffusive behavior
on the long length scale. Recently results on transport within
the delocalized regime in some Lifshitz models featuring
completely random site configurations have been reported
in Ref. [27]. Both transport types, i.e., hopping (though
not thermally activated) and band or Drude transport, have
been found, which provides an alternative to the widespread
belief that transport phenomena within the delocalized regime
in disordered systems may generally be described using a
Drude or Boltzmann approach [15]. The present paper is
along the lines of Ref. [27] and extends the studies to
Lifshitz models that are not completely random but feature
some short-range order in the site configuration. We find
that even weak short-range order affects transport properties
strongly.

The paper is organized as follows. We start by introducing
our models and their specific parameters in Secs. II and
III. Then we compute in Sec. IV the dependence of their
conductivities (at high temperatures and low fillings) on the
amount of short-range order. After briefly commenting on
localization and short-range order in Sec. V we address the
Einstein relation and mean free paths defined on the basis of an
Einstein relation in Sec. VI. By considering models featuring
different length scales of the hopping amplitudes we find some
universality of the transport properties in Sec. VII. We close
with a summary in Sec. VIII.

II. MODEL OF GENERATION OF SHORT-RANGE ORDER

Even the most amorphous solids are spatially not com-
pletely random but feature some short-range order on an
atomic scale. As this order becomes more pronounced the
amorphous system gradually passes over to a crystal. Many of
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FIG. 1. Polygon pair-interaction potential v(r) used in the struc-
tural relaxation algorithm (1) to generate short-range order.

those intermediate structures actually exist. It is the purpose
of this paper to investigate the effect of increasing order in
initially completely (nonphysically) disordered systems on
transport properties. The systems will be modeled by quantum
tight-binding models featuring intersite distance-dependent
hopping amplitudes (see Sec. III). Thus the site configuration
eventually affects the transport properties. Indeed, as will
become clear below, changing the topological order of the
atomic sites has a substantial effect on the transport quantities
such as mean free paths and conductivities. The case of a
distribution of fully disordered sites was extensively inves-
tigated in Ref. [27]. Thus, in this paper we generate some
short-range order in the following straightforward way: We
start by producing a set of N = L3 three-dimensional position
vectors �rj by drawing each Cartesian coordinate (xj ,yj ,zj ) of
each vector independently from a uniform distribution on the
interval [0,L], i.e., within a cube of volume L3 in real space.
This guarantees a uniform site distribution with unit density.
Now short-range order is produced based on pair-interaction
potentials v(|�rij |), where |�rij | = |�ri − �rj | denote interatomic
distances between sites i and j . We schematically mimic
the relaxation that would occur through the minimization
of the total interaction energy V := ∑

ij v(|�rij |) with respect
to the site positions �rj for particles in viscous fluid. Routinely
one could use a structural relaxation algorithm with a typical
interatomic potential such as Morse; however, due to the
curvature of such potentials, the most frequent site distance
grows while order is numerically generated. Since we intend
to exclusively focus on the effect of the degree of order,
we want to keep other parameters such as density and
most frequent site distance fixed. Thus we employ a rather
simple pair-interaction potential that is essentially a poly-
gon (see Fig. 1). The parameters r0 = 1.12, r2 = 8, vmin =
−20, and vmax = 140 control the short-range repulsion and the
long- (intermediate-) range attraction. The choice r0 = 1.12
guarantees that throughout the lattice relaxation the value of
the site density ρ = 1 remains unchanged even if close packing
would be reached (which of course practically never happens).
This kind of simple polygon potential may not be very realistic,
but it suffices to continuously generate a first peak in the
pair-site correlation function at r0 (see Fig. 1). Thus we
define our lattice relaxation by the following gradient descent

1

2

1 2

g(
r)

r

h=2.57
h=2.29
h=2.00
h=1.66
h=1.40
h=1.00

FIG. 2. Pair-correlation function g(r) after different run times of
the structural relaxation algorithm (1). Obviously, short-range order
is gradually generated; the most frequent site distance is stable at
r = 1.12. Based on this figure, the height of the first peak h is used to
quantify the degree of short-range order. Note that the second peak is
hardly visible for all degrees of order.

method:

xn+1
i = xn

i − λ
∂V

∂xi

∣∣∣∣
{xn

i }
. (1)

Here i,j label the Cartesian components of all position vectors,
i.e., i,j = 1, . . . ,3N , and n denotes the step number of the
minimization algorithm. The parameter λ has to be adequately
defined such that the algorithm is stable. This kind of algorithm
of course will not lead to a global minimum of the potential;
rather it will move the atomic sites such that the potential
energy is locally minimized. Up to a certain limit a desired
degree of short-range order may now simply be generated by
iterating (1) for a pertinent number of steps. Figure 2 illustrates
the corresponding generated short-range order by displaying
the pair-correlation function g(r):

g(r) = 1

4πr2ρdr

∑
ij

rect

( |�rij | − r

dr

)
, (2)

where rect(· · ·) denotes the standard rectangular function.
For small dr the quantity

∑
ij rect[(|�rij | − r)/dr] should

be proportional to dr , thus the correlation function g(r)
is independent of the specific choice of dr . Unfortunately,
statistical effects also become more pronounced for smaller dr

since our sample is finite. Thus calculating g(r) with sufficient
precession may require large samples. We found, however, that
satisfactory results may be produced from samples comprising
no more than 243 sites.

Defining a quantity that sensibly parametrizes the degree
of order in general is a formidable task of it own. Here we
exclusively focus on the dependence of the transport properties
on the peak height of the pair-correlation function, i.e., h =
max[g(r)] [which occurs due to our specific potential v(r)
always at r = 1.12]. This peak height assumes the value
h = 1 for the completely disordered system, which has been
addressed in detail in Ref. [27], and in principle increases to
infinity for a long-range-order crystal. In this sense it may be
viewed as a simple indicator for the degree of topological order
in a system.

042103-2



EFFECT OF SHORT-RANGE ORDER ON TRANSPORT IN . . . PHYSICAL REVIEW E 88, 042103 (2013)

III. MODEL OF TIGHT-BINDING HAMILTONIAN

Based on the short-range-order site structure described in
the previous section we now specify the Hamiltonian of the
model. The latter is a one-particle tight-binding Hamiltonian

Ĥ =
∑
jk

Hjkâ
†
j âk, (3)

where â
†
i and âi denote the annihilation and creation operators.

The function Hjk describes the dependence of the overlap or
hopping amplitudes on the positions of the respective sites. We
consider isotropic overlap, thus Hjk essentially depends on the
distance sjk between site j and site k. Here we specifically
choose Hjk to be a Gaussian function

Hjk := exp

(−4s2
jk

π l̃2

)
. (4)

The Gaussian function decrease is not intended to specifically
address any real amorphous material. It is rather motivated by
numerical feasibility: Since the system is disordered there are
localized states at the edges of the energy spectrum. Those
tend to become fewer with increasing l̃. For technical reasons
we intend to focus on models with a negligible number of
localized states (see Sec. V). However, for reliable results on
transport from exact diagonalization on systems featuring large
l̃ large sample sizes are needed. In Ref. [27] similar systems
(but featuring no short-range order) have been investigated.
There it was found that for the Gaussian function Hjk a range
of l̃ may be found for which localization and finite-size effects
(at L = 24) are both negligible. Such a range of l̃ does not
exist, e.g., for exponentially decreasing hopping amplitudes
as considered, e.g., in Refs. [3,4,12]. Further, l̃ parametrizes
the mean overlap length. In the completely disordered system,
i.e., for random sites, we have

1

N

∑
jk

sjk|Hjk| = l̃. (5)

The distances sjk are, due to the usage of periodic boundary
conditions, somewhat complex functions. They may be defined
as

sjk :=
√

d2
jk(x) + d2

jk(y) + d2
jk(z), (6)

where the d are essentially the Cartesian components of
�rj − �rk . To account for periodic boundary conditions they are
specifically defined as

djk(α) =
{

|αj − αk|, |αj − αk| < L
2

L − |αj − αk|, |αj − αk| > L
2 ,

(7)

where α is one of the Cartesian coordinates, i.e., α = x,y,z.
Thus the distance sjk is essentially the shortest distance
between the sites j and k under periodic closure of the sample.

IV. CURRENT DYNAMICS AND CONDUCTIVITY

Now we investigate the dependence of the conductivity
on h, i.e., different degrees of short-range order. We employ
linear response theory, i.e., the Kubo formula. In the limit
of high temperatures and low fillings (routinely described

within the framework of the grand canonical ensemble) the
dc conductivity is given as [28,29]

σdc = σ (t → ∞), σ (t) = f

T

∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′, (8)

where f is the filling factor (mean number of particles per
site at equilibrium), trace and current operators refer to the
one-particle sector only, and Ĵ (t) denotes the current operator
in the Heisenberg picture. Furthermore, T is the temperature
and we set kB = 1 and h̄ = 1; we set the charges of the
particles to unity, i.e., q = 1. Now of course an appropriate
current operator has to be defined. In the context of periodic
systems and next-neighbor hoppings this is often done by
considerations based on the continuity equation for the particle
density [30–33]. Here we choose a definition of the the current
that is based on the velocity in, say, the x direction. Eventually
this choice will be justified by the agreement of the results
with the diffusion constant in the sense of an Einstein relation
(see Sec. VI). The velocity operator reads

v̂ = i[Ĥ ,x̂]. (9)

Here x̂ is an x-position operator and is defined as

x̂ =
N∑

i=1

xin̂i , n̂i := â
†
i âi , (10)

where xi is the x coordinate of the position of site i. Thus the
operator v̂ may also be written as

v̂ = i
∑
ij

(xj − xi)Hij â
†
i âj . (11)

The interpretation of such an operator as the velocity or current
is not in entire agreement with periodic boundary conditions.
A (slow) transition of probability from, say, the right edge of
the sample (x = L) to the left edge of the sample (x = 0)
would give rise to very high negative velocities; however,
within the concept of periodic boundary conditions such a
transition should correspond to low positive velocities (across
the boundary). Thus, in order to obtain a suitable current
operator we modify the above velocity operator (11) such that
it features the same structure for transitions arising from the
periodic closure as it already exhibits for transitions within the
sample:

Ĵ =
∑
ij

Jij â
†
i âj ,

Jij =
{

i[xj − xi]Hij , |xj − xi | < L
2

sgn(xj − xi)(i[L − |xj − xi |]Hij ), |xj − xi | > L
2 .

(12)

Equipped with this definition for the current, we may now sim-
ply calculate the current autocorrelation function appearing in
(8). We do so using standard numerically exact diagonalization
routines. Within a reasonable computing time we are able to
treat samples up to a size of L = 24. In order to be able
to compare the key features of the dynamics of the current
autocorrelation functions for various degrees of order and
model sizes to each other we compute a kind of normalized cur-
rent autocorrelation function j ′(t) := Tr{Ĵ (t)Ĵ (0)}/Tr{Ĵ 2(0)}.
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FIG. 3. Normalized current autocorrelation function j ′(t) for
mean overlap length l̃ = 1.3 and short-range order quantified by
h = 2.57 for increasing sample sizes L. Since the graphs coincide
in regions where they are substantially different from zero, for, say,
L � 16, data can reliably be expected to contain negligible finite-size
effects at L = 24. Moreover, the linear dependence of the current
autocorrelation function on time in the logarithmic plot suggests an
exponential decay, which indicates Boltzmann transport.

Before analyzing conductivity and transport behavior, we
briefly address finite-size effects and numerical limitations.
We find that for all models discussed in the present paper
sample sizes of L = 24 are sufficient to get rid of significant
finite-size effects. This is illustrated exemplarily in Fig. 3. The
normalized current correlation functions j ′(t) for the different
sample sizes above, say, L = 16 coincide for the relevant
initial times, at which j ′(t) is substantially different from zero,
hence the finite-size effects are indeed negligible. For L = 24
a matrix of dimension d ≈ 14 000 has to be diagonalized and a
corresponding correlation function has to be computed. This is
numerically feasible but demanding on standard computers. In
order to analyze conductivity we plot the scaled conductivity
σdcT/f for various generated short-range orders at fixed mean
overlap length l̃ = 1.3 against h (see Fig. 4).
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FIG. 4. Scaled conductivity Tf −1σdc [or diffusion constant D

(see Sec. VI)] for mean overlap length l̃ = 1.3 as a function of the
degree of order h starting from the fully disordered model h = 1. The
conductivity appears to scale linearly with respect to h; the dashed
line is the corresponding fit.

The plot clearly suggest a linear dependence of the conduc-
tivity on the peak height of the site pair-correlation function.
The corresponding fits yield for the respective conductivities

σdc(l̃ = 1.3) = f

T
(0.518h + 0.085). (13)

This equation implies that for increasing short-range order the
conductivity increases significantly. If the most frequent site
distance is only twice more frequent that any other long-range
distance, the conductivity is roughly doubled compared to
the completely random model. This means that even in the
regime of amorphous systems a slight increase of order
will affect transport properties substantially. Furthermore,
considerations based on Fig. 5 may indicate a transition from
a non-Drude to Boltzmann- or Drude-type transport. If one
computes a current-correlation function from a Drude model or
a Boltzmann equation (in the relaxation-time approximation)
one always obtains an exponential decay of the current. Thus,
in order for some (quantum) dynamics to be in accord with
a Drude-type model, it must yield an exponentially decaying
current-correlation function. In the present model, however,
exponentially decaying current-correlation functions only
appear at a certain degree of short-range order. To illustrate
this we plot the normalized current-correlation function j ′(t)
in Fig. 5 for h = 1 (complete disorder) and h = 2.57. At h = 1
the curve agrees well with a Gaussian fit. Such a decay of
the current cannot result from a Boltzmann equation. The
latter may yield multiexponential decay if behavior beyond
the relaxation time approximation is taken into account, but
no Gaussian relaxation. However, at the short-range order
specified by h = 2.57 the decay gradually passes over to an
exponential as illustrated by the respective exponential fit. This
implies a transition from non-Drude to Drude transport.

Note that this transition occurs still in the strongly dis-
ordered regime; even at h = 2.57 the system its far away
from a crystal containing some impurities. The existence of
this transition may be supported by an investigation of the
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exp(-0.77t)

FIG. 5. Normalized current correlation function j ′(t) at mean
overlap length l̃ = 1.3 as a function of time t for the fully disordered
model h = 1 and the short-range-order model h = 2.57. At h = 1 the
decay appears to be approximately Gaussian, whereas at h = 2.57 it
is dominantly exponential (see Fig. 3), which indicates Boltzmann
transport.
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dependence of a mean free path on the short-range order. Such
an investigation is presented in Sec. VI.

V. LOCALIZATION

In Ref. [27] it was found, using methods based on the in-
verse participation ratio, that in the topological fully disordered
model (h = 1) at mean overlap length l̃ � 1.3 almost the entire
spectrum is delocalized. For smaller overlap lengths more
and more energy eigenstates become localized. The Anderson
transition, at which the entire spectrum is localized, occurs
roughly at l̃ ≈ 0.6. The same work furthermore reports that
the conductivity scales as a power law with mean overlap
lengths in the fully delocalized regime, i.e., for l̃ � 1.3,

σdc(h = 1.00) = f

T
0.17l̃4.83. (14)

In the present paper we computed the conductivity for even
smaller mean overlap lengths l̃ < 1.3 (see Fig. 6).
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FIG. 6. Double logarithmic plot showing (a) the scaled conductiv-
ity Tf −1σdc for the fully disordered model h = 1. Already at overlap
lengths as long as l̃ = 1.1 there are deviations from the power law.
This indicates localization of substantial parts of the spectrum. Also
shown is (b) the scaled conductivity Tf −1σdc at h = 2.57. The power
law is fulfilled down to the overlap length l̃ = 0.8, which indicates
that almost all states are delocalized at an overlap length as short as
l̃ = 0.8

Obviously, deviations from the power law appear right
below l̃ ≈ 1.3, i.e., at the point at which substantial parts
of the spectrum become localized. Those deviations increase
rapidly for decreasing mean overlap length. Thus we interpret
the deviations from the power law (14) as a consequence of
increasing localization. This is supported by investigations
based on inverse participation ratio [4,27]. We now use those
findings to produce a rough estimate for the localization
properties of the various short-range-order models. To that
end we compute the conductivities for different mean overlap
lengths for h = 2.57 and use the deviation from the power
law as an indicator for the onset of substantial localization.
Indeed, Fig. 6(b) shows that for the short-range-order model
the conductivity satisfies the power law (14) down to l̃ ≈ 0.8.
Below that deviations from the power law arise. Thus we
conclude that the onset of substantial localization occurs in
this short-range-order model at an even lower mean overlap
length, namely, l̃ ≈ 0.8. This fits into the overall picture since
one expects in the limit of fully ordered systems (crystals)
delocalization to occur for arbitrarily small overlap length
l̃. This finding suggests that probably also in the respective
localized regime localization lengths are longer in the presence
of short-range order. A conclusive statement on this as well
as on the universality class of the short-range-order models is,
however, beyond the scope of the present paper and thus is left
for further research.

VI. EINSTEIN RELATION AND MEAN FREE PATHS

Apart from the conductivity the diffusion coefficient is
another important transport quantity. According to the Einstein
relation, conductivity and the diffusion constant should be
proportional to each other. However, the validity of the Einstein
relation and the limits of its applicability have been much
debated subjects and continue to be so in the context of
quantum systems (see, e.g., [34] and references therein).
It has been reported that the Einstein relation holds for
periodic, interacting, one-dimensional quantum systems at
high temperatures. It is claimed to hold even for finite times,
thus taking the form

D(t) = T

ε2
σ (t), (15)

where D(t) is the (time-dependent) diffusion constant and
ε2 is the uncertainty (variance) of the transported quantity
per site at the respective equilibrium [34]. In Ref. [27]
it was demonstrated that (15) also holds for completely
disordered systems of the type considered in the present paper.
Furthermore, an analytical argument for the validity of (15)
has been presented that does not depend on the topological
structure at all. However, since this argument is not conclusive
we investigate numerically in the following whether (15) also
holds for short-range-order systems. In our case the transported
quantity is the particle density. In the limit of high temperatures
and low fillings the equilibrium fluctuations scale as ε2 = f

[28]. Thus, if one hypothetically accepts the validity of (15)
also for the systems at hand, one gets from inserting (8)

D(t) =
∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (16)
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If a diffusion equation holds, the derivative with respect to the
time of the spatial variance of the diffusing quantity equals
twice the diffusion constant [34]. We analyze numerically the
dynamics of this variance using an initial state of the form

ρ(0) = 1

Z
exp

(
−

(
x̂ − L

2

)2

2

)
,

(17)

Z = Tr

{
exp

(
−

(
x̂ − L

2

)2

2

)}
,

i.e., a state in which the probability is more or less concentrated
in a thin slab of a thickness on the order of one, perpendicular
to the x axis in the middle of the cubic sample. We calculate the
increase of the variance of this state and take a derivative with
respect to time, thus obtaining directly a diffusion constant,
which we call D1(t),

D1(t) = 1

2

d

dt
Tr{x̂2(t)ρ(0)}. (18)

[Note that the particle density does not drift, hence
d
dt

Tr{x̂(t)ρ(0)} = 0.] We compare this to the right-hand side
of (16), which should equal the diffusion coefficient if the
Einstein relation holds; thus we call this quantity D2(t):

D2(t) =
∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (19)

If the Einstein relation holds D1(t) and D2(t) should coincide.
The results are displayed in Fig. 7. Although finite-size

effects are much more pronounced for D1(t) than for D2(t),
there is good agreement during an initial time period. This
period obviously increases with system size. More specifically,
Fig. 7 suggest that the time during which D1(t) and D2(t)
coincide becomes arbitrarily long for arbitrarily large systems
Thus we conclude that the Einstein relation is valid for coherent
one-particle transport in the present short-range-order systems.

The coincidence of D1(t) and D2(t) allows for a definition
of a mean free path λ on the basis of D2(t) that is, as

0
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0 3 6 9

D
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t 
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D1-L=20
D1-L=24
D2-L=24

FIG. 7. Comparison of two methods to calculate (time-
dependent) diffusion coefficients: D1(t) from (18) and D2(t) from
(19). The data address the generated short-range order quantified
by h = 2.57 and mean overlap length l̃ = 1.3. Obviously, finite-size
effects are more pronounced for D1(t); however, D1(t) appears to
coincide with D2(t) up to increasing times for increasing sample
sizes. This coincidence implies the validity of an Einstein relation.
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FIG. 8. Mean free path λ as a function of the degree of short-range
order h at the mean overlap length l̃ = 1.3. Obviously, the mean free
path increases significantly with increasing short-range order.

demonstrated above, computationally less demanding. The
mean free path is introduced as follows: If the particle were
completely ballistic (infinite mean free path) the current
autocorrelation function would never decay and the time-
dependent diffusion coefficients in the sense of (16) would
always increase linearly. The present time-dependent diffusion
coefficients of the models increase linearly at the beginning
(see Fig. 7), but reach a final plateau after that initial period. We
define, somewhat arbitrarily, the ballistic period as the period
before the diffusion coefficient has reached 90% of its eventual
value. Now we call the mean free path the square root of the
increase of the spatial variance of an initial state of type (17)
during this ballistic period. So the mean free path is roughly
the initial increase of width of an initially narrow probability
distribution up to the point where the fully diffusive dynamics
begins. In this way a mean free path may be defined even
in the non-Drude regime where traditional notions of mean
free paths do not apply [28]. However, in the Drude regime
this definition roughly coincides with traditional mean free
path. The so-defined mean free paths λ are displayed in Fig. 8
for short-range-order models featuring different h (but fixed
l̃ = 1.3). The mean free path appears to increase linearly with
h. Although the generated topological order is small and the
structure is still near a fully disorder model, the mean free path
increases substantially with respect to h. In the Drude regime
this may be viewed as corresponding to a decrease of the
scattering cross section. This leads to the remarkable situation
that the mean free path exceeds the range of the order, e.g., at
h = 2.57, recall that the most frequent site distance has been
kept fixed at r0 = 1.12 and a second peak is hardly visible in
Fig. 2. Thus we conclude that the ballistic motion of particles
is not necessarily restricted to the range of order as often
assumed. These findings suggest that the transport behavior
for these short-range-order models may be described by a
Drude model or a Boltzmann equation for, say, h > 2.6, as
already indicated in Sec. IV. This Drude transport is then much
like the dynamics of a particle in a periodic lattice featuring
some impurities or a system of quasifree, weakly interacting
particles. At h = 1, however, the mean free path is below
the most frequent site distance r0 = 1.12. This non-Drude
transport is comparable to the dynamics of an overdamped
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Brownian particle or the thermally activated hopping transport
that may occur in the localized regime of an amorphous and/or
doped semiconductor [13]. Again, this is in accord with the
findings in Sec. IV. It may be worth pointing out that both
transport types have also been found in other one-particle
quantum systems, e.g., non-Boltzmann transport in modular
quantum systems [35,36], and both transport types in the
three-dimensional Anderson model [9,21]. Note that while
any dynamics featuring a finite mean free path yield diffusive
behavior described by some conductivity like that displayed
in Fig. 4 on the macroscopic scale, the concrete size of the
mean free path will alter transport through structures that are
on the order of the mean free path significantly. Thus transport
through thin films or nanostructures may quantitatively depend
on the mean free path.

VII. TRANSPORT BEHAVIOR FOR VARYING
OVERLAP LENGTHS

Until now we have studied solely the effect of increasing
short-range order at fixed mean overlap length l̃ = 1.3. The
latter is the shortest l̃ at which almost all energy eigenstates
are delocalized, even for the completely disordered model [27].
Our method is not suitable to investigate even shorter l̃ since it
does not resolve with respect to energy (the high-temperature
limit). The investigation of larger l̃ is, however, to some extent
possible. Thus in this section we investigate the dependence
of transport parameters on both the amount of order h and the
mean overlap length l̃. We use the same method as described in
the previous sections, i.e., linear response theory. The results
are displayed in Figs. 9 and 10.

Obviously, Fig. 9 exhibits a power-law dependence of
the conductivity on l̃, with the same exponent for all h.
More specifically, Fig. 10 suggests the following form of the
conductivity within the investigated range of h and l̃:

σdc(l̃,h) = f

T
(0.146h + 0.024)l̃4.83. (20)

This product form indicates a kind of universality: Whatever
the amount of short-range order is, the scaling with the mean

FIG. 9. Scaled conductivities Tf −1σdc as functions of mean
overlap length l̃ for various degrees of short-range order parametrized
by h on a double logarithmic scale. For all h the conductivities appear
to follow the same power law with respect to l̃; the dashed lines are
the corresponding fits. This points in the direction of a universality.

FIG. 10. Mean free paths λ as functions of mean overlap length
l̃ for various degrees of short-range order parametrized by h on a
double logarithmic scale. For all h the mean free paths appear to
follow the same power law with respect to l̃; the dashed lines are the
corresponding fits. This points in the direction of a universality.

overlap length is always the same and vice versa. A similar
situation is found for the scaling of the mean free path λ.
Figure 10 suggests

λ(l̃,h) = (0.42h)l̃2.68. (21)

Whether or not this universality holds for even more different
model types is a tentative subject for further research.

VIII. CONCLUSION

We investigated the transport behavior of a class of quantum
systems that may be described as three-dimensional topo-
logically short-range-order one-particle tight-binding models.
These models are meant to be very simplified descriptions of
amorphous materials in the delocalized regime. Conductivity
and mean free paths at low fillings and high temperatures
have been determined essentially by evaluating the Kubo
formula using numeric solutions of the Schrödinger equation
for finite samples comprising up to approximately 14 000
sites. Conductivities and mean free paths are found to scale
linearly with a measure of the (low) amount of order and as
a power law with the mean overlap length of the hopping
amplitudes. The fact that conductivity and the mean free path
appear to be product functions with respect to those parameters
indicates a kind of universality. The scaling with order is
such that mean free paths that exceed the range of order
are reached at comparatively low degrees of order. This is
interpreted as a transition towards a Boltzmann or Drude type
of transport, i.e., almost free, weakly scattered particles, in a
rather amorphous regime. We furthermore verified the validity
of an Einstein relation for those systems and found explicit
hints that increasing order pushes the Anderson transition
towards shorter mean overlap lengths. The latter findings are
in accord with generic expectations.
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