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Scaling laws for ignition at the National Ignition Facility from first principles
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We have developed an analytical physics model from fundamental physics principles and used the reduced
one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable
to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion
energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel.
When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold
factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees
with recent measurements.
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Inertial confinement fusion (ICF) ignition experiments at
the National Ignition Facility (NIF) are guided by the ignition
threshold factor (ITF) [1], which characterizes the probability
of ignition as a function of implosion velocity (Vimp), fuel
adiabat (α), fuel mass, and hydrodynamic mixing. The factor
is normalized so that a value of 1.0 represents a 50% probability
of ignition, the point at which the expected shell kinetic
energy exactly equals the minimum implosion energy required
for ignition. The particular form of the ITF is central to
establishing the driver requirements for inertial confinement
fusion and is also of considerable interest in the optimization
of an inertial fusion driver design. The ITF used in the National
Ignition Campaign (NIC) was obtained by fitting the results of
a series of numerical simulations performed for a certain subset
of imploding fuel configurations [2]. Recent NIC experimental
results [3] show that although the peak implosion velocity
reached over 90% of the value predicted to be necessary for
ignition, the neutron yields of the capsules were still two to
three orders of magnitude from ignition and a factor of 10
below the code predictions. The inferred energy in the fuel
hot spot was only 1/7th of the total energy in the capsule, and
the measured aspect ratio (the ratio of the thickness �p of the
cold fuel to the radius Rhs of the hot spot) was 0.7 ± 0.05 [3]
compared to the calculated energy ratio of 1/3 and aspect ratio
of 1.15 ± 0.05 derived from code simulations [4].

In this Rapid Communication, we formulate the ITF from
first principles, beginning with a reduced one-dimensional
(1D) fundamental physics model to derive analytically a
thermonuclear ignition criterion and implosion energy-scaling
laws applicable to ICF capsules. Such a reduced-physics model
will help to identify possible inadequate assumptions and
improve modeling of the experiments.

The necessary and sufficient condition for achieving igni-
tion in NIF capsules is to have a sustainable thermonuclear
burn of the hot spot deuterium-tritium (DT) fuel. Ignition
requires that the fusion reaction reproduction time (τrep =
ET /Ė) be shorter than the hydrodynamic disassembly time
(τH = Rhs/Cs),1 where ET = 2 × (3/2)(nD + nT)kT + Erad
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1To account for the tamping effect, Cs becomes the effective sound

speed C∗
s = Cs/fT , where fT ∝ √

ρp/ρhs is a tamping factor. Here

is the total energy density of the hot fuel, k the Boltzmann con-
stant, Erad the radiation energy density, Ė = nTnD〈σv〉DTWα

the energy deposition rate by fusion reactions, Wα the energy
deposited into the hot DT per fusion, which normally equals
a fraction (fα) of the α-particle energy (∼3.52 MeV), and Cs

the sound speed. Such a condition results in a threshold on the
areal density of the hot DT fuel,

(ρR)hs � (1 + d)2

d

[3kT + Erad/n]CsADT

〈σv〉DTWαNA

, (1)

where we neglected the energy loss by other forms, e.g.,
bremsstrahling radiation, heat conduction, etc. ADT is the
atomic mass number of the DT mixture, NA the Avogadro’s
number, and n = nD + nT the total number density of the
ions. This threshold depends on the ratio of D to T (d ≡
nD/nT), nuclear reactivity 〈σv〉DT, and fuel temperature. In
high-density hot DT fuel, the matter energy dominates over the
radiation energy. For simplicity, the radiation term on the hot
spot is ignored throughout the analysis. In this work we focus
on d = 1 and fα = 1, which correspond to the most optimum
condition for ignition. For a temperature range of 3–6 keV,
using a power law approximation 〈σv〉DT ∼ T 4, the ignition
condition reduces to (ρR)hs � 4κ(T/keV)−2.5 g/cm2, where
κ = 3.776/fT is a numerical constant. A detailed analysis of
this ignition criterion will be presented in a separate paper.
The goal of this Rapid Communication is to find the minimum
implosion energy necessary for the hot DT fuel to achieve
ignition.

Implosion delivers the required energy to the system. For
a short-pulse radiation-driven system, such as NIF, we can
assume that the maximum implosion energy is achieved at
the peak implosion velocity time and equals the peak pusher
kinetic energy. We now introduce a physics model for a typical
capsule consisting of a “pusher” and hot DT fuel. The pusher
here represents the sum of the remaining ablator and the cold
DT fuel. Applying the energy conservation law to the capsule
at the Vimp time and assuming that all the implosion energy

ρp and ρhs are the mass density of the pusher and the hot spot at
the interface, respectively. If the interface between the hot spot and
pusher is not sharp, the tamping factor is decreased. The NIC burn
width data suggest fT ∼ 1.8–2.0 for NIC capsules.
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is converted into the internal energy of the capsule at ignition
time,

1
2ηMpV 2

imp = εpMp + εhsMhs, (2)

where Mp and Mhs are the masses of the pusher and hot spot,
respectively, εp (εhs) the specific internal energy of the pusher
(hot spot DT), and η � 1 a coefficient accounting for the
possible energy losses from the system during the implosion
process, for example, rotational energy of the shell, etc. We
assume a gamma law for cold DT, P/P0 = (ρ/ρ0)γp and

εp = ε0(P/P0)
γp−1
γp , where P0, ρ0, and ε0 are, respectively,

the pressure, mass density, and specific internal energy of
the pusher at the peak implosion time, and γp the adiabat
index of the pusher. For hot DT fuel, P = 2ρhsRT/ADT,
εhs = 2RT/[ADT(γg − 1)], where R is the gas constant and
γg the adiabat index of the hot DT. Assuming the fuel and
pusher are in pressure equilibrium at the stagnation time, from
Eq. (1) the mass of the pusher can be expressed in terms of the
fuel pressure

Mp =
4π
3 (ρhsRhs)3εhs

( 2NAkT
ADTP0

)2

[
ηV 2

imp

/
2 − ε0(P/P0)

γp−1
γp

]
(P/P0)2

. (3)

This parameter is critical in capsule design because of the dual
roles of the pusher, which not only delivers the total energy
to the system through its kinetic energy, but also is a sink,
sharing the energy with the hot fuel through its internal energy.
Thus, for a given implosion velocity, and for now disregarding
instabilities in the ICF capsule, there is an optimum balance
between the pusher energy and the hot fuel energy or the mass
ratio of the cold fuel to the hot spot. Applying the least-energy
principle, and minimizing the mass of the pusher for given Vimp

with respect to the fuel pressure for fixed ignition condition
(1), yields

P

P0
=

[
γp

(3γp − 1)ε0
ηV 2

imp

] γp

γp−1

, (4)

which shows the dependence and sensitivity of the hot fuel
pressure on implosion velocity and the equation of state
(EOS) of the pusher. Taking γp = 3, Eq. (4) recovers the
scaling law P ∝ V 3

imp demonstrated in the code simulations
and adopted in the ITF.2 If we take γp = 5/3, as in an ideal
gas, Eq. (4) produces a scaling law P ∝ V 5

imp. Physically, at the
same compression, a gas with γp = 3 would result in higher
pressures compared with γp = 5/3 because γp ∝ ln P/ ln ρ.
Figure 1 shows the two scaling laws plotted against the NIC
data. Our scaling law fits the data better (in curvature) than does
the current scaling law. We can evaluate the model against the
NIC experimental data by first using scaling law (4) to derive
the following physical quantities: (1) mass ratio Mhs/Mp,
(2) areal density ratios (ρR)hs/(ρR)p and (ρR)hs/(ρR)tot,
(3) volume ratio Vhs/Vp, (4) aspect ratio �p/Rhs, (5) energy
ratios Ehs/Ep and Ehs/Etot, (6) mass density ratio ρhs/ρp,
(7) hot spot pressure Phs, and (8) neutron yield. These

2Note that the code calculations did not actually use γp = 3, how-
ever, this analysis shows that the results from the code calculations
are consistent with the results setting γp = 3 in this model.
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FIG. 1. (Color online) The observed NIC data plotted against
scaling laws P ∝ V 3

imp and P ∝ V 5
imp, respectively. The top right data

point is from shot No. N110914.

quantities are obtained in terms of measurable parameters as
follows:

Mhs

Mp

= (γp − 1)ηV 2
imp

(3γp − 1)2εhs
, (5)

(ρR)hs

(ρR)p
=

[(
1+ 2γp

γg − 1

)1/3

+
(

1 + 2γp

γg − 1

)2/3

+1

]
Mhs

Mp

,

(6)

(ρR)hs

(ρR)tot
= (ρR)hs/(ρR)p

1 + (ρR)hs/(ρR)p
, (7)

Vhs

Vp

= γg − 1

2γp

,
�p

Rhs
=

[
1 + 2γp

γg − 1

]1/3

− 1, (8)

Ehs

Ep

= γp − 1

2γp

,
Ehs

Etot
= γp − 1

3γp − 1
, (9)

ρhs

ρp

= 2γp

(γg − 1)

Mhs

Mp

= [(1 + �p/Rhs)
3 − 1]

Mhs

Mp

, (10)

Phs = 2
(ρR)hsRT

ADTRhs
, (11)

Yn = 2.27 × 104 fT

2

(γp − 1)(γg − 1)

(3γp − 1)
√

γg

MpηV 2
impT

2.5(ρR)hs,

(12)

where Mp is in g, Vimp in km/s, and T in keV. The aspect ratio
of the capsules was directly measured [3] and can be used to
estimate the ratio of the hot fuel energy to the total implosion
energy,

Ehs

Etot
= (γg − 1)[(1 + �p/Rhs)3 − 1]/2 − 1

3(γg − 1)[(1 + �p/Rhs)3 − 1]/2 − 1
,

and a range for the adiabat index of the pusher in the
experiments,

γp = (γg − 1)

2
[(1 + �p/Rhs)

3 − 1].
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TABLE I. Comparison among theory, data, and simulations. In the table, ν ≡ ηADTV 2
imp/2RT .

Theory
Codes

Adiabat index γp = 4/3 γp = 5/3 γp = 3 NIC data α ≈ 1.65

�p/Rhs 0.71 0.816 1.153 0.66–0.85 1.1–1.2
Ehs/Ep 1/8 1/5 1/3 0.15–0.2 0.4–0.6
Ehs/Etot 1/9 1/6 1/4 0.12 0.3
Vhs/Vp 1/4 1/5 1/9 0.215 0.11
Mhs/Mp ν/27 ν/18 ν/12 0.025 0.082
(ρR)hs/(ρR)p 0.21ν 0.34ν 0.65ν 0.29
ρhs/ρp 0.148ν 0.28ν 0.75ν

(ρR)tot/(ρR)hs 4.76/ν + 1 2.94/ν + 1 1.54/ν + 1

As shown above, the mass and areal density ratios of the hot
spot to the pusher and the hot spot pressure are determined
not only by the implosion velocity but also by the EOSs of the
cold and hot fuel. But the volume, energy, and aspect ratios
are purely determined by the EOSs of the cold and hot DT.
Table I compares the model predictions using γg = 5/3 at three
different values of γp with both NIC data and simulations. The
analytical model is consistent with the experimental data when
γp values of 4/3–5/3 are used and agree with the numerical
simulations at γp 
 3. This implies that at the peak implosion
velocity time, the pushers in the NIC capsules may have
actually been shocked or preheated to a higher entropy adiabat
than expected. For a more detailed comparison, we take shot
No. N120321 [3,4] as an example. In N120321, Ti 
 3.06 keV,
Vimp 
 315 km/s, and ν = 0.42 for η = 1. Table II compares
the model predictions of the various physical quantities with
the experimental data and postshot simulations for N120321.
Comparisons show that the model predictions agree with the
N120321 data at γp = 4/3 and the simulations at γp = 3.
Furthermore, as shown in Fig. 2, plotting the ratios of mass,
volume, and energy versus the aspect ratio of the capsule in
the NIC experiments, the model with a high-entropy pusher
adiabat (γp 
 4/3–5/3) again consistently agrees with the NIC
data while the model with a low-entropy adiabat (γp 
 2–3)
better fits the code calculations.

From Eqs. (3) and (4), we obtain the minimum required
implosion energy for a given implosion velocity,

Emin = 4π

3
(ρhsRhs)

3εhs

(
2NAkTign

ADTP0

)2(3γp − 1

γp − 1

)

×
(

ηγp/ε0

3γp − 1

)− 2γp

γp−1

V
− 4γp

γp−1
imp , (13)

where Tign is the ignition temperature specified by Eq. (1). For
γp = 3, Emin ∝ V −6

imp, which is the scaling law demonstrated
in the simulations and adopted in the ITF formulation [1].
If γp = 5/3, scaling law becomes Emin ∝ V −10

imp . Within the
framework of this model, this implies that a tiny change of
implosion velocity would require the implosion energy Emin

for γp = 5/3 to change more rapidly than that for γp = 3.
In other words, our derived minimum implosion energy for
ignition is significantly sensitive to both the pusher EOS and
the implosion velocity. The experimental data also suggest
that the required minimum implosion energy is more sensitive
to the implosion velocity than the ITF suggests.

To achieve ignition, the implosion energy must satisfy both
conditions ηMpV 2

imp/2 � Emin and (ρR)hs � 4κT −2.5. This
generates the required condition for the implosion energy and
the energy-scaling law, ITF. However, in practice, instabilities
developed from implosion asymmetry and the roughness of

TABLE II. Comparison among theory, data, and simulations for shot No. N120321. In the table, DSR ≡ (ρR)tot/21 is the neutron
downscattered ratio. A comparison shows that the model predictions agree with the N120321 data at γp = 4/3.

Theory
Codes

Adiabat index γp = 4/3 γp = 5/3 γp = 3 N120321 data α ≈ 1.65

Ehs/Ep 0.125 0.2 0.333 0.18 0.55
Ehs/Etot 0.11 0.167 0.25 0.10 0.30
�p/Rhs 0.71 0.816 1.153 0.72 1.18
Vhs/Vp 0.25 0.2 0.11
Mhs/Mp 0.027 0.041 0.063 0.025 0.081
(ρR)hs/(ρR)p 0.158 0.255 0.49 0.282
(ρR)hs/(ρR)tot 0.136 0.20 0.328 0.055 0.272
ρhs/ρp 0.115 0.218 0.58 0.19
DSR 0.0614 0.0614 0.0614 0.062 58 0.0622
Phs (Gbar) 107 165 283 110 256
Yn (1014) 4.36 10.15 26 4.16 24
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FIG. 2. (Color online) Comparison among theory, experimental
data, and code simulations. The x axis is the aspect ratio of the
capsule at the ignition time. The NIC data agree with the theory
at a high-entropy adiabat of the pusher, while the code calculations
correspond to a low-entropy adiabat of the pusher.

the interface between the cold and hot DT gas would lead to
mixing of the cold and hot DT, which results in a smaller
hot DT core with a transition region—a mixing layer at
a temperature T ∗ (Tp < T ∗ < Thc) with a mass density ρ∗
(ρhc < ρ∗ < ρp). Thus, (ρR)hs = (ρR)hc + ρ∗h, where the
subscript “hc” denotes hot core and h the mixing width that
is a function of the convergence ratio [5]. Hence, 1/(ρR)hs ≈
(1 − ρ∗h

(ρR)hc
)/(ρR)hc. Thus, the analytic expression for the ITF

becomes

ITF = 3Mpusher

8πψ(Tign)

(
1 − ρ∗

ρhc

h

Rhc

)3(3γp − 1

γp − 1

)−1

×
(

3γp − 1

γp/ε0

)− 2γp

γp−1

η
3γp−1
γp−1 V

6γp−2
γp−1

imp , (14)

where

ψ(Tign) ≡
[

κ(1 + d)2

Tign(keV)2.5d

]3

εhs

(
2NAkTign

ADTP0

)2

.

The ITF must be greater than 1 to achieve ignition at NIF.
The ITF derived here is from first principles and inde-

pendent of any computational models. The advantage of an
analytic expression over code simulations is that the analytic
expression clearly displays the unique correlations among the

design parameters in layers. The codes, however, cannot sepa-
rate the physics impacts from the various parameters in a clear
manner, although more physics and more nonlinear interrela-
tionships may be included as compared to the analytic model.
Our ITF is fundamentally different from the computationally
based ITF. First, the temperature dependence of our derived
ITF presents a more stringent condition for ignition than the
current ITF, which does not take into account the ignition tem-
perature of the hot fuel explicitly. Second, our ITF shows that
ignition is much more sensitive to the peak implosion velocity
and the pusher EOS than previously thought. For example,
if the peak implosion velocity misses the required velocity
threshold by 10%, then our ITF would drop 72% for γp 
 5/3
and 85% for γp 
 4/3, while the old ITF would only drop
57%. Also varying the pusher EOS from γp ≈ 3 to γp ≈ 5/3,

alone, causes the ITF to fall at least a factor of 6. This implies
that if the simulations correspond to a low-entropy adiabat of
the pusher (e.g., γp = 3), then the calculated ITF would be at
least six times the real ITF value in the experiments.

The stiffer behavior of the pusher in the simulations can be
attributed to at least two sources: (1) a poor understanding
of opacity and heat conduction in the cold DT [6], and
inaccuracies in the cold DT EOS used in the codes and
(2) the unmodeled presence of unexpected preheat or shock
and reflected shocks in the pusher, possible chaotic mixing
between cold and hot DT, and plasma effects [7]. Both sources
would significantly alter the energy partition between the
pusher and hot spot. This study suggests that a cold pusher
with a high adiabat index and a hot spot with a low adiabat
index would dramatically enhance the energy, mass, areal
density, and pressure of the hot spot relative to the pusher and
lead to higher thermonuclear reactivity. Certainly, implosion
asymmetry [8] and the inevitable growth of instabilities at the
interface between the pusher and the hot spot impose another
challenge to the ignition, However, one key point we would
like to make here is that for the current NIF capsule design,
even if a perfect symmetry is maintained during implosion and
even if all the NIF scaling laws and TN criterion are satisfied,
the distance to achieving ignition at NIF still remains.

The authors are grateful to D. Clark, C. Cerjan, S. Haan,
J. Nuckolls, and the LLNL NIC Team for valuable comments
and sharing data and calculations, to J. Mercer-Smith for
useful discussions, and to C. S. Carmer for help with the
manuscript. This work was performed under the auspices of
the US Department of Energy by the Los Alamos National
Laboratory under Contract No. W-7405-ENG-36.

[1] S. W. Haan et al., Phys. Plasmas 18, 051001 (2011).
[2] W. K. Levedahl and J. D. Lindl, Nucl. Fusion 34, 191 (1997);

M. M. Basko and J. Johner, ibid. 38, 1779 (1998); M. C.
Herrmann, M. Tabak, and J. D. Lindl, ibid. 41, 99 (2001);
D. S. Clark, S. W. Hann, and J. D. Salmonson, Phys. Plasmas
15, 056305 (2008); J. Meyer-Ter-Vehn, Nucl. Fusion 22, 561
(1982); A. Kemp, J. Meyer-ter-Vehn, and S. Atzeni, Phys. Rev.
Lett. 86, 3336 (2001); M. M. Basko and J. Meyer-ter-Vehn, ibid.
88, 244502 (2002).

[3] C. Cerjan (private communication); C. Cerjan, P. T. Springer,
and S. M. Sepke, Phys. Plasmas 20, 056319 (2013).

[4] D. Clark et al., Phys. Plasmas 20, 056318 (2013).
[5] K. O. Mikaelian, Phys. Rev. A 42, 3400 (1990).
[6] D. E. Hanson et al., Phys. Plasmas 18, 082704 (2011); C. E.

Starrett et al., ibid. 19, 102709 (2012).
[7] P. C. Amendt et al. (private communication).
[8] R. H. H. Scott et al., Phys. Rev. Lett. 110, 075001

(2013).

041101-4

http://dx.doi.org/10.1063/1.3592169
http://dx.doi.org/10.1088/0029-5515/38/12/304
http://dx.doi.org/10.1088/0029-5515/41/1/308
http://dx.doi.org/10.1063/1.2890123
http://dx.doi.org/10.1063/1.2890123
http://dx.doi.org/10.1088/0029-5515/22/4/010
http://dx.doi.org/10.1088/0029-5515/22/4/010
http://dx.doi.org/10.1103/PhysRevLett.86.3336
http://dx.doi.org/10.1103/PhysRevLett.86.3336
http://dx.doi.org/10.1103/PhysRevLett.88.244502
http://dx.doi.org/10.1103/PhysRevLett.88.244502
http://dx.doi.org/10.1063/1.4802196
http://dx.doi.org/10.1063/1.4802194
http://dx.doi.org/10.1103/PhysRevA.42.3400
http://dx.doi.org/10.1063/1.3619811
http://dx.doi.org/10.1063/1.4764937
http://dx.doi.org/10.1103/PhysRevLett.110.075001
http://dx.doi.org/10.1103/PhysRevLett.110.075001



