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Supratransmission induced by waves collisions in a discrete electrical lattice
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We numerically performed a way to produce a supratransmission phenomenon in the Salerno equation
describing the dynamics of modulated waves in a discrete nonlinear transmission lattice. For the natural
supratransmission phenomenon, there exists a threshold of amplitude for which energy can flow in the line.
We show that gap transmission is possible with driven amplitude below the threshold due to the collision of
different plane waves coming from both edges of the line. One of the two plane waves has a frequency in the
forbidden gap, and another has a frequency in the allowed phonon band. During collision, the wave in the allowed
band is considered as a perturbation of the ones in the forbidden gap.
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I. INTRODUCTION

Energy excitation with a driving frequency in the allowed
band of the discrete system propagates through the chain natu-
rally because of the system’s dispersion relation. On the other
hand, a plane wave scattered onto the chain by the periodic
driving force with the frequency, which falls in the system’s
band gap, becomes evanescent. Recently, Geniet and Leon [1]
discovered that, by harmonically and continuously driving one
end of the lattice with frequencies within a band gap and
amplitude above a defined driving threshold, a sudden energy
flow takes place. This universal phenomenon, called nonlinear
supratransmission by the authors, has been shown to be present
in different models, such as mechanical systems of oscillators
[2,3], superconductors [4], a birefringent quadratic medium
[5], Josephson junction parallel arrays [2,6], the Fermi-Pasta-
Ulam model [7], coupled optical waveguide arrays [8–10], and
a discrete electrical transmission line [11,12]. The common
result of all these studies is a simple and explicit expres-
sion for the threshold intensity above which transmission
occurs.

In addition to these studies, certain authors have generated
a gap transmission taking a driving amplitude that is not
supposed to allow any information transmission and that shows
that transmission is possible either by adding noise on the
driving source [13] or by adding impurity in the line [14]. All
these studies have been performed by harmonically driving
one end of the lattice. Therefore, it seems natural to see what
happens when the other edge of the lattice is also excited.
Otherwise, supratransmission occurs due to an instability in
the plane wave [15]; the collision of the plane waves induces
an instability in the waves [16]. Can the collision of waves
create gap transmission? The answer to this question is the
aim of the present Rapid Communication.

The outline of this Rapid Communication is the following:
In Sec. II, we first present a mathematical model and the
nonlinear Salerno equation governing the modulated waves of
this model. In Sec. III, we perform our method by integrating
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the full Salerno equation irradiating at the two edges. Finally,
in Sec. IV, the present Rapid Communication is concluded.

II. MODEL DESCRIPTION

The lattice shown in Fig. 1 is a schematic of the boundary
driven bi-inductance dispersive nonlinear transmission line
under investigation. Both ends of the electrical lattice (n = 0
and n = N ), respectively, have been submitted to a periodic
driving source VL(t) and VR(t) with constant amplitude and
frequency slightly above the cutoff frequency. For n ∈ [1; N ],
the line can be considered as a set of elementary cells where
each cell contains a series of linear inductance L1 and a linear
inductance L2 in parallel with the nonlinear capacitor C(Vn).

Applying Kirchhoff’s laws and charge relationship in a
varicap diode [17], we obtain the following system of nonlinear
equations:

A
∂2

∂t2
ln

(
1 + Vn

A

)
= u2

0(Vn+1 + Vn−1 − 2Vn) − ω2
0Vn, (1)

with u2
0 = 1

L1C0
, ω2

0 = 1
L2C0

, A = 4.9 V, and C0 = 470 pF.
Linearizing Eq. (1) with respect to Vn and assuming a

sinusoidal wave in which Vn is proportional to exp[i(kn −
ωt)], where ω and k, respectively, are the angular frequency
and wave number, we derive the phonon spectrum given by
the following linear dispersion law:

ω2 = ω2
0 + 4u2

0 sin2 k

2
. (2)

The above relation admits a lower cutoff mode frequency ω =
ω0 at k = 0 and an upper frequency ω = ωmax =

√
(ω2

0 + 4u2
0)

at k = π. ωmax is a consequence of the discretization of the
lattice, this means that it does not exist in the continuum limit.
ω0 is due to the presence of L2, the inductance in parallel.

As depicted in Fig. 2, the linear dispersion relation has two
forbidden band gaps (shaded areas), which will be the subject
of special interest in the following.

We now turn our attention to the nonlinear behavior of
the lattice and seek nonlinear modulated waves. In order to
fully take into account the lattice discreteness, we assume
that the gap angular frequency ω0 is large with respect to the
other frequencies of the system. Applying the rotating wave
approximation, we then restrict our analysis to slow temporal
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FIG. 1. Schematic of the boundary driven dispersive nonlinear transmission line. The left and right boundaries are connected to different
voltages VL(t) and VR(t).

variations of the envelope and look for a solution to Eq. (1) in
the form

Vn(t) = ψne
−i(ωt−kn) + c.c., (3)

where c.c. stands for complex conjugate. Following the same
approximation as in Refs. [18,19], we obtain the nonlinear
Salerno equation,

i
dφn

dτ
+ (1 + μ|φn|2)(φn+1e

ik + φn−1e
−ik) − ν|φn|2φn = 0,

(4)

with ψn = φn exp[iτ (ω2 − ω2
0 − 2u2

0)/u2
0], τ = u2

0t/2ω, μ ≡
1
A2 , ν ≡ 2ω2+ω2

0+2u2
0

u2
0A

2 , and n ∈ [1; N [. ν and μ, respectively, are

the nonlinear cubic and nonlinear dispersion coefficients.
It is well established [12] that the supratransmission

phenomenon does not exist in the lower forbidden band. Here,
we will pay attention to the carrier wave in the upper forbidden
gap; the equation governed by this mode is

i
dφn

dτ
− (1 + μ|φn|2)(φn+1 + φn−1) − ν1|φn|2φn = 0, (5)

with ν1 ≡ 2ω2
max+ω2

0+2u2
0

u2
0A

2 . Contrary to the natural supratransmis-

sion phenomenon where one end of the line is driving, Eq. (5)
will be driven at two ends. The left and right edges will be

FIG. 2. (Color online) Curve of the linear dispersion relation. The
forbidden band gaps correspond to the shaded areas of the figure. The
characteristic frequencies of the network are u0 = 1.768 × 106 and
ω0 = 2.127 × 106 rad/s.

driven with the respective boundary condition,

φ0 = BLe−iϑLτ , φN+1 = BRe−iϑRτ , (6)

where BL (BR) is a driving amplitude and ϑL (ϑR) is a
dimensionless frequency of the left (right) edge. When the
driving voltage is applied at the end of the lattice, the real
frequency is modified; by considering that, at site n, the
dimensionless frequency is ϑ , the real frequency in the upper
forbidden band is


 = ωmax + u2
0

2ωmax
(ϑ − 2). (7)

The real frequency 
 is within the upper forbidden gap of
the dispersion curve if ϑ > 2 and is in the allowed phonon band
for 2 − 2ωmax(ωmax−ω0

u2
0

) < ϑ < 2. In the linear approximation,

the wave with frequency 
1 can propagate in the lattice if ω0 <


1 < ωmax; otherwise, they decay exponentially. Without the
dimensional frequency (ϑL = ϑR = 0), the real frequency is
within the allowed phonon band, and the boundary data are
similar to those used to produce bistability in the nonlinear
waveguide array [20]. There exists an amplitude threshold
above which the energy supratransmission occurs for the
Salerno equation. This threshold was first given by Togueu
Motcheyo et al. [12],

Bthr =
√

ϑ − 2
ν1
2 + 8μ−ϑμ

6

. (8)

Up to now, we know that the wave with an amplitude above
this threshold can give rise to energy supratransmission in
the lattice. Can the driving amplitude with a value below
the threshold produce supratransmission phenomena in the
forbidden band gap? The answer to this question will be found
numerically in the next section.

III. NUMERICAL EXPERIMENT

In this section, the numerical study will be performed
by using a set of boundary conditions given by (6). These
conditions are different from Khomeriki’s [8] ones where
one end of the lattice (left) is driven with a periodic driving
function and the other (right) is submitted to a dissipation for
reduced edge reflection. The common element here is that the
external driving amplitude B is given gradually from zero to
its maximum value so as to avoid initial shock. Taking the
dimensionless frequency ϑL = 2.06, the real frequency 
 is
within the upper forbidden band; from (8), we deduced the
threshold of the amplitude given by Bthr = 0.33. For the natural
supratransmission, every amplitude below this threshold only
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FIG. 3. (Color online) Typical numerical simulation of (5) sub-
mitted to boundary conditions (6).

excites several neighboring sites. In the allowed phonon band,
any driving amplitude B will excite all the sites.

As follows from Fig. 3, when one boundary (left hand) of the
lattice is driven with a dimensionless frequency (ϑL = 2.06)
in the forbidden band, the amplitude (BL = 0.3 < Bthr) below
the threshold and the other boundary (right) is driven with
the dimensionless frequency in the allowed phonon band,
an energy flows in the lattice as if the driving amplitude
(BL) had been taken above the threshold. The plane wave
in the allowed band and the other wave in the gap are moving in
the opposite direction. As the wave in the gap has an amplitude
below the threshold, it cannot excite several neighboring sites;
the wave in the phonon allowed band moves to the left edge and
collides. The collision is inelastic: as the two waves are moving
in opposite directions, at the collision time, the amplitude in-
creases (see Ref. [21] for details on the collision) and becomes
above the threshold so supratransmission phenomenon takes
place. This is our main result.

FIG. 4. (Color online) Typical numerical simulation of (5) sub-
mitted to boundary conditions (6).

FIG. 5. (Color online) Typical numerical simulation of (5) sub-
mitted to boundary conditions (6).

Here, BL is higher than BR and is near the threshold. What
happens if we keep the same frequency of the two waves but
permute the amplitudes (BL = 0.07, BR = 0.3)?

In Fig. 4, we observe that the form of the plane wave in
the allowed band dominates over the wave in the gap. This
fact implies that, as the plane wave in the gap has a small
amplitude, it is considered to be a perturbation of the wave
in the phonon band. For Fig. 3, this result allows concluding
that the plane wave (small driving amplitude) in the allowed
band is the perturbation of the wave in the band gap, which
undergoes an increase in amplitude causing the supratrans-
mission. Contrary to Ref. [14] where the transmission in the
gap is created from a resonant localized wave induced by an
impurity, here, the gap transmission is due to the collision of
the two waves.

The sum of BL and BR in Figs. 3 and 4 is above the threshold
Bthr. Can the phenomenon occur when this sum is below Bthr?
The time evolution of the Salerno equation driven at two edges,
depicted in Figs. 5 and 6, shows the rapid decay of the wave

FIG. 6. (Color online) Typical numerical simulation of (5) sub-
mitted to boundary conditions (6).
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for a couple of driving amplitudes BL = 0.3, BR = 0.01 (sum
below the threshold) and BL = 0.3, BR = 0.03 (limit case for
the classical gap transmission). This fact proves that, to achieve
a supratransmission, the sum of the driving amplitudes will be
above the threshold.

IV. CONCLUSION

To summarize, we offered, numerically, a way to create
supratransmission in the upper forbidden gap in a discrete
transmission line. We found that energy suddenly flows though

the lattice for the harmonic driving amplitude below the
maximum amplitude. This observation, which is contrary to
the natural supratransmission, arises due to the collision of the
plane waves coming from two edges of the line. One end of the
line is submitted to monochromatic irradiation at a frequency
in the gap and the other end of the line at a frequency in
the allowed phonon band. The gap transmission is possible
if the sum of two driving amplitudes exceeds the maximum
amplitude; otherwise, the amplitude vanished. The explicit
demonstration of this way is an open problem and would be a
natural extension of this Rapid Communication.
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