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Energy landscape and dynamics of proteins: An exact analysis of a simplified lattice model
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We present the results of exact numerical studies of the energy landscape and the dynamics of a 12-monomer
chain with contact interactions encoding the ground state on a square lattice. In spite of its simplicity, the model
is shown to exhibit behavior at odds with the standard picture of proteins.
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Proteins are amazing molecular machines and serve as the
workhorses of living cells. In spite of their simple linear
chain topology, the development of a theoretical framework
for understanding proteins is a daunting challenge; this is
because of the distinct chemistries and geometries of the side
chains of naturally occurring amino acids and the essential role
played by the solvent molecules within the cell. Tremendous
progress has been made in recent years through borrowing
simple concepts and techniques from physics. In particular,
ideas from the spin glass field, such as the principle of minimal
frustration [1] and the principle of maximum compatibility,
as exemplified by the highly studied Go model [2], have
resulted in a framework for describing the folding landscape
of a protein [3,4]. Also, the concept of a two-state system
(corresponding to folded and unfolded conformations; the
simplest fast folding proteins are often found to be unfolded
or folded and rarely in a partially folded state) along with a
transition state between them has proven to be useful as a
guide to experiments and their theoretical interpretation [5–9].
Finally, from a computational point of view, exact studies
of simple lattice models of proteins [10–15] have yielded
invaluable insights.

Here we report the results of exact thermodynamic and
dynamical analyses of a Go model on a lattice and show,
quite surprisingly, that its behavior is very different from the
standard picture of proteins. The dynamics of folding follows
the treatment of Cieplak et al. [16] (see also [17,18]) and is
coupled with an exact analysis of the conformational space
describing the energy landscape. Our results suggest one of
two possibilities. One scenario is that our findings regarding
the nature of the energy landscape and the dynamics within
it change dramatically on considering more complex models,
leading to the emergence of the expected folding funnel and
two-state behavior. The more likely scenario is that it may
be much too simplistic to interpret experimental results using
the prevailing paradigms based on the concepts of the folding
landscape and the transition state theory.

The system studied is a lattice polymer defined in Fig. 1 on
a square lattice. It has contact interactions with energy of −1
between certain pairs of beads when they are neighbors. We
consider a Go-like model in which just six pairs of beads, 1–8,
2–7, 3–6, 5–12, 6–11, and 7–10, are attractive and all other
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interactions corresponding to non-native contacts are absent.
Such an artificial contact Hamiltonian that encodes the desired
native state is meant to be a caricature of the extreme limiting
case of minimal frustration, which is then supposed to lead to
a folding funnel and ideal two-state behaviors.

The ground state is nondegenerate, has an energy of −6,
corresponding to all native contacts being formed, and is
an S-shaped 3 × 2 conformation denoted as NAT in Fig. 1.
Following Chan and Dill [11], the possible kinetic moves
involve jumps in the orientation of the terminal bonds, kink
switches (diagonal moves of a bead connected by two bonds
that are set at a right angle), and two-bead crankshaft turns (a
mirror-like reflection of the U-shaped pieces of the chain). The
attempt rate for the latter is taken to be four times as big as
the attempt rate for the single-bead moves [13]. In addition to
NAT, there are 15 036 other conformations. Five of these are
simple energy minima. The lowest among them are denoted
by A and B; they correspond to an energy of −4 and are also
maximally compact. Getting out of these states by means of the
allowed moves requires input of energy to break one or more
of the bonds. There are also a number of extended minima.
These are sets of states: the states within a set are accessible
to each other without any change in energy, but getting to any
other conformation necessarily requires a supply of energy.
The lowest extended minima are denoted C and D.

The exact time evolution of the system is governed by the
master equation [19]

dPα

dt
= −

∑
β

MαβPβ, (1)

where Pα = Pα(t) is the probability of finding the sequence in
conformation α, of energy Eα , at time t . The matrix elements
of M are given by

Mαβ = −wαβ � 0 if α �= β, Mαα =
∑
β �=α

wβα, (2)

where wαβ = w(β → α) is the transition rate from conforma-
tion β to conformation α. We take wαβ = w

(1)
αβ + w

(2)
αβ , where

w
(σ )
αβ = 1

τ
Rσ

[
1 + exp

(
Eα − Eβ

T

)]−1

, (3)

with R1 = 0.2 and R2 = 0.8. Here, σ refers to the single- and
double-monomer moves, and τ is a microscopic time scale. If
there is no move of type σ linking β with α, then w

(σ )
αβ = 0. This

form of wα,β guarantees that P
eq
α ∼ e−Eα/T is a steady-state
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FIG. 1. The energy landscape of the system. The solid circles
indicate the energies of the local energy minima. The conformations
of the three lowest minima, states NAT, A, and B, are shown next to the
circles. The open n-gons correspond to extended minima comprising
n conformations. In particular, the horizontal bars indicate extended
minima of two conformations. C and D denote two of these with the
lowest energy. There are 375 transition states between NAT and state
B. They have an energy of −2. Two of these, which are key transit
conformations during folding, are shown at the top. The numbers of
states at a given energy, n(E), are indicated at the very right. They
can be used to determine the free energy F (E) of the system. At Tf ,
F (E) has a local maximum at E = −4.

solution of the master equation corresponding to equilibrium
at temperature T .

The master equation can be solved by bringing it into a
matrix form by introducing �P = (P1, . . . ,PN ), where N de-
notes the total number of conformations. The time dependence
of vector �P (t) at time t = nτ can be obtained by applying
n times the recursion �P [(n + 1)τ ] = (1 + M̂τ ) �P (nτ ) to �Pin

describing the initial state of the system. In order to generate
folding conditions we consider the native state, denoted as
NAT, to be a sink for the probability distribution [19,20]. This
can be accomplished by allowing for transitions that lead to
state NAT and disallowing all those which lead out of state
NAT, i.e., Mβ,NAT = 0 for each β. The unfolding conditions
are created when all open conformations, i.e., with zero energy,
act as probability sinks.

In order to characterize the connectivity of the conforma-
tional space, we first consider a T = 0 quench with NAT acting
as a sink. We place the probability of 1 in one state at a time and
ask how many of the N conformations have a downhill path
leading to specific simple or extended minima. The top panel
of Fig. 2 shows that 94% of conformations have a path to NAT.
However, minimum B is slightly more accessible; 95% of all
states connect to it. The corresponding numbers for states A, C,
and D are 91%, 93%, and 93%, respectively. Another measure
of conformational connectivity is obtained by distributing the
initial probability of 1 evenly across the 11 077 open states
and by monitoring which states accumulate the probability.
The bottom panel of Fig. 2 indicates that NAT accumulates
24% of the probability, minimum B accumulates 23%, but
minimum A accumulates only 0.2%. Thus the probability to

FIG. 2. The top panel shows the fraction f of all starting states
that have a T = 0 path to each of the local or extended minima.
The starting states are considered one at a time. The energies
corresponding to the minima are displaced around the true value to
bring out separation of various minima. The bottom panel considers
a T = 0 steepest descent quench to the energy minima and indicates
the probability P of arriving at a particular minimum. The initial
starting state corresponds to all open conformations (i.e., with no
native contact) being occupied evenly.

arrive at NAT from the open conformations without a need
to overcome any energy barriers is substantial. This kind of
energetic landscape is consistent with the kinetic partitioning
mechanism of protein folding [21–23].

We now consider kinetic processes at the folding temper-
ature Tf , defined as one at which the probability of staying
in the native conformation P0 is equal to 1/2 in equilibrium.
Tf provides a measure of thermodynamic stability, and for
our system it is equal to 0.476 in units of the contact
energy. Figure 3 demonstrates that the system behaves as
a two-state model: all kinetic processes are described by
a simple single exponential function in time. The folding,
unfolding, and relaxation times (tf , tu, and tr , respectively)
are shown in Fig. 3. The relaxation time is defined as the
characteristic time to reach equilibrium and is determined by
not introducing any probability sinks. The two-state condition
that kr = kf + ku, where the k’s denote the rates or inverse
times, is satisfied approximately, again in accord with the
simple transition state picture.

The picture of folding that emerges is not the canonical one
of a transition state separating unfolded conformations and
the native state. Rather, around a quarter of the trajectories
lead directly to NAT in a downhill or flat manner, whereas
the remaining trajectories end up in local or extended energy
minima. Getting out of these minima needs thermal activation,
which is the rate determining step for folding. Figure 2 shows
that minimum B constitutes the most potent trap. Indeed, when
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FIG. 3. Time dependence of P0 at Tf for various processes.
The thick solid line corresponds to folding when NAT acts as the
probability sink. There is no significant difference in the evolution
between the starting state consisting only of the open states or of all
states occupied evenly. The dotted line with the symbol B next to
it corresponds to an evolution which starts in conformation B. The
line with the long dashes corresponds to folding at T = 0. In this
case, only 24.36% of the full probability ends up in the native state.
The thin solid line corresponds to unfolding: all open conformations
act as probability sinks. The other lines correspond to relaxation to
equilibrium: there are no probability sinks, but the starting state is
either NAT (dotted line) or it comprises all open states (the line with
the short dashes). The numbers are the characteristic times as obtained
by making fits to single exponentials. Their inverses give the rates of
folding, unfolding, and relaxation. The two relaxation processes have
almost the same time constants.

one starts the evolution in state B, the characteristic folding
time is only some 50τ longer than tf derived by starting
from the unfolded state. Note that any path from B to NAT
entails first reducing the number of contacts from four and
then increasing it to six, so the fraction of the native contacts
present does not represent a relevant “reaction coordinate” for
the process.

The transition states of interest are those that separate B
from the native state. We identify 375 such states with energy
of −2 as the lowest energy states from which the T = 0
trajectories end up in either NAT or B. Two of these 375
transition states are shown at the top of Fig. 1. These two are
the most commonly traversed transition states (9.4% and 8.8%)
which can be determined by starting with state B and evolving
the system at Tf with all the transition states acting as sinks.
Among the 375 transition states, there is a total of 61 states
with contacts between pairs 3–6 and 7–10, 157 states with
contacts between pairs 6–11 and 7–10, and another 157 states
with contacts between pairs 2–7 and 3–6. We find that when
one blocks the transition states by raising their energies to high
values, the folding time from the unfolded state increases by
at least an order of magnitude.

Traditionally, the properties of the transition state ensemble
have been inferred experimentally through ϕ-value analysis

[24,25]. The ϕi values for folding are given by

ϕi = δkf

kf

/(
δkf

kf

− δku

ku

)
, (4)

where δkf (δku) denotes the change in the folding (unfolding)
rate when an amino acid at site i along the sequence is mutated.
The common interpretation of the ϕ values is that numbers
close to 1 signify that the site is in a native-like environment
in the transition state(s), whereas numbers close to 0 suggest
a non-native local environment in the transition state.

We carried out a variant of the ϕ-value analysis in our
model by enhancing contact energies associated with bead i

by a small percentage and by determining the impact of this
perturbation on kf and ku [20]. The values of ϕ depend on
whether the folding starts from the open conformations or
from state B, especially for i = 1, for which ϕi is equal either
to 1 or 1

2 , respectively. The values are large for sites 1, 3, and 6
and ϕ = 0 for i = 2. Sites 4 and 5 have no native contacts, and
the values for the other sites are determined from symmetry.
Enhancing the strength of contact 1–8 is observed to make
the folding time longer. This is consistent with the fact that
both state B and the native state contain this contact, whereas
the 375 transition states do not. Thus getting out of state B
requires first breaking contact 1–8 and then reestablishing it in
NAT. Unfolding from NAT is also affected, and the net result
is a nonzero value of ϕ1, as observed. A small enhancement of
the 2–7 contact is observed not to affect the folding time, i.e.,
ϕ2 = 0. This can be understood by noting that the enhancement
affects neither state B nor the 218 transition states, including
the 61 which are visited the most. Enhancing the 3–6 contact
makes folding faster and unfolding slower. This is because
218 transition states incorporate it and so do NAT and B;
native-like arrangements are favored. Thus ϕ3 and ϕ6 should

FIG. 4. A map of the larger net probability fluxes during un-
folding from the native state. The figure is symmetric. The dotted
horizontal lines delineate conformations corresponding to a given
value of energy, as indicated on the left. The directions of the fluxes
are generally upward or sideways in energy and are not indicated
by arrows. Note, however, an anomaly near the top left of an arrow
pointing downward in energy; this arises from the local connections
between conformations and the probability of traversing them at the
folding transition temperature.
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be nonzero, as observed. The values of ϕi are qualitatively
consistent with their expected meaning as a representation
of the native-like local environment in the transition state
ensemble. The important exception is site 1: among the 375
transition states there are no conformations involving contact
1–8. This casts doubt on the correctness of analyses akin
to that presented in Ref. [26] in which the ϕ values were
“interpreted in terms of native-like inter-residue contacts” and
other measures of similarity to NAT.

We now consider the unfolding process from NAT to the
open conformations as described by the total probability fluxes
between conformations when integrated over the whole dura-
tion of the evolution (Fig. 4). The folding process in the vicinity
of NAT is essentially the same but with the directions of the
transitions reversed. The diagram is consistent with the idea
of kinetic partitioning. The central part depicts routes, which
rapidly arrive at states of energy of −2. The side parts of the
diagram correspond to paths, which are less direct. The picture
that emerges shows numerous nearly equivalent pathways.

We have presented a detailed analysis of the energy
landscape and the dynamics of perhaps the simplest and most
widely used model for understanding protein folding. Contrary

to common belief, the energy landscape is not akin to a folding
funnel, the model exhibits kinetic partitioning, the transition
states are between a significant trap and the native state, and
the ϕ values do not simply reflect the commonality of contacts
between the transition state and the native state, but rather are
a sensitive function of the trap state(s), the native state, and the
ensemble of transition states. We note that while our analysis
is exact, the model is necessarily exceedingly simple. It is
short, two-dimensional, and on a lattice. One would expect
that for more realistic models, the landscape and the dynamics
would, if anything, be much more complex and harder to
interpret. It is possible that going to three-dimensional models
can expand the role of the kinetic partitioning linked to the
native state. Using the master equation for continuum systems
would require some scheme of discretization such as the one
used in Ref. [27].
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