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Optomechanical elastomeric engine
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Nematic elastomers contract along their director when heated or illuminated (in the case of photoelastomers).
We present a conceptual design for an elastomer-based engine to extract mechanical work from heat or light. The
material parameters and the geometry of such an engine are explored, and it is shown that its efficiency can go
up to 20%.
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Efficiently converting solar energy to mechanical or elec-
trical energy is one of the greatest contemporary challenges
in science and technology. In this Rapid Communication
we propose an engine based on liquid crystal elastomers
(LCEs) [1] that extracts mechanical work from heat or light. As
first intimated by de Gennes [2], unusual properties of LCEs
arise from a coupling between the liquid crystalline ordering
of mesogenic molecules and the elasticity of the underlying
polymer network. Various external stimuli, in particular, heat
or light, cause reversible contractions of monodomain LCEs
along their nematic director, with recovery elongations on
stimuli removal. The shape changes of the sample can be
remarkable, up to 350%, and occur in a relatively narrow
temperature interval around the nematic-isotropic transition
temperature [3,4]. The contraction-elongation cycle can be
repeated many times, and can be exploited to construct a
continuously operating engine in which heat or light is used to
produce mechanical work.

Cross-linked networks of polymer chains of an LCE
include mesogenic units that belong to either the polymer
backbone (main-chain LCE) or side units pendent to the
backbone (side-chain LCE) [1]. The shape of a monodomain
nematic LCE strongly depends on the temperature-dependent
nematic order parameter Q(T ), due to the coupling of Q

with the average polymer chain anisotropy. Increasing the
temperature decreases Q, causing a decrease of the polymer
backbone anisotropy, which manifests as a uniaxial contraction
of the sample.

A mechanical change of an LCE can also be achieved by
introducing photoisomerizable dye molecules into its chemical
structure (nematic photoelastomers [5,6]). Upon illumination,
dye molecules can undergo transitions from their linear (trans)
ground state to the excited bent-shaped (cis) state. The rodlike
trans molecules contribute to the overall nematic order, while
the bent cis molecules act as impurities that reduce the nematic
order parameter, in turn leading to a macroscopic contraction.

The operating principle of an LCE engine is shown in
Fig. 1. A closed band of a nematic elastomer of initial length
L0 is stretched and wound around two pulleys of radii R1

and R2 (R2 > R1). Initially, the whole elastomeric band is in
the nematic state at some temperature T1. The transmission
pulleys of equal radii r , rigidly coupled with the main wheels,
are connected by a loop of inextensible string. Obviously, if
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the temperature of the whole system is T1, in the absence
of external forces, the system is at rest. By increasing the
temperature of a part of the elastomer to a value T2, an excess
contractile force, f2 − f1, will occur (see Fig. 1). This force
acts on wheels of radii R1 and R2 and tends to rotate the former
counterclockwise and the latter in a clockwise direction; since
R2 > R1 the wheels will turn clockwise. The rotation brings
a piece of the elastomer initially being at a temperature T1 to
the temperature T2, while an another piece of the elastomer
having a temperature T2 returns to the temperature T1. By
keeping the temperatures T1 and T2 at fixed values, this process
can be reproduced many times, which provides the basis for
a continuous operation of the engine. The engine operation
cycle is reminiscent of an engine based on chemomechanical
conversion [7]. Our stretch engine is quite different from LCE
bend motors [8,9].

Mechanical work can be obtained by applying a suitable
external force fext, for example, by attaching a weight to the
end of a thread wound around a pulley of radius r ′ (see Fig. 1).
During the engine operation, a part of the energy invested
to heat the elastomer to the temperature T2 is converted into
mechanical work. Another way to realize such an engine is
based on the use of photoelastomers. In this case illumination
causes the creation of cis isomers, which in turn can be seen as
a light-dependent increase of the actual temperature T1 to the
new, now effective, value T2 [5]. Our analysis applies to both
thermo- and photoengines.

We shall assume that the elastomer coming in contact with
the wheel of radius R2 changes its temperature from T1 to
T2 before leaving the wheel, and stays at T2 until it hits
the wheel R1. The engine in Fig. 1 requires heating in part
AB (illumination in the case of photoelastomers), while in
CD cooling to T1 should be ensured (relaxation to the dark
state). Parts BC and DA should be also kept at the constant
temperatures T2 and T1, respectively.

In a steady regime, the amount of the elastomer taken on
to the wheel of radius R2 should equal the amount taken on
to the wheel of radius R1, that is, �θR2ρ/λ1 = �θR1ρ/λ2.
Here, ρ is the linear density of the elastomer in the formation
state at temperature T1, �θ denotes the rotation angle of
the wheels, and λ1 and λ2 are the stretches in parts DA
and BC of the engine, respectively (stretches are measured
from the formation state, defined by the initial length L0 and
temperature T1). We assume that the elastomer in contact with
the wheel does not slip, and does not change its length even if
it experiences a change of temperature, i.e., the stretch remains
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FIG. 1. Schematic of an optomechanical LCE engine.

equal to λ1 in part AB, and equal to λ2 in part CD. The above
condition can be rewritten as

γ = R2

R1
= λ1

λ2
� 1, (1)

where the ratio of the wheel radii is denoted by γ .
To avoid slack, the length L0 of the elastomer loop in the

formation state should be smaller than approximately 2L +
π (R1 + R2), where L is the distance BC. Since there is a
stretch λ1 in part DAB of the elastomer and λ2 in its remaining
part BCD, one can write

1

λ1
(L + πR2) + 1

λ2
(L + πR1) = L0. (2)

Relations (1) and (2) allow one to express the stretch λ2 via
reduced lengths L̃ = L/πR1 and L̃0 = L0/πR1,

λ2 = 1

L̃0

[
L̃

(
1 + 1

γ

)
+ 2

]
. (3)

The inextensible inner wire on the wheels of radii r forces the
angular velocities of wheels to be equal (see Fig. 1). When
the engine runs at a constant velocity the net torque acting on
each of the pulleys is zero. Neglecting frictional forces at the
bearings, the balance of torques on wheels of radii R1 and R2

is, respectively,

(f2 − f1)R1 + (f3 − f4)r = 0,
(4)

(f1 − f2)R2 + (f4 − f3)r + fextr
′ = 0,

where f3 and f4 are the forces acting on the wheels of radii r

(Fig. 1). From these two equations we get

Gext ≡ fextr
′ = (f2 − f1) (R2 − R1), (5)

where Gext is the magnitude of the torque of the external force
fext. In what follows we express the forces f1 and f2 in terms
of stretches λ1 and λ2.

Due to the presence of mesogenic molecules, long polymer
chains of nematic elastomers have an anisotropic Gaussian
distribution. The elastic free energy density of a nematic rubber
in response to a deformation λ along the director n can be
written in the form [1]

F = 1

2
μ

(
λ2

�
(1)
‖

�
(2)
‖

+ 2

λ

�
(1)
⊥

�
(2)
⊥

)
, (6)

where μ is the shear modulus in the isotropic state. The Flory
step lengths in directions parallel and perpendicular to the
director n have different values �‖ and �⊥ (the director is along
the long direction of the elastomeric band). We assume that the
elastomer is formed at T1 (corresponding step lengths are �

(1)
‖

and �
(1)
⊥ ), and has current step lengths �

(2)
‖ and �

(2)
⊥ (for example,

at T2). Given that we are concerned only with derivatives of F

with respect to λ, we omitted λ-independent terms in Eq. (6).
As rubber changes shape at a constant volume, the area of the
elastomer perpendicular to the director n changes by a factor
of 1/λ.

The force exerted by an elastomer is proportional to the
derivative of free energy density with respect to stretch, f =
A0(∂F/∂λ)T , where A0 is the area of the cross section of the
elastomer in the formation state. For part DA of the elastomer
one has λ = λ1, �

(2)
‖ = �

(1)
‖ , and �

(2)
⊥ = �

(1)
⊥ , while for part BC

one has λ = λ2, with �
(2)
‖ and �

(2)
⊥ taking values smaller and

larger than �
(1)
‖ and �

(1)
⊥ , respectively (for prolate symmetry

elastomers). Then the forces f1 and f2 are

f1 = μ(T1)A0

(
λ1 − 1

λ2
1

)
,

(7)

f2 = μ(T2)A0

(
λ2P‖ − P⊥

λ2
2

)
,

where the ratios P‖ = �
(1)
‖ /�

(2)
‖ > 1 and P⊥ = �

(1)
⊥ /�

(2)
⊥ < 1

depend on the order parameters Q1 and Q2. Note that a
free elastomer heated from temperature T1 to T2 undergoes
the natural contraction λm = (P⊥/P‖)1/3 along its director
(this relation can be obtained by setting f2 = 0 in the above
equation).

The isotropic moduli appearing in Eqs. (7) are assumed to
be comparable, μ(T1) ≈ μ(T2). On inserting (7) into (5), the
reduced torque G = (f2 − f1)(R2 − R1)/μA0R1 is

G = (γ − 1)

[
λ2(P‖ − γ ) − 1

λ2
2

(
P⊥ − 1

γ 2

)]
. (8)

We compare this torque to that of the reduced torque
Gext/μA0R1 from the external forces. Since the ratio γ of
the wheel radii is greater than 1, then G > 0 if [· · ·] of (8) is
positive. We examine four different cases:

(a) P‖ − γ > 0 and P⊥ − 1/γ 2 > 0, which is equivalent
to P‖ > γ > 1/

√
P⊥, involving a purely material condition

P‖
√

P⊥ > 1. The reduced torque G as a function of λ2 is
shown in Fig. 2(a) for two different temperatures T2 and T ′

2
(T ′

2 < T2). It is easy to see that G vanishes for λ2 = [(P⊥ −
1/γ 2)/(P‖ − γ )]1/3. At point A the torque G is greater than
the reduced torque of external force Gext/μA0R1, and the
engine turns more quickly until it does not have time to heat
to the temperature T2. It only gets to temperature T ′

2 < T2 and
moves on to the T ′

2 curve at point B. This governing of the
delivered torque by the speed of rotation is reminiscent of
an electric motor; rotation-induced back electromotive force
limits current flow and hence limits torque.

(b) P‖ − γ < 0 and P⊥ − 1/γ 2 < 0, which can be ex-
pressed as P‖ < γ < 1/

√
P⊥, and hence P‖

√
P⊥ < 1 is the

material condition. Now G is shown in Fig. 2(b), and stability
analysis is quite similar to that for case (a).

(c) In the case P‖ − γ > 0 and P⊥ − 1/γ 2 < 0, G is always
positive [Fig. 2(c)]. The reduced torque G has a minimum
at λ2 = [(2(1/γ 2 − P⊥)/(P‖ − γ )]1/3, and this minimum de-
creases by lowering the temperature from T2 to T ′

2. Again, if
one starts at point A where G > Gext/μA0R1, the engine will
move to operate at point B.
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FIG. 2. Typical dependence of the reduced torque G on stretch λ2

corresponding to cases (a)–(c) in the main text. The reduced external
torques Gext/μA0R1 are represented by the dashed lines.

(d) If P‖ − γ < 0 and P⊥ − 1/γ 2 > 0, then G < 0; there
are no solutions for Gext > 0. Reversing the external torque,
and cooling rather than heating to T2, reverses the motor and
we have an analogy to case (c).

We adopt a simple freely jointed rod model for the polymer
backbones, with a step length a in the isotropic state. Then
the step lengths are �‖ = a(1 + 2Q) and �⊥ = a(1 − Q), with
the nematic order parameter 0 � Q � 1. Although crude, this
model quite accurately describes a wide range of LCEs [1,10],
and, in particular, the development of photoforce [11].

The material parameters P‖ and P⊥ now read P‖ =
(1 + 2Q1)/(1 + 2Q2) and P⊥ = (1 − Q1)/(1 − Q2), where
Q1 = Q(T1) and Q2 = Q(T2). Then the above material con-
ditions can be expressed in terms of Q1 and Q2. For example,
the condition P‖ > 1/

√
P⊥ of case (a) is g(Q1) > g(Q2),

where g(Q) = 3Q − 4Q3. Since Q1 > Q2, the condition
g(Q1) > g(Q2) is satisfied whenever Q1 � 1/2. Further,
for every Q1 lying in the interval 1/2 < Q1 <

√
3/2, one

can find a threshold value of Q2 below which the con-
dition g(Q1) > g(Q2) holds. Lastly, for Q1 �

√
3/2 the

condition g(Q1) > g(Q2) cannot be satisfied. The material
condition P‖ < 1/

√
P⊥ of (b) is g(Q1) < g(Q2), and corre-

sponding conditions in terms of Q are easily obtained. In
case (c) one has γ < min(P‖,1/

√
P⊥). If the temperature T2

is above the nematic-isotropic transition temperature, one has
Q2 = 0, and consequently P‖ > 1/

√
P⊥ for all Q1 <

√
3/2.

We estimate the efficiency of the engine as η = Pout/Pin,
where Pin is the power needed to heat an incoming element
of the elastomer at temperature T1 to temperature T2, and Pout

is the corresponding power output. The input power can be
expressed as Pin = Cp�T A0(dl0/dt), where dl0 is the length

of a piece of the elastomer in the formation state, currently
stretched by λ1. Here Cp denotes the isobaric heat capacity
per unit volume of the elastomer and �T = T2 − T1. For an
element of the elastomer lying on the wheel of radius R2, one
can write λ1(dl0/dt) = ωR2, where ω is the angular velocity.
The output power is Pout = Gextω. The reduced efficiency,
η̃ = ηCp�T/μ, arises through Eq. (8) and is

η̃ = (γ − 1)

[
λ2

2(P‖ − γ ) −
(

P⊥ − 1

γ 2

)
1

λ2

]
, (9)

where λ2 is given by Eq. (3).
We roughly estimate Cp�T using the latent heat per unit

volume of an idealized, sharp (first-order) nematic-isotropic
transition. Its approximate value is 2 × 106 J m−3 [1]. Since
the isotropic shear modulus is of the order μ ∼ 105–106 J m−3,
then μ/Cp�T can be up to 0.5. For photoelastomers the energy
input Cp�T represents εndye, where ε is the photon energy and
ndye is the number density of dye molecules [12], giving for
μ/εndye an estimate of the same order as that for μ/Cp�T .

As we have seen, when Q2 = 0, the constraint is P‖ > 1/√
P⊥, which restricts us to cases (a) or (c). The efficiency (9)

depends on four dimensionless quantities: the order parameter
Q1 (through P‖ = 1 + 2Q1 and P⊥ = 1 − Q1), the reduced
lengths L̃ and L̃0 (through λ2), and the ratio of the wheel radii
γ . Clearly, the efficiency increases with increasing order Q1.
Regarding the efficiency as a function of L̃0, η̃ takes quite
large values for L̃0 	 1 as well as for L̃0 
 1. Similarly,
the efficiency increases with increasing L̃. The engine can
operate only if certain physical constraints are satisfied,
implying that L̃0 and L̃ are not completely independent of
each other. First, to obtain a contractile force, the stretch
λ2 should be greater than the natural contraction λm of
the freely suspended elastomer, which can be expressed as
γ < L̃/(L̃0λm − L̃ − 2). This condition, together with γ > 1,
implies that L̃0λm/2 − 1 < L̃ < L̃0λm − 2. Besides, since one

FIG. 3. The reduced efficiency η̃ as a function of L̃0 for different
values of Q1 (solid lines). Along the plateau of each of these
curves the optimal values of γ change only slightly, taking the val-
ues γ ≈ 1.22,1.28,1.34,1.40,1.47 for Q1 = 0.3,0.4,0.5,0.6,0.69,
respectively. The dashed lines correspond to L̃0 
 1. The efficiency
η = η̃μ/(εndye) can go up to 20%.
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cannot mechanically contract a thin elastomer below its natural
length, then λ1 > 1. The ratio γ is thus limited from below,
γ > (L̃0 − L̃)/(L̃ + 2). In addition, to avoid slack when the
elastomer is stretched from its formation state and wound
around the pulleys, one has γ > L̃0 − 2L̃ − 1. In summary,

γ > max

(
1,

L̃0 − L̃

L̃ + 2
,L̃0 − 2L̃ − 1

)
,

(10)

γ < min

(
P‖,

L̃

L̃0λm − L̃ − 2

)
,

taking into account that γ < P‖, a consequence of the
reasonable assumption Q1 <

√
3/2.

The optimal value of η̃ is obtained by choosing L̃ as large
as possible, L̃ = L̃0λm − 2, then maximizing η̃ with respect
to γ and making sure that the constraints (10) are satisfied.
Numerical results for the reduced efficiency η̃ are shown in
Fig. 3. Optimal values of η̃ are reached already for moderate
L̃0 ≈ 20 for Q1 � 0.6. The efficiency η = η̃μ/(εndye) can go
up to 20% for Q1 ≈ 0.7 in the optical case. For Q1 > 0.7,
the no slack condition (10) is violated. Such high values of

Q1 in Fig. 3 are perhaps unphysical in side-chain LCEs, but
they represent the high anisotropy in P‖ and P⊥ found in
main-chain elastomers serving as working materials. Their P‖
and P⊥ values are more extreme, even at normal values of Q1,
and 1/λm can be as large as 350% [4]. For photoengines, the
thickness of the elastomer band depends critically on the light
intensity. Nonlinear absorption processes determine optical
penetration and force dynamics [11,12]; for mm thicknesses
intensities of 10–100 mW/cm2 are required—smaller than
maximal insolation.

In summary, the thermo-optical contraction of nematic
elastomers can be used to harness thermal or optical energy to
generate mechanical energy. Further efficiency can be gained
in both material design and geometric improvements to the
engine.
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