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Intrinsic noise and discrete-time processes
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A general formalism is developed to construct a Markov chain model that converges to a one-dimensional
map in the infinite population limit. Stochastic fluctuations are therefore internal to the system and not externally
specified. For finite populations an approximate Gaussian scheme is devised to describe the stochastic fluctuations
in the nonchaotic regime. More generally, the stochastic dynamics can be captured using a stochastic difference
equation, derived through an approximation to the Markov chain. The scheme is demonstrated using the logistic
map as a case study.
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The study of population dynamics has a wide range of
applications. In cells, enzymes (proteins) catalyze reactions,
interact with each other and with cell products, and regulate
the synthesis of other proteins. On a larger scale, one faces
the problem of understanding the behavior of bacterial com-
munities under various environmental conditions and, at even
larger scales, how ecological communities are assembled and
epidemics controlled. Such populations of microscopic actors
can be modeled as macroscopic abundances or concentrations.
Population dynamics is often studied in this mean-field, deter-
ministic, description. In contrast to this idealized picture, an
individual-based model recognizes the inherent discreteness of
the population [1]. Stochastic effects, stemming from the finite
populations of interacting elements, can dramatically impact
the behavior of dynamical systems. This is a widespread
observation and has many applications, ranging from biology
to physics.

For a continuous time process, an individual-based model
can typically be described by a master equation [2]. In general,
this equation cannot be solved exactly. However, approximate
analytical methods exist to transform it into either a Fokker-
Planck equation (FPE) or a stochastic differential equation [3].
Under specific conditions, the stochasticity can be amplified,
producing macroscopic order, such as sustained oscillations
[4]. Finite population-size corrections also impact on systems
for which the mean-field equations are chaotic. This important
problem has so far only been addressed numerically (see, e.g.,
Refs. [5,6]).

Alternatively, discrete-time maps can be used to investigate
the onset of chaos. These simple deterministic systems have
many applications, e.g., the study of biological populations
where successive generations do not overlap [7]. From the
1980s onwards, the effects of noise on one-dimensional (1D)
maps have been extensively investigated [8–14]. However, in
all of these studies noise was simply added to the deterministic
dynamics. This may be appropriate for the case of external
noise, which is imposed on the system as a modeling choice.
Systems such as the logistic map are, however, bounded on
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a finite interval: If the map is perturbed by, e.g., an additive
Gaussian noise, it is possible for a stochastic trajectory to
escape this interval. One must then either impose an artificial
constraint to prevent such an escape, or only explore the
weak noise regime. By contrast, intrinsic noise has a structure
appropriate to the system under consideration, which allows
the strong noise regime to be explored.

In this Rapid Communication we develop a methodology
for understanding the effects of intrinsic noise in 1D maps. We
begin by showing how to construct a Markov chain, describing
transitions between discrete states in discrete-time intervals,
which has a 1D map as its deterministic limit. The Markov
chain can be described mesoscopically by a generalization of
the FPE or, equivalently, by a stochastic difference equation.
A Gaussian closure leads to an approximate two-dimensional
(2D) map, characterizing the probability distribution. To
develop the methodology, we take the logistic map as a case
study. Where the map is nonchaotic, and for sufficiently large
population sizes, fluctuations are described by the Gaussian
approximation. In the strong noise regime, non-Gaussian
effects are captured by the stochastic difference equation,
as confirmed by direct comparison with the Markov chain
simulations. The effect of the intrinsic noise is to destroy the
periodicity of cyclic solutions and to anticipate the edge of
chaos.

The starting point of our discussion is a 1D map which has
the form zt+1 = f (zt ). Here zt is a continuous variable; time
t changes in discrete steps and f (·) is a generic, nonlinear
function. Let us begin by describing the general Markov
chain model to be used in this work and show how it is
related to this deterministic map. We consider a population
of N individuals which at (discrete) time t consists of m

of one type (A) and (N − m) of another type (B). We
then create a new population at (discrete) time t + 1 by
randomly sampling this original population. A matrix with
entries Qnm specifies the sampling process, with Qnm giving
the probability that there are n A individuals present at time
t + 1 given there were m A individuals present at time t .
In other words, the (N + 1) × (N + 1) matrix Q specifies
the probability of creating generation (t + 1) with a certain
composition from generation t . To study the time evolution
of the system, we specify its state at time t by the vector
P t = (P0,t ,P1,t , . . . ,PN,t ), where Pn,t is the probability for
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there to be n individuals of type A present at time t . The
system then evolves in time according to

P t+1 = Q P t . (1)

The columns of Q each sum to unity and long-ranged
transitions are allowed, a key requirement to obtain stochastic
analogs of nonlinear deterministic maps. The particular form
of Q we have chosen is inspired by the Wright-Fisher model of
genetic drift [15,16], designed to describe a haploid population
of size N , where the individuals have a gene which has two
alleles (A and B). We postulate the following general form
for Q,

Qnm =
(

N

n

)[
f

(
m

N

)]n [
1 − f

(
m

N

)]N−n

. (2)

We require f is such that 0 � f (m/N ) � 1 and ask that
in the limit N → ∞ it gives the nonlinear function of the
deterministic map. We note here that the choice f (m/N ) =
m/N recovers the original Wright-Fisher model.

To make contact with this mean-field limit, we define the
expectation value 〈n〉 = ∑

n nPn and using Eq. (1) find that

〈nt+1〉 =
∑

n

nPn,t+1 =
∑

n

∑
m

nQnmPm,t . (3)

By the definition of Qnm given in Eq. (2), one readily finds∑
n nQnm = Nf (m/N ), and, therefore,

〈nt+1〉 =
∑
m

Nf

(
m

N

)
Pm,t = N

〈
f

(
nt

N

)〉
. (4)

The deterministic limit is found by dividing both sides of
Eq. (4) by N and taking the limit N → ∞. In this limit
〈f (n/N )〉 = f (〈n/N〉), so providing that the function f is
chosen appropriately, Eq. (4) takes the form zt+1 = f (zt ),
where the variable zt = limN→∞〈nt 〉/N has been introduced.
In summary, given a 1D map, we can define a matrix Q of the
Wright-Fisher type according to Eq. (2), using the function
f (·) to provide a stochastic version of the discrete map. The
stochastic model is guaranteed by construction to converge to
the corresponding 1D map in the limit of infinite population
size. We should stress that this is only one way of creating such
a stochastic model, albeit a very natural one; there is an infinity
of stochastic models corresponding to any one deterministic
model. In a continuous time process, governed by a master
equation, one characterizes the process by transition rates,
detailing individual events such as births, deaths or predation.
In the discrete-time process studied here, the state of the system
is updated only at fixed intervals. Therefore, one must instead
detail the process by which one generation is produced by
the previous one. In applications one would start from the
Markov chain model, introducing any nonlinear features such
as dynamical feedbacks, mutual competition, and saturation.

Starting from the above formulation and performing the
Kramers-Moyal expansion, we obtain a generalization of
the FPE. This equation provides a complete description of
the process, which may also be represented by an equivalent
stochastic difference equation, analogous to the Langevin
equation for continuous time systems. As before, the de-
terministic map is recovered in the limit N → ∞. In the
following, we shall not present the mathematical aspects of

the formalism, leaving them to a forthcoming publication [17],
but demonstrate the predictive power of the theory by making
comparisons with direct simulations of the Markov chain
model.

To investigate the role played by intrinsic fluctuations, we
will follow instead a more intuitive, approximate strategy, and
estimate the second moment of the probability distribution, via
a simple Gaussian closure. We begin with the equation for the
second moment:

〈
n2

t+1

〉 =
∑

n

n2Pn,t+1 =
∑
m

[ ∑
n

n2Qnm

]
Pm,t . (5)

We can now use the binomial structure of Q to write〈
n2

t+1

〉 =
∑
m

[(Nf )2 + Nf (1 − f )]Pm

= N2〈f 2〉 + N〈f 〉 − N〈f 2〉, (6)

writing f (m/N ) = f for brevity. As f is nonlinear, higher
order moments will appear on the right-hand side of Eq. (6).
Therefore, a closure is necessary to simultaneously solve
Eqs. (4) and (6). A Gaussian closure replaces the q th moment
with 〈nq〉G, where q � 3, by [18]

〈nq〉G = 〈n〉q +
[ q

2 ]∑
k=1

(
q

2k

)
(2k − 1)!!〈n〉q−2k[〈n2〉 − 〈n〉2]k,

(7)

where the upper limit on the sum is the integer part of q/2. We
use Eq. (7) to close the equations for the first two moments
and so obtain an estimate for the mean and the variance of the
probability distribution.

The formalism developed so far can be applied to a general
1D map. To illustrate these ideas further, we will examine
the celebrated logistic map zt+1 = λzt (1 − zt ), where λ is a
parameter. For 0 � λ � 4, zt remains in the unit interval for
all time. A natural interpretation for zt would be the fraction
of individuals in an ecological community at time t , with the
individuals being labeled as type A and the vacancies being
labeled as type B. As λ is varied, the map displays a variety of
behaviors [19]. For 1 � λ � 3 the map has a stable nonzero
fixed point, then a cascade of period doubling bifurcations
take place, up to the onset of chaos at λ = 3.56995 . . . .

Due to its simple form, the logistic map has been widely
employed as a canonical model of chaos. The behavior of
the logistic map yields the famous bifurcation diagram, which
has become an icon of nonlinear dynamics, shown in the top
panel of Fig. 1.

Based on the above scheme, we will consider a stochastic
version of the logistic map, a microscopic process of the
Wright-Fisher type, involving N individuals, with f (m/N ) =
λ(m/N )(1 − m/N ) in Eq. (2). The boundary conditions are
natural to the process, and are given in Eq. (2) for this choice
of f . This Markov chain converges to the logistic map in
the limit N → ∞. At finite N , the evolution of the first
moment 〈n〉 is governed by Eq. (4). Since f is quadratic,
this latter equation involves the second moment 〈n2〉. To
proceed, we insert the explicit form for f into Eq. (6),
the equation for the second moment. Using the Gaussian
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FIG. 1. (Color online) Bifurcation diagrams for different values
of N . The top panel shows the deterministic logistic map. The middle
and lower panels show the Gaussian approximation for the first
moment xt for N = 5 × 106 and N = 5000, respectively (blue lines).
These diagrams show values of λ where a solution of the Gaussian
approximation was found. Simulation results from the stochastic
difference equation (orange dots) are also shown.

closure in (7) we find

xt+1 = λ(xt − yt ),

yt+1 = λ

N
[xt − yt ] (8)

+
(

1 − 1

N

)
λ2

[
yt − 2

(
3ytxt − 2x3

t

) + 3y2
t − 2x4

t

]
,

where we write xt = 〈nt 〉/N and yt = 〈n2
t 〉/N2, and where N

is assumed to be large. In the case where N is finite, we use xt

to denote the (scaled) first moment, to distinguish from zt , used
in the mean-field limit. These coupled equations approximate
the stochastic dynamics of the Markov chain. We will start
by showing results obtained with this approximation and then
compare them with simulations.

The stochastic difference equation, obtained from the
generalization of the FPE [17], can also be utilized to
characterize the stochastic dynamics. For the case of the

logistic map, we find that the variable z, now a random
variable, obeys the equation zt+1 = λzt (1 − zt ) + ηt , where
ηt is a Gaussian variable with zero mean and correlator
〈ηtηt ′ 〉 = [λzt (1 − zt )(1 − λzt (1 − zt ))/N]δt t ′ . The noise is
multiplicative, in contrast to the additive Gaussian noise
proposed as an external perturbation in previous studies.

We begin by depicting the bifurcation diagram for xt for
different N , generated by iterating Eq. (8) from an initial
condition, for a given value of λ. After the transient has died
out, the values of xt are plotted against the selected λ. A fixed
point appears in the diagram as a single spot, while an s cycle
appears as s distinct points. The results are shown in Fig. 1 for
different N . When N is reduced, portions of the diagrams fade
away, due to the loss of stability of the 2D map. It is found
that stability is lost when the fluctuations are large enough
that the basins of attraction associated with each branch of the
asymptotic solution are no longer isolated. In other words, if λ

has a value for which the deterministic system has an s cycle,
the stationary probability distribution may be approximated
by a superposition of s Gaussians. For N sufficiently large, the
peaks of the Gaussians are well separated, and correspond
to the s cycles of the deterministic map. By reducing N ,
the widths of the Gaussians grow, and can overlap, and the
system loses the periodicity associated with the deterministic
s cycle. The complete, finite N , bifurcation diagram can be
reconstructed from the stochastic difference equation for the
random variable z, as displayed in the lower panels of Fig. 1
(orange dots). This enables us to see how the system behaves
when the Gaussian approximation fails, and also appreciate the
strength of the fluctuations around the mean xt . We simulate
the stochastic difference equation here, rather than the original
Markov chain, as for the former the computation time is
independent of N .

We now turn to simulate the Markov chain to test the
accuracy of the theoretical schemes proposed. The upper part
of Fig. 2 shows a section of a bifurcation diagram, generated by
simulating the Markov chain with N = 1000, over a range of λ.
Lighter patches identify more frequently visited states. In the
lower panels of Fig. 2, the probability distribution generated
from the simulations is compared to the predictions from the
Gaussian approximation for two choices of λ. In both cases,
the results show excellent agreement with the simulations.
The Gaussian prediction starts to lose accuracy when N is
small, or when λ approaches a bifurcation point. Non-Gaussian
corrections can be calculated from the previously mentioned
stochastic difference equation [17], as we show in Fig. 3.
For the parameters chosen here, the stationary distribution
of the Markov chain is noticeably skewed. The distribution
obtained from the stochastic difference equation is in excellent
agreement with that found from the Markov chain.

Previous numerical studies have investigated the interplay
between additive noise and chaos [8]. We examine this
phenomenon for our intrinsic noise process, focusing on how
the noise affects the onset of chaos. We consider a 3-cycle,
which appears as a regular window beyond the onset of chaos,
for values of λ around 3.83. Crutchfield et al. [8] showed that
sufficiently strong additive noise can destroy the 3-cycle and,
instead of three narrow peaks, one sees a broad probability
distribution, akin to the type of distribution found for a choice
of λ for which the dynamics are chaotic. This is consistent with
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FIG. 2. (Color online) (Above) Bifurcation diagram generated by
simulating the Markov chain for N = 1000. For each value of λ the
chain was iterated 20 000 times. The color shade denotes the relative
frequency with which the states were visited. (Below) Distributions
for this Markov chain. The values of λ chosen are λ = 2.8 (left) and
λ = 3.26 (right), denoted by the dashed lines in the top panel. The
bars refer to stationary distributions obtained by simulating the chain.
The red lines show the Gaussian approximation.

Fig. 1, where the Gaussian scheme can calculate fluctuations
around the 3-cycle in the middle panel (for N = 5 × 106) but
not in the lower panel (where N = 5000). The results for our
intrinsic noise system are qualitatively similar to those found
in [8]: The Lyapunov exponent can be measured as a function
of N (data not shown) and a noise-induced transition to chaos
is observed. One advantage of using an intrinsic noise process
to investigate this question is that one has access to the strong

FIG. 3. (Color online) The probability distribution function for a
case where the Gaussian approximation loses accuracy. The stationary
distribution found from the Markov chain (bars) is well captured by
simulations of the corresponding stochastic difference equation (blue
circles), but not by the approximate 2D map (red line). Parameter
values are N = 300 and λ = 2.92.

noise limit, which can be difficult to explore using an additive
noise process which is not characteristic of the system.

To conclude, we have developed a general strategy to
construct a Markov chain which converges to a map in
the infinite N limit. Intrinsic fluctuations are approximated
by a 2D map for the first two moments of the probability
density distribution. More generally, a stochastic difference
equation, reminiscent of the Langevin equation for continuous
time processes, can be obtained and provides an excellent
effective description of the Markov chain dynamics, even in
the strong noise regime, where the Gaussian approximation
breaks down. Results are shown here for the logistic map.
However, the formalism is general and applies in all contexts,
from physics to biology, where maps are employed as model
systems.
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