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Divergence of the Stark collision operator at large impact parameters
in plasma spectroscopy models
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The divergence that occurs at large impact parameters in Stark collision operators is examined for low-density
hydrogen plasmas. In a previous work [J. Rosato, H. Capes, and R. Stamm, Phys. Rev. E 86, 046407 (2012)],
we showed that the correlations between a radiating atom and the charged particles surrounding it affect the
mean evolution of the atom, resulting in a mitigation of the Stark broadening near the line center. In this work,
we examine the physical mechanism underlying this mitigation with an approach inspired from the standard
semiclassical impact model. Our approach accounts for the atom-perturber correlations in a simple fashion,
through a cutoff at large impact parameters, and embraces the impact model in the weakly coupled plasma limit.
Comparisons with numerical simulations are performed and indicate a good agreement.
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Recent theoretical works carried out in the framework of
magnetic fusion research have led to successive improvements
on ion collision operator models, devoted to provide fast
numerical routines for hydrogen line shapes, for diagnostic
applications, but also for radiative transfer simulations (e.g.,
[1]). Although the ion Stark broadening is strongly dynamic
for lines with a low upper principal quantum number n (such
as Ly-α, D-α), the impact approximation for ions is only
marginally valid and its use can lead to significant mistakes,
with an overestimate of the line width at large densities or low
temperatures (typically when Ne,i � 1014 cm−3 and/or Te,i �
1 eV, e.g., [2]). The inadequacy of the impact approximation
rests in several assumptions that are not fulfilled. This is
sometimes referred to as the “static effects.” One such an
effect concerns the reduction of the atom-perturber interaction
to a duration of the order of |�ω|−1 (with �ω being the
frequency detuning), which is effective as soon as |�ω|
exceeds the plasma frequency ωp of the perturbing species.
The latter corresponds to the characteristic time scale for an
individual collision given the Debye shielding. Incomplete
collisions have been investigated in the past for the electron
broadening by using refined models for the collision operator,
either based on kinetic theory (such as the “unified theory”
[3,4]) or semiempirical procedures (e.g., using the Lewis
cutoff [5]). Such models reproduce the result of the impact
approximation at the line center (i.e., with the frequency
detuning �ω = 0) and yield an asymptotic behavior identical
to that expected within the quasistatic approximation, which
assumes a constant electric field. Another failure of the
impact approximation concerns the line center in moderately
coupled plasma conditions. The typical time for the atom’s
dipole decorrelation (estimated as the inverse of the collision
operator’s characteristic matrix elements) can be shorter than
ω−1

p , yielding a reduction of the collision duration. Recently,
we have examined this issue within a kinetic theory treatment
inspired from the Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy [6]. The reduction of the collision duration is a
feature of emitter-perturber correlations and involves a new
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time scale which is in competition with the collision duration.
In this Brief Report, we examine the physical mechanism
underlying the emitter-perturber correlations with an approach
inspired from the standard semiclassical impact model [7,8].

We consider the mean evolution of an ensemble of emitters
under the influence of the ion microfield. The ions are
assumed statistically independent to each other, independent
with respect to the electrons, and the electron perturbation is
neglected. A “collision” refers to the perturbation of the atomic
wave function due to one ion only. In the standard semiclassical
impact model, it is customary to write down a finite difference
equation for the atomic evolution operator and to average it
along the following scheme

{U (t + �t,0)} = {U (t + �t,t)U (t,0)}
� {Uj (t + �t,t)}{U (t,0)}. (1)

Here, U (t2,t1) stands for the evolution operator of the emitter
from time t1 to t2, the brackets {. . .} denote the average with
respect to the ions, the time interval �t is chosen sufficiently
large so as to include one collision only, and Uj refers
to the evolution of the emitter under the influence of this
collision, which is labeled by j (this includes the time of
the closest approach, the impact parameter, and the velocity).
The average factorization stems from the independent ion
assumption. In the standard impact model, the collisions are
assumed complete during �t , so that the evolution operator
Uj (t + �t,t) is replaced by Uj (+∞, − ∞). This quantity is
identical to the S matrix used in the theory of collisions, hence,
we will refer to it as Sj in the following. The finite difference
Eq. (1) for the mean evolution operator {U (t)} becomes a
differential equation at the limit �t → 0

d{U (t)}
dt

= (−iL0 − K){U (t)}, (2)

where L0 is the atomic Liouvillian and K = ∑
j νj (1 − Sj )

is the collision operator, νj being the frequency of collision
of type j . If the Stark effect is linear, the sum over collisions
diverges logarithmically at large impact parameters. This result
is a feature of the Coulomb interaction and is especially
relevant for hydrogen lines. The usual way to prevent this
divergence consists in putting an upper cutoff at the Debye
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FIG. 1. Atomic dipole autocorrelation function of hydrogen Ly-α
obtained from a simulation, at conditions relevant to tokamak edge
plasmas. The collisions’ effective duration is of the same order as the
time of interest, suggesting an inadequacy of the complete collision
assumption at the line center.

length, accounting phenomenologically for the screening of
the Coulomb field due to the other perturbers (which is not
retained in the independent perturber assumption).

There is another regularization that prevents the divergence,
which stems from the fact that each collision cannot be strictly
completed, even at the line center. The collisions yield a
decorrelation of the atomic dipole over a finite time scale
ti (estimated as the inverse line width and usually referred
to as the “time of interest”), which provides a maximum
time for the effective action of each collision. Although this
time can be much larger than the characteristic duration of
each collision (of the order of ω−1

p ), the dipole decorrelation
should be retained in a realistic calculation. An illustration
is given in Fig. 1. The microscopic electric field has been
simulated at plasma conditions relevant to the tokamak edge,
during the time of interest for Ly-α, assuming the ions moving
along straight lines and generating a Debye electric field
(due to the perturber-perturber correlations). For simplicity no
magnetic field is considered here. The figure shows the dipole
autocorrelation function obtained from numerical integration
of the time-dependent Schrödinger equation, averaging with
1000 realizations of the electric field. Also shown in the figure
is the effective duration of a collision, only slightly shorter
than the time of interest.

To retain this regularization we extend the semiclassical
impact model, by relaxing the complete collision assumption.
We replace the S matrix by the evolution operator Uj (tj , − tj )
that accounts for one collision during a finite time. This time
is described as a random variable distributed according to an
exponential distribution of parameter γ , which is assumed
of the order of the line width and is evaluated as some
relevant matrix element of the collision operator (e.g., γ �
〈200|K|200〉 for Ly-α). With this model, the collision operator
reads

K = N

∫ +∞

0
dvf (v)v

∫ +∞

0
db2πb

×
∫ λD

0
dtγ e−γ t {1 − U (t, − t)}angle . (3)

FIG. 2. Plot of the 	 function. It has a logarithmic behavior at
small x.

Here, the j index has been removed to clarify the no-
tation, and the sum has been written explicitly in terms
of integrals over the velocity (module) v and the impact
parameter (module) b. The brackets denote an angular
average, and N , f stand for the ions’ density and their
velocity distribution function, respectively. To illustrate the
regularization we evaluate explicitly the cross section operator
σ = ∫ +∞

0 db2πb
∫ λD

0 dtγ e−γ t {1 − U (t, − t)}angle and focus
on the weak collision contribution, i.e., that provided by
the second order expansion of the evolution operator. The
calculation is similar to that performed in the standard impact
model and it leads to the following analytical expression

σ = 4πh̄2

3m2
ev

2
�r2	(x)

∣∣γ bst/v

γ λD/v
, (4)

where �r is the position operator of the atomic electron (atomic
units) restricted to the Liouville subspace of the line under
consideration, bst is the strong collision radius, of the order of
the Weisskopf radius bW = h̄n2/mev, and 	 is defined as an
integral

	(x) =
∫ +∞

x

dy

{
1

y
+ Im[eiyE1(iy)]

}
. (5)

This function is plotted in Fig. 2. It behaves as − ln x − γE

(with γE being the Euler constant) at small x. The presence
of the first exponential integral E1 regularizes the integral for
large x. The integral can be evaluated explicitly in terms of the
sine and cosine integrals [9]

	(x) = −Ci(x) cos x − si(x) sin x. (6)

We have compared the model to the result of a simulation
excluding strong collisions, i.e., the perturbers with an impact
parameter smaller than bst have not been retained. For
simplicity we have assumed all perturbers with the same
velocity module, evaluated at the relative thermal velocity
vi = √

4T/mi (the factor of 4 accounts for the reduced mass
of the emitter-perturber system). Figure 3 shows the dipole
autocorrelation function for N = 1015 cm−3 and T = 1 eV,
obtained from the simulation and from the model. In the latter
case, it has been evaluated as 〈210| exp (−Nσvit)|210〉. The
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FIG. 3. Atomic dipole autocorrelation function of hydrogen Ly-α
corresponding to perturbation by weak collisions. The complete
collision assumption done in the impact approximation yields an
overestimate of the Stark perturbation, which results in an overesti-
mate of the decorrelation. The model proposed in this work is in a
better agreement.

γ parameter has been estimated graphically from the simu-
lation result, assuming an exponential decrease. Setting the
equality 〈d(0)d(γ −1)〉 = exp(−1) yields γ � 4.2 × 1010 s−1.
The model provides a good estimate of the dipole decorre-
lation, with only a small deviation (by about 20% regarding
the decay rate N〈210|σ |210〉vi) from the simulation, which
falls in the typical range of uncertainties inherent to the
description of the Debye screening and the estimate of strong
collision radius. In contrast, the impact approximation leads
to a strong deviation at large times. The faster decrease of
the autocorrelation function stems from an overestimate of the

Stark perturbation due to the complete collision assumption.
This result is in agreement with that obtained from the kinetic
theory treatment presented in [6].

In summary, we have shown that the semiclassical impact
approximation can be extended to account for incomplete
collisions in a rather simple fashion, using an appropriate
cutoff at large impact parameters. The resulting collision
operator has a structure similar to that obtained within the
usual impact model, making it suitable for implementation in
line shape codes (e.g., [10–12]) and methods (e.g., [13–15]).
The γ parameter involved in the cutoff can be estimated
from numerical simulations or analytically. In the last case
a characteristic matrix element of the collision operator was
previously suggested as a good candidate [6]. The model
is of particular interest for lines affected by linear Stark
effect, given their sensitivity to the weak collisions. It can
be applied to the ion broadening of hydrogen lines, in the
case where ion dynamics effects are strong, but also to the
electron broadening. This is of particular interest for lines
with a high principal quantum number, in tokamaks but also
in astrophysics. The recent Workshop on Spectral Line Shapes
in Plasmas [16] provides a motivation to proceed with further
investigations from the theoretical point of view.
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