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Oscillation death in diffusively coupled oscillators by local repulsive link
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A death of oscillation is reported in a network of coupled synchronized oscillators in the presence of
additional repulsive coupling. The repulsive link evolves as an averaging effect of mutual interaction between
two neighboring oscillators due to a local fault and the number of repulsive links grows in time when the death
scenario emerges. Analytical condition for oscillation death is derived for two coupled Landau-Stuart systems.
Numerical results also confirm oscillation death in chaotic systems such as a Sprott system and the Rössler
oscillator. We explore the effect in large networks of globally coupled oscillators and find that the number of
repulsive links is always fewer than the size of the network.
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A quenching or death of oscillation is an important phe-
nomenon [1–3] in coupled oscillators (limit cycle or chaotic)
besides synchronization [4]. It is mainly dictated by large
parameter mismatch in coupled oscillators [5] or delay in
coupling [6] of identical oscillators. Recently, several other
mechanisms of oscillation death or stabilization of fixed point
were reported using different coupling schemes which were
based on dynamic coupling [7], mean field diffusion coupling
[8,9] and conjugate coupling [10] in identical oscillators, and
dynamic environment coupling [11] in identical or mismatched
oscillators. Of particular interest is the dynamic environment
coupling [11] that is able to induce oscillation death in a
network [12], chain, ring, tree, lattice, all-to-all, star, and
random topologies. An overdamped dynamic environment
influences each of the dynamical units in a network and
suppresses the oscillation of all the units for a critical
coupling.

In the real world, a different situation may arise when,
besides the diffusive attractive coupling between the dynam-
ical nodes that establishes a priori synchrony in a network
of oscillators, additional coupling links or bonds may evolve
in time between two neighboring nodes in the network due
to a local disturbance or a fault. This local fault can act as
a repulsive feedback link on an immediate local node. We
assume that the number of repulsive links increases in time
to spread into the other nodes of the network. Eventually,
the increasing repulsive links influence the dynamics of the
network in time and induce a death situation as quenching of
oscillation much before it spreads into the whole network. The
concept of all-to-all additional dynamic environment coupling
or links [12] cannot explain such a situation since only fewer
nodes than the size of the network are locally affected by
the additional repulsive links and suffice to induce a death.
We mention that a quenching of oscillation, although in a
different context but of similar effect, was reported earlier as
an aging transition [13] when, in a network of diffusively
coupled oscillators, individual oscillators switch over to a
passive state or excitable state one after another in time.
And the oscillation in the network eventually comes to a
stop when a sufficient number of oscillators switches over
to the passive phase. Instead, we propose that the repulsive

feedback links spread into the a priori synchronized network
attacking one after another oscillator and stop the oscillation
of the network. To model this situation, we propose a coupling
scheme with additional local repulsive links [Fig. 1(a)] for
simply two identical oscillators: First, oscillator 2 drives
oscillator 1 attractively but, in addition, a local link returns
to oscillator 2 as a negative feedback called the repulsive
link. Alternatively, we can consider two oscillators under
bidirectional attractive coupling as shown in Fig. 1(b) when
the repulsive link may return to either of the oscillators. The
repulsive link is expressed as an average of the state variables
0.5ε2(x1 + y1) of two neighboring dynamical units, ẋ = f (x)
and ẏ = f (y); x ∈ Rn, y ∈ Rn where the coupling strength
ε1 is positive real and ε2 is negative real. An average effect
in terms of a negative feedback from local oscillators similar
to the repulsive link is used earlier [14] in a globally coupled
network of oscillators in the context of deep brain stimulation
for control of neurological diseases where the robustness of
a synchronized state or desynchronization was the target of
the study. Later this average feedback effect is used [15] in
globally coupled electronic oscillators for inducing a transition
from synchronization to desynchronization. However, in both
cases, all the oscillators of the networks were assumed directly
influenced by the feedback links in addition to the attractive
coupling, and no death regime was reported.

On the contrary, we report here a death scenario as a generic
feature of oscillators (limit cycle and chaotic) when attractive
diffusive coupling or link is mixed with local repulsive link. All
the oscillators do not receive a repulsive feedback. Oscillators
are assumed a priori synchronized under the unidirectional or
bidirectional attractive coupling above a critical value ε1 > ε1C

(ε2 = 0) before the repulsive link is added. In the absence of
attractive diffusive coupling, the repulsive link induces out-
of-phase state in the oscillators for another critical value ε2 >

ε2C (ε1 = 0). A mixture of both couplings brings about a
competition and finally stops the oscillation to death, which
we investigate in this Brief Report with examples of two limit
cycle and chaotic oscillators and a globally coupled network
of oscillators.

First, we investigate two coupled oscillators (limit cycle and
chaotic) under both attractive and repulsive coupling where the
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FIG. 1. (Color online) Dynamical systems in circles (red) under
attractive and repulsive coupling. Gray arrow (green) indicates
(a) unidirectional and (b) bidirectional attractive coupling between
a pair of variables of the systems. Black arrows indicate repulsive
link via the same or another pair of variables.

oscillators emerge into a homogeneous steady state or ampli-
tude death (AD) [8] above a critical coupling. Interestingly, we
find a transition from AD to an inhomogeneous steady state
(IHSS) or oscillation death (OD) state with increasing coupling
strength in both limit cycle and chaotic oscillators. Secondly,
we study a network of N globally coupled synchronized
oscillators and go on, adding repulsive links to one after
another oscillator, and address a relevant question of how
many repulsive links suffice to induce the death of oscillation
(presently we search for AD only).

We elaborate the repulsive coupling and the death scenario
using two Landau-Stuart (LS) limit cycle systems,

ẋ1 = [
1 − (

x2
1 + y2

1

)]
x1 − ωy1 + ε1(x2 − x1),

ẏ1 = [
1 − (

x2
1 + y2

1

)]
y1 + ωx1,

(1)
ẋ2 = [

1 − (
x2

2 + y2
2

)]
x2 − ωy2,

ẏ2 = [
1 − (

x2
2 + y2

2

)]
y2 + ωx2 − ε2(y1 + y2),

where ε1,2 is the coupling strength. Assume that the attractive
coupling is applied in unidirectional mode to one oscillator
via the x variable while the repulsive link is returned to the
other oscillator as a negative feedback via the y variable. We
derive the analytical conditions for AD in two LS systems. For
simplification, we consider the case of symmetric coupling,
ε1 = ε2 = ε when the stability condition for the trivial
equilibrium origin of the unidirectionally coupled LS system
(1) is derived from its Jacobian,

J =

⎡
⎢⎣

1 − ε −ω ε 0
ω 1 0 0
0 0 1 −ω

0 −ε ω 1 − ε

⎤
⎥⎦

whose eigenvalues are

λ1,2 = −(ε − 2) ±
√

(ε − 2)2 − 4{1 − ε(1 + ω) + ω2}
2

,

and

λ3,4 = −(ε − 2) ±
√

(ε − 2)2 − 4{1 − ε(1 − ω) + ω2}
2

.

This provides a stability condition of the equilibrium origin,

2 < ε < (ω2 + 1)/(ω + 1). (2)

As an example, AD can be observed in two LS systems for
a coupling range 2 < ε < 2.5 when ω = 3.0. For bidirectional
attractive coupling with one repulsive link, the Jacobian can
also be derived whose eigenvalues are

λ1,2 = −(ε − 1) ±
√

ε2 − ω2,
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FIG. 2. (Color online) Amplitude death in two coupled LS
systems with one repulsive link. Numerical time series of x1(t)
and x2(t) show damped oscillation to origin for attractive (a)
unidirectional and (b) bidirectional coupling. ω = 3.0, ε1 = ε2 =
ε = 2.25.

and

λ3,4 = −(ε − 2) ±
√

(ε − 2)2 − 4(1 + ω2 − ε)

2

when the stability of the equilibrium origin is decided by

2 < ε < (ω2 + 1)/2. (3)

Clearly, the range of coupling (AD regime) increases
with frequency ω for unidirectional as well as bidirectional
attractive coupling similar to the case of delay coupling [6],
[16]. As mentioned above, the coupled oscillators are assumed
synchronized before adding the repulsive link in both cases,
however, details are not presented here.

Numerical results of two coupled LS systems are shown
in Fig. 2 using the system parameters and the coupling
based on the condition (2). The time series of x1 and x2

variables in Fig. 2(a) show AD when the equilibrium origin is
stabilized. Similarly, for bidirectional attractive coupling, the
AD scenario is obtained following the stability condition (3) as
shown in Fig. 2(b). For other parameter regimes, OD (IHSS)
[8] is observed. A complete scenario of AD and OD in two
coupled LS systems is illustrated in bifurcation diagrams in
Fig. 3 (using software package MATCONT [17]). Figure 3 shows
bifurcations of the coupled LS systems for unidirectional as
well as bidirectional attractive coupling via x variable and
one repulsive link via y variable. For a choice of ω = 3.0, an
AD window (solid blue line) is obtained that emerges as a
reverse-Hopf bifurcation with increasing coupling strength ε.
This is indicated, in both cases, by an existence of stable limit
cycle (solid red line) that coexists with an unstable equilibrium
origin (blue dashed line). On the right of the AD window, an
OD state with two IHSSs (solid brown lines) originates via
supercritical pitchfork bifurcation (PB) and they coexist with
an unstable equilibrium origin (blue dashed line).

Next, we search for a similar death scenario in chaotic
oscillators, namely, a Sprott system and the Rössler system.
Two coupled Sprott systems with attractive unidirectional
coupling and a repulsive link are given by

ẋ1 = −ay1,

ẏ1 = x1 + z1 − ε(y1 + y2),

ż1 = x1 + y2
1 − z1,

(4)
ẋ2 = −ay2 + ε(x1 − x2),
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FIG. 3. (Color online) Bifurcation diagram shows AD and OD
regimes in coupled LS system. Values of x2 for fixed point solutions
and extremum of x2 for time dependent solutions are plotted for
(a) unidirectional diffusive coupling and (b) bidirectional diffusive
coupling. Arrows indicate HB and PB points (using MATCONT

software package [17]).

ẏ2 = x2 + z2,

ż2 = x2 + y2
2 − z2.

Numerical results show stabilization of the equilibrium
origin in two Sprott systems in Fig. 4(a) where time series
x1(t) and x2(t) converges to zero amplitude in time. The
Sprott system has a trivial equilibrium point at origin. It
clearly confirms an AD scenario in the coupled system for
a coupling strength ε = 0.20. In contrast, an OD scenario is
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FIG. 4. (Color online) Death in coupled chaotic oscillators with
repulsive link. Numerical time series of x1(t) and x2(t) plotted.
Equilibrium point is stabilized in (a) Rössler systems for ω = 1.0, ε

= 0.225, c = 18, b = a = 0.1; (b) Sprott systems for a = 0.225, ε =
0.20.
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FIG. 5. (Color online) Bifurcation of AD and OD in two coupled
Sprott systems (a = 0.225). Plotted values of x2 for fixed point
solutions and extremum values of x2 for time dependent solutions of
the coupled Sprott systems as a function of ε (using MATCONT [17]).
An AD regime in solid black (solid blue line) seen in the middle
which changes to an unstable equilibrium at a TB point. An unstable
equilibrium coexists with the stable origin [gray (brown) dashed line]
and switches over to OD at the TB point. At the HB1 point a stable
limit cycle in gray (solid red line) originates; an unstable limit cycle
denoted by the black dashed line originates at the HB2 point and
coexists with unstable origin denoted by the dashed black (blue) line.

observed in two coupled Rössler systems [ẋ = −ωy − z, ẏ =
ωx + ay, ż = b + z(x − c)] in a chaotic regime where the
time series converges to a stable fixed point in close proximity
to the origin as shown in Fig. 4(b).

The analytical conditions of AD and OD in chaotic
oscillators is difficult to derive and hence we draw a bifurcation
diagram (using software package MATCONT [17]) in Fig. 5 to
show the AD and OD regimes with varying coupling strength
for two unidirectionally coupled chaotic Sprott systems with
one repulsive link [for the model in Eq. (4)]. Figure 5 clearly
reveals an AD window (solid blue line) of coupling strength,
however, it coexists with an unstable equilibrium (brown
dashed line). An OD (solid brown line) originates on the
right-hand side via transcritical bifurcation (TB) instead of
PF as observed for the coupled LS system and coexists with
an unstable origin (dashed blue line). For lower coupling at
left, two Hopf bifurcation points HB1 and HB2 appear related
to the stable and unstable limit cycles, respectively.

Finally, we consider a population of N globally and
diffusively coupled oscillators. In such a population we start
adding repulsive links to one after another oscillator and
check the dynamics of the whole network until we add the
links in q oscillators. Now we separate the network into two
subpopulations, p and q, such that q = N − p oscillators are
only connected by additional repulsive links, while others are
not.

Subpopulation 1:

ẋk = f (xk) + ε

N

N∑
j=1

(xj − xk), (5)

where

k = 1 to p.
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FIG. 6. (Color online) Networks of globally coupled identical
LS oscillators. A circle (red) represents a LS oscillator in all
eight networks. Black arrows indicate repulsive links and attractive
coupling is indicated by gray (green) arrows (plotted using PAJEK

software [18]).

Subpopulation 2:

ẋq = f (xq) +
[

ε

N

N∑
j=1

(xj − xq)

]
− ε(xk + xq), (6)

where

q = p + 1 to N.

For an optimal number of repulsive links or q oscillators
connected with repulsive links, a death situation emerges. It is
found that two populations or clusters of oscillators are formed
which are synchronized separately with increasing coupling
strength before reaching a death state which is basically an
AD state for our example system.

The death scenario is elaborated with examples of eight
networks of globally coupled N oscillators (3,4,5,. . . ,10) as
shown in Fig. 6. Each node (red circle) is a LS system in
all the cases. It is confirmed from numerical simulations that
one repulsive link (black arrow) suffices to induce death in a
network of five oscillators. Two repulsive links are necessary
for a network of nine oscillators and three for ten oscillators.

Finally, we deal with the question: What is the minimal
number of repulsive links necessary for quenching oscillation
in a large network of globally coupled oscillators? In a network
of a priori synchronized oscillators under attractive coupling,
the number of repulsive link increases with the size of the
network to induce a death but a fewer repulsive links than the
size of the network suffice to induce death in the network as
described above. All the oscillators are coupled by attractive
diffusive links whose number is always larger than the number
of repulsive links for inducing a death of oscillation in the
network. We produce numerical evidence (using MATLAB ODE

45 solver) regarding the number of repulsive links necessary
for inducing a death state in the networks. We simulate the
dynamics of each globally coupled network of LS oscillators
(N = 10–350). To characterize the death or cessation of
oscillation in each network, we use an index [13]

M =
√

〈(Xc − 〈Xc〉)2〉, (7)

where Xc = N−1 ∑N
j=1 (xj ,yj ) is the centroid for a network

of LS oscillators. The 〈 〉 represents a time average and
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FIG. 7. (Color online) Globally coupled LS oscillators with
repulsive links: N = 10–350, ω = 5.0, ε1 = ε2 = 8.0. Plot of
the percentage of repulsive links for inducing AD with size of the
network (N ).

M = 0 estimates a death scenario. For a network of size N

(say, N = 10), we keep adding repulsive links to one after
another oscillator and simulate the collective dynamics to find
the M value and stop adding the repulsive link when it becomes
zero. We repeat this protocol for all networks (N = 10–350)
to record the number of repulsive links until M = 0 for each
network. Figure 7 shows that the number of repulsive links
certainly increases with N but it saturates around 30% of the
total number of oscillators or the size of the network. In other
words, if a fewer number of nodes is directly influenced by
the repulsive feedback, death of oscillation shall emerge for a
critical coupling strength.

It is concluded that in a network of synchronized oscillators
under diffusive attractive coupling, additional repulsive
coupling links may evolve due to local fault and spread into the
network by increasing numbers that eventually induce death
of oscillation in the network. The number of repulsive links is
always fewer than the number of oscillators or size of the net-
work for a death scenario to emerge. We presented analytical
conditions for AD in two coupled Landau-Stuart oscillators
and numerical results for two coupled chaotic oscillators.
Most interestingly, in the case of two oscillators, we found a
transition from AD to OD with coupling strength via pitchfork
bifurcation in the Landau-Stuart system similar to what has
been reported [19] very recently, although for a different cou-
pling configuration. For two chaotic oscillators, we observed
a similar AD to OD transition with coupling strength but
following a different route, namely, a transcritical bifurcation,
which we have not seen reported before. An analytical con-
dition to find the critical number of repulsive links necessary
for a death scenario in a large network is our future research
target.
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