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Dynamical tunneling of a Bose-Einstein condensate in periodically driven systems
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We report measurements of dynamical tunneling rates of a Bose-Einstein condensate across a barrier in classical
phase space. The atoms are initially prepared in quantum states that extend over a classically regular island region.
We focus on the specific system of quantum accelerator modes of the kicked rotor in the presence of gravity.
Our experimental data is supported by numerical simulations taking into account imperfections mainly from
spontaneous emission. Furthermore, we predict experimentally accessible parameter ranges over which direct
tunneling could be readily observed if spontaneous emission was further suppressed. Altogether, we provide a
proof-of-principle for the experimental accessibility of dynamical tunneling rates in periodically driven systems.
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One of the first manifestations of quantum mechanics was
radioactive decay, in which—according to Gamov’s theory—a
particle can overcome a static potential barrier because of an
even exponentially small tail of its spatial wave function at the
unbounded side of the barrier [1]. Besides this static problem of
over-the-barrier tunneling, dynamical tunneling mechanisms
are also well known today [2]. In classical dynamical systems,
the phase space is generally mixed, with regions of regular
and chaotic motion [3]. Though dynamical barriers forbid the
classical transport between these regions, a quantum particle
can tunnel by leaking through classically invariant curves.

Dynamical or chaos-assisted tunneling has been the subject
of many theoretical works in recent years [4–6], which, in par-
ticular, use tools of semiclassics to make approximate predic-
tions about the quantum mechanical tunneling. Experiments
to observe even signatures of the tunneling of states initially
prepared within classically regular regions into the chaotic
surrounding, are notoriously hard [7–9]. The difficulties are
very natural since it is hard to control the effective Planck’s
constant h̄eff over a wide range. h̄eff determines the size of
the quantum state with respect to phase space. If h̄eff is large
(see, in particular, Ref. [7]), tunneling occurs fast, but one is
far from the semiclassical limit that many fascinating theories
exploit [6]. On the other hand, if h̄eff is small, tunneling simply
would take too long to be measured precisely.

To balance this tradeoff, we show the experimental realiza-
tion of a paradigmatic system [10], which not only provides
access to a wide range of h̄eff , but also allows for precise
control of the initial state and the dynamical evolution. The
theoretical description of our system and predictions on the
resonance-assisted tunneling (RAT) mechanism can be found
in Ref. [11]. We show a proof of principle observation of
dynamical tunneling experimentally, backed up by numerical
simulations, which also include the effect of experimental
imperfections. Finally, we check the scaling of the direct
tunneling [12] (i.e., not based on more complicated processes
such as RAT) rates with the ratio of the area and the effective
Planck’s constant. These predictions may be tested in future
experiments once we overcome the main imperfection arising
from spontaneous emission.

In our experiment, we prepare a Bose-Einstein condensate
(BEC) of about 40 000 87Rb atoms in the 5S1/2, F = 1 level

using an all-optical trap. After release from the trap, the BEC
is exposed to kicks with period T from a standing wave formed
by two laser beams of wavelength λ = 780 nm, detuned
� = 2π × 6.8 GHz to the red of the atomic transition. The
strength of these kicks is given by k ≈ �2

�
�t , where � is the

Rabi frequency of the transition and �t is the duration of a
pulse. The probability of a spontaneous emission event per
atom during a kick can be calculated from pSE = k

τSE�
, where

the lifetime of the atomic state is τSE = 26 ns. To control
the phase, intensity, and pulse length as well as the relative
frequency between the kicking beams, each laser beam passes
through an acousto-optic modulator driven by a waveform
generator. Adding two counterpropagating waves differing
in frequency by �f results in a standing wave that moves
with a velocity v = 2π�f/G. This frequency shift is used to
accelerate the lattice corresponding to an effective gravity field
with dimensionless acceleration parameter η = gMT/(h̄G).
G = 2π/λG is the grating vector of the kicking lattice and
M the atomic mass. Additionally, the quasimomentum of
the BEC relative to the standing wave is proportional to v,
which is used to prepare the initial state within the relevant
phase space region in momentum. In dimensionless units (see
Refs. [11,13–15]), momentum is decomposed as p = n + β,
where β (0 � β < 1) is quasimomentum and n ∈ Z. The BEC
is sufficiently dilute such that we can exclude interatomic
interaction effects.

In this way, we realize quantum accelerator modes as
done previously in Refs. [16,17]. These modes correspond
to classically stable resonance islands embedded in a chaotic
surrounding. They are perfect for our purpose since the modes
move with constant speed in momentum space, while the
chaotic part essentially remains behind [11]. Hence, dynamical
tunneling from the islands to the surroundings is not hindered
by backflow into the island.

The dynamics of our kicked atom accelerator is described
by the following Hamiltonian in the accelerated frame and in
dimensionless units [14,15]:

Ĥ (t) = 1

2

(
N̂ + β + η

t

τ

)2

+ k cos(θ̂ )
∑

j

δ(t − j ). (1)

Here, θ̂ = Gx̂ mod(2π ), N̂ = −i d
dθ

is the angular momentum
operator, and k and τ = T/T1/2 are the kicking strength and
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FIG. 1. (Color online) The phase-space of the pseudoclassical
evolution given by Eq. (2) with J taken mod 2π . The initial state
of the condensate (dashed green region) extends over the midpoint
of the classical island (red). The effective Planck cell with h̄eff = |ε|
is shown by the (blue) shaded rectangle. For the given parameters,
τ = 5.97, η = 0.0257, k = 1.4, more than half of the initial state
follows the island motion and contributes to the tunneling signal.

period. With periods close to τ = 2π , or T close to the half-
Talbot time T1/2 = 2πM

h̄G2 , the evolution of our quantum system
is approximately described by the following pseudoclassical
map [11,13,14]:

Jj+1 = Jj + k̃ sin θj+1 + sgn(ε)τη

θj+1 = θj + sgn(ε)Jj+1 mod2π . (2)

Here, k̃ = k|ε|,ε = τ − 2π , and the classical momentum J =
n|ε| + sgn(ε)[π + τ (β + jn + η/2)]. We review such details
since, by the latter formula, it is clear how control on the
quantum numbers n and β allows us to prepare the initial state
with a maximal overlap with the classical stable regions [15,
17,18]; see Fig. 1. In our experiments, n is chosen zero and
the β values obey approximately a Gaussian distribution with
FWHM 0.06 centered at β = 0.5.

Our main observables are momentum distributions as a
function of the number of standing wave pulses applied to
the BEC. Figure 2 (upper panel) shows such a distribution
for characteristic system parameters. In the lower panel we
plot the relative amount of population in the mode versus
the kick counter. From this survival probability (to stay
within the mode or within the classical resonance island) we
extract the decay rates by exponential fits. These rates are
presented in Fig. 3 together with decay rates extracted from
numerical simulations. We see that the experimental rates are
systematically larger than the ideal numerical ones. Hence, we
run simulations also including random events of spontaneous
emission occurring with a probability of pSE = 5 × 10−3k per
single kick and per atom. Within the experimental error bars,
we then obtain reasonable agreement with the experimental
data. One notable feature of the experimental data is that there
is a distinct reduction in the decay rate as area increases.
This is exactly the opposite of the behavior expected if our
decay rates are primarily due to SE since k and hence pSE

increase in this situation. While there is also the possibility of
other types of noise, such as vibrations of the lattice, this only

FIG. 2. (Color online) Upper panel: Experimental momentum
distributions showing an accelerator mode in the free falling frame.
Once the mode, composed of the momentum states moving down-
wards, exits the bulk at t ≈ 15, its population is simply measured by
counting the number of atoms in it. Lower panel: Extracted survival
probability vs. kick number (solid line) and exponential fit (dashed
line). Parameters are the same as described in the legend of Fig. 1.

becomes significant as the duration (i.e., number of kicks) of
the experiment is extended. It is for this reason that we could
only measure up to a relatively small number of kicks of about
t ≈ 60. Hence, the temporal range to extract the experimental
rates is rather small.
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FIG. 3. (Color online) Decay rates of the accelerator modes
(black circles) extracted from data such as shown in Fig. 2 and from
numerical simulation for long times without any imperfections (red
squares) and with spontaneous emission (blue crosses). Parameters
are the same as in the previous figures but with k = 0.9, 1, 1.3, and 1.4
for the experimental points. The global scaling with the area divided
by Planck’s constant A/|ε| has a prefactor in the exponent of ≈ −0.9
(see fit by red dashed line) as compared to the theoretical value −1
for direct tunneling ∝ exp(−A/|ε|). The dot-dashed line presents
a fit to the experimental data. There the slope is smaller, ≈ −0.3,
originating from spontaneous emission, which leads to the saturation
of the curve with increasing k. The observation of a negative slope is
strongly suggestive that dynamical tunneling is playing an important
role in these decay rates.
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Please note that we plotted the rates in Fig. 3 as a function
of the area A of the resonance island shown, e.g., in Fig. 1.
These areas are divided by the effective Planck’s constant
|ε|. We computed the areas for different parameter sets by
propagating a single classical trajectory in the chaotic region
for many kicks; see Appendix B in Ref. [19] for details.
A semiclassical theory for direct tunneling (i.e., without
resolving additional small-scale structures within the island)
would predict a scaling � ∝ exp(−A/|ε|). Interestingly, the
ideal numerical simulations show a slightly smaller slope of
≈ −0.9. The simulations are done for ensembles of 104 β

rotors with a Gaussian distribution of the β values as specified
above. The decay rates of the accelator modes (red squares in
Fig. 3) are extracted from summing up the contribution of five
to ten momentum states in the modes (as seen in the upper
panel of Fig. 2) as a function of time for up to a maximum
of 5 × 104 kicks. Since the corresponding computations with
spontaneous emission take a long time, we restrict to just a
few data points, shown by the blue crosses, in this case.

In Fig. 3, we observe clear deviations from the scaling
� ∝ exp(−A/|ε|) for the experimental data arising from the
saturation of the curve with increasing kick strength k or
increasing A/|ε|, respectively. This is due to spontaneous
emission, which scales linear in k, i.e., pSE ∝ k. In conse-
quence, spontaneous emission really hinders us to observe the
expected scaling for the direct tunneling rates. Nevertheless,
as noted previously, the experimental decay rate does decrease
with area, which strongly suggests that dynamical tunneling
is playing an important role. Thus, even though there are
limitations to our experimental study, it can still be seen as
a demonstration of the proof-of-principle for the observation
of dynamical tunneling in periodically kicked systems with
classical mixed phase space.

To further check the semiclassical prediction for the
direct tunneling process from the island into the chaotic sea,
i.e., without any complications due to RAT or other more
elaborated processes, we searched for realistic parameter sets
summarized in Fig. 4. In Fig. 4(a), we kept the kicking period
τ = 5.8 fixed and chose tuples of (k,η), with 0.68 � k �
1.5 and 0.0211 � η � 0.0422, as indicated in the figure. In
Fig. 4(b), we kept fixed the classical phase space structure
determined solely by the two parameters k̃ = k|ε| = 0.5 and
η = 0.06. In both cases we observe an overall scaling with
� ∝ exp(−A/|ε|), while A remains constant in Fig. 4(b), in
contrast to Fig. 4(a). In our imaging system, we cannot use
higher η and k because the momentum distribution is not
observable after a larger kick number. For instance, already
with η ≈ 0.03 and k ≈ 1.5, the momentum distribution beyond
65 kicks cannot be observed [see Fig. 2 (upper panel)].

Despite the experimental imperfections hindering us from
measuring small tunneling rates precisely, the fact that the
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FIG. 4. (Color online) Numerical simulations: (a) dynamical
tunneling rates for fixed τ = 5.8 and the shown tuples of (k,η)
vs. the area A of the resonance island of the modes over Planck’s
constant |ε|. (b) Tunneling rates for fixed A (fixed classical phase
space structure) with η = 0.06 changing k and |ε| accordingly, such
that k|ε| = 0.5. The solid lines present exponential fits with prefactors
in the exponents ≈ −0.63 in (a) and ≈ −1.1 in (b).

decay rate decreases with larger amounts of spontaneous
emission shows that we have a proof-of-principle for the
detection of dynamical tunneling in a periodically kicked
Bose-Einstein condensate. If it were possible to reduce the
spontaneous emission below pSE < 10−4, the tunneling rates
in Fig. 4(a), which lie in the range 2 × 10−4 . . . 4 × 10−2

(inside the dashed box), should be experimentally measurable
with our setup. This could be achieved with the help of a
laser with a larger detuning from the atomic transition and
a correspondingly higher intensity (to maintain the potential
strength we currently have). Detecting more structure in the
rates, e.g., arising from RAT [6,11], is a harder task with an
atom-optics setup. One possible solution might be to realize
accelerator modes in an optical system where experiments can
be carried out up to a few thousand kicks [20]. This would
allow for better measurements of dynamical tunneling over a
much larger range of the effective Planck’s constant |ε|.
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