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Restricted solid-on-solid model with a proper restriction parameter N in 4 + 1 dimensions
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A restricted solid-on-solid growth model is studied for various restriction parameters N in d = 4 + 1
dimensions. The interface width W grows as tβ with β = 0.158 ± 0.006 and W follows W ∼ Lα at saturation
with α = 0.273 ± 0.009, where L is the system size. The dynamic exponent z ≈ 1.73 is obtained from the
relation z = α

β
. The estimated exponents satisfy the scaling relation α + z = 2 very well. Our results indicate

that the upper critical dimension of the Kardar-Parisi-Zhang equation is larger than d = 4 + 1 dimensions. With
a proper choice of the restriction parameter N , we can reduce the discrete effect of the height to the width and
obtain the values of the exponents accurately.
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I. INTRODUCTION

Over the last several decades, there has been great interest in
the surface roughening of nonequilibrium interfaces [1–4]. It
is related to a wide variety of phenomena, such as interfaces of
a burning paper, domain walls in the two-dimensional random
bond Ising model [5], a randomly stirred fluid [6], ballistic
aggregation [7], and directed polymers in random potentials
[8,9].

One of the interesting quantities under stochastic growth is
interface width W , which characterizes the roughness of the
interface. W is defined as the standard deviation of the surface
height:

W (L,t) ≡ 〈[h(x,t) − h(t)]2〉1/2, (1)

where h(x,t) is the local height variable of the surface. A

represents the spatial average of A at time t , and 〈A〉 denotes
the average over many samples.

In general, the surface structure of many growth processes
is self-affine and the surface configurations have a scaling
behavior. Starting from a flat initial condition, the interface
width grows in time following a power law W (L,t) ∼ tβ in
the early time of growth and it saturates in the late time. The
saturation width exhibits a power law W (L,t) ∼ Lα , with L

being the linear size of the system. The interface width W (L,t),
therefore, follows the Family-Visek scaling formula [10]

W 2(L,t) = L2αf (t/Lz) → t2β for t � Lz

→ L2α for t 	 Lz, (2)

where β and α are the growth exponent and the roughness
exponent, respectively. Since the scaling function behaves as
f (x) ∼ x2β for x � 1 and constant for x 	 1, the dynamic
exponent z has a relation z = α/β.

Much of the theoretical effort has been focused on the study
of roughening surfaces for various growth models which are
related to Langevin-type equations. For example, a restricted
solid-on-solid (RSOS) model [11] is well described by the
Kardar-Parisi-Zhang (KPZ) equation [12]. It takes into account
the nonlinearities of the model as

∂h

∂t
= ν∇2h + λ

2
(∇h)2 + η(�r,t), (3)

where η is a random variable that satisfies

〈η(�r,t)η(�r ′,t ′)〉 = 2Dδ(�r − �r ′)δ(t − t ′), (4)

with D describing local variations of noise.
The invariance of the KPZ equation under an infinitesimal

tilt of the interface yields a scaling relation α + z = 2 [12].
So, there is only one independent exponent to be determined.
Most of the recent effort on this problem has been devoted
to verifying these exponents. In d = 1 + 1, which means
one substrate dimension and one height dimension, the
exponents β = 1/3 and z = 3/2 are known [12]. The nonlinear
processes controlling the KPZ equation are not yet completely
understood. In particular, the scaling exponents in higher
dimensions are still under debate [9,11,13–22]. Based on the
computer simulation results of the RSOS model, one of us
suggested β = 1

d+1 [11]. There are some variations among the
values of the exponents quoted by various authors in higher
dimensions [17–27].

Another interesting subject is to look for phase transitions
between a strong-coupling fixed point and an Edwards-
Wilkinson-type trivial point [28]. In d = 2 + 1 there is no
phase transition and only the strong-coupling phase exists.
There is a controversy about the existence of the phase
transition in d = 4 + 1. Some mode coupling calculations of
the KPZ equation suggest that the upper critical dimension
is less than or equal to 4 + 1 [13,14], where the exponents
take the values z = 2 and α = 0. However, the simulation
result of the RSOS model [15,26] and the nonperturbative
renormalization group calculation for the KPZ equation [22]
show the existence of a strong-coupling regime. The existence
of an upper critical dimension is still under debate.

Here, we present a more detailed analysis of the numerical
data on the RSOS model with a proper choice of restriction
parameter N specifically in d = 4 + 1. By reducing the
discrete height effect to the surface width, we can obtain
accurate values of the exponents β, α, and z. Also, our result
insists that the upper critical dimension of the KPZ equation
should be larger than d = 4 + 1 dimensions.

II. RESTRICTED SOLID-ON-SOLID MODEL WITH
VARIOUS RESTRICTION PARAMETER N

The dynamic rule of the discrete RSOS model [11] is to
randomly select a site r on a substrate and then to add a
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particle h(r) → h(r) + δh within the solid-on-solid condition,
provided that the restriction on the local height difference

|∇h| = |h(r) − h(r ′)| � N (5)

is obeyed at all sites on the substrate where r ′ is the nearest
neighbor site of r . If this RSOS condition is not satisfied, the
corresponding deposition event is forbidden. No relaxation or
hopping of the deposited atom is allowed [11]. There exist
two independent parameters: δh is a discrete unit of the height
and N is a restriction parameter which confines the height
difference between the nearest neighbors. Without loss of any
generality, we choose the discrete unit of the height as δh = 1
and carry out Monte Carlo simulations of the RSOS model for
various N . The height restriction parameter N , which directly
controls the interface width, has a strong influence on the
exponents obtained from simulations in higher dimensions
specifically for N = 1. With a proper choice of N , here we
could obtain the exponents accurately. Also the effect of N to
the width is discussed.

III. SURFACE WIDTH

Starting from a flat initial condition on four-dimensional
hypercubic substrates with a periodic boundary condition,
we performed simulations for various values of the height
difference restriction parameter N . The simulation time is
defined in units of the number of trial Monte Carlo steps.
To determine the growth exponent β, we measured W 2(t) as a
function of time. Plotted in Fig. 1 is the mean-square surface
width, W 2(t) for L = 128, averaged over 500 independent
runs for various N . Notice that, except for the case of N = 1,
the curves in log-log plot have quite similar slopes which
are the values of 2β. One can estimate β from the relation
W 2(t) ∼ t2β .

The RSOS model with N = 1 seems to yield accurate
values of the exponents in 1 + 1 dimensions [11]. However, in
higher dimensions such as d = 4 + 1 dimensions, the width for
N = 1 shows clear oscillatory behavior at the early time due
to the discrete unit of the height where W 2(t) is not larger than
one up to very long time. The oscillatory behavior becomes

1 10 100 1000
t

0.1

1

10

100

W
2 (t

)

N=7
N=5
N=4
N=3
N=1

FIG. 1. The data for the interface width W 2(t) as a function of
time t plotted on a logarithmic scale for N = 1, 3, 4, 5, and 7 in
4 + 1 dimensions.

stronger when the width is relatively small compared to the unit
height δh = 1. If we consider a perfect layer by layer growth,
then the surface width becomes 1/2 for half-filled layers and
zero for filled layers. The remnant of this effect in the RSOS
model produces the oscillation behavior which prevents us
from measuring the growth exponent accurately. We obtain
β = 0.137 ± 0.009 with simple fitting function W 2(t) ∼ t2β

for N = 1. This value is consistent with the previous results
β(N = 1) ≈ 0.145 ∼ 0.150 for the RSOS model on larger
system sizes [25,26]. Also, the data of W 2(t) in log-log plot
are slightly curved upwards for N = 1. Due to the discrete
height effect, we think the estimated β using the interface
width for N = 1 tends to underestimate the true value of β.

Since the height h can take only integer value, we should
look at the regime W 2 > 1 to reduce the artifact of the discrete
height. We study the model for various N to eliminate the
oscillation behavior. For N � 3, W 2(t) becomes larger than
1 as shown in Fig. 1. There is an initial region dominated by
a random deposition exponent β = 1/2, followed by a quick
crossover towards a good power law behavior without any
oscillation. We calculate the effective running exponent βeff(t),
defined by ∂ ln W (t)

∂ ln t
against t , which should approach the true

exponent β for 1 � t � Lz as shown in Fig. 2. For both N = 1
and N = 3, the βeff(t) increases with time and then decreases
due to the finite size effect. However, it decreases with time
for N = 5 and 7. The effective β remains constant for quite a
long time for N = 4. Furthermore, Fig. 2 suggests that there
exists a value of N for which the leading correction to the
scaling [W 2(t) ∼ t2β] is quite small. For this value of N = 4
the asymptotic behavior sets in for relatively short times. The
width has a negligible discrete effect and shows a good straight
line in log-log plot. Fitting to the relation W 2(t) ∼ t2β without
any correction terms for the data in the early time, provides

β(N = 4,d = 4 + 1) = 0.158 ± 0.006. (6)

Figure 2 indicates that there is an approaching value of β ≈
0.158 for 1 � t � Lz. One can believe that the value of N

only changes the short wavelength fluctuations which should
be irrelevant as far as the scaling exponents are concerned. We
also try to fit the data using a scaling form with a correction
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FIG. 2. The effective exponent βeff(t) as a function of t for various
values of N in d = 4 + 1 (from bottom to top: N = 1, 3, 4, 5,

and 7).
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FIG. 3. The data for the saturated interface width W 2 as a function
of the system size of L = 8, 12, 16, 22, 32, 46, 64, and 80 plotted
on a logarithmic scale for N = 1, 3, 4, and 5 in 4 + 1 dimension.

W 2(t) = ct2β + m where m is a term like an intrinsic width.
We find β = 0.158(7) which is quite robust for a various range
of 3 � N � 5. The m becomes very small for N = 4 implying
that the correction to scaling is quite negligible. Our estimated
value β is larger than that of N = 1, but a little bit smaller
than 1/6. However, it is almost consistent with the conjecture
β = 1

6 within the error bar.
To measure the roughness exponent α describing the

saturation of the interfacial fluctuations in the late time region,
we monitor the interface width for various system sizes in the
saturated regime as shown in Fig. 3. We calculate α by fitting
the data to the relation W 2(L) ∼ L2α without any correction
term, and obtain

α = 0.273 ± 0.009 (7)

for N = 4. Almost the same exponent is obtained even for
N = 3 and 5. As given in Table I, the measured α is quite
robust against various N (3 � N � 5) except N = 1. It seems
that the measured α ≈ 0.243 for N = 1 is quite a bit smaller
than that of N = 4 due to the discrete height effect. Since our
model for N = 4 is closer to the continuum version of the KPZ
equation than that of N = 1, we could get better estimates of
the exponent.

With the estimates of β and α for N = 4, the exponent
z is estimated as z = α/β ≈ 1.73. Our results for critical
exponents are summarized in Table I. They satisfy the scaling
relation α + z = 2 very well. As Fig. 4 shows, the data scaled
with α = 0.273 and z = 1.73 collapse onto a single curve,

TABLE I. Summary of critical exponents α, β, z, and α + z

obtained through numerical simulations for N = 1, 3, 4, and 5 in
4 + 1 dimension.

N α β z α + z

1 0.243(9) 0.137(9) 1.77 2.01
3 0.270(9) 0.155(6) 1.74 2.01
4 0.273(9) 0.158(6) 1.73 2.00
5 0.276(9) 0.159(6) 1.74 2.01
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FIG. 4. The scaled interface width with α = 0.273 and z = 1.73
for system sizes of L = 8, 16, 32, 64, and 128 in the RSOS model
for N = 4 in 4 + 1 dimension.

supporting the scaling behavior in Eq. (2). It seems that the
width for N = 4 gives better scaling behavior even for smaller
system sizes.

IV. CONCLUSIONS

It is generally known that the RSOS model [11] is well
described by the KPZ equation [12] due to the restriction on the
height difference. In this Brief Report, the RSOS model with
various restriction parameter N is studied to reduce the artifact
of the discrete height, and the critical exponents are measured
as β ≈ 0.158, α ≈ 0.273, and z ≈ 1.73 for N = 4. The growth
exponent is slightly smaller than, but is almost consistent with
our conjecture β = 1

6 [11] within the error bars. Actually the
value of N only changes the short wavelength fluctuations
which should be irrelevant as far as the scaling exponents are
concerned. β ≈ 0.137 for N = 1 is much smaller than that
of the present work, indicating that the asymptotic results in
the infinite system limit were not achieved due to the small
W (t) compared to the unit of the height. We choose N = 4
to reduce this discrete height effect and obtain a good scaling
collapse of the surface width. Also, the numerical results of
the exponents satisfy the scaling relation z + α = 2 very well,
which is known to be valid for the KPZ equation. Therefore, we
believe our results with proper choice of N are more reliable.
Our results indicate that d = 4 + 1 is not the upper critical
dimension of the KPZ equation. Since we obtain z ≈ 1.73
which is much less than 2, there exists a strong-coupling
fixed point in d = 4 + 1. So, the upper critical dimension
should be larger than 4 + 1 dimension. Further analytical work
and additional numerical studies for larger simulations are
necessary for a greater understanding.
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