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Order-disorder quantum phase transition in the quasi-one-dimensional spin-1/2 collinear
antiferromagnetic Heisenberg model
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The ground-state properties of the quasi-one-dimensional spin-1/2 antiferromagnetic Heisenberg model is
investigated by using a variational method. Spins on chains along the x direction are antiferromagnetically
coupled with exchange J > 0, while spins between chains in the y direction are coupled either ferromagnetically
(J' < 0) or antiferromagnetically (J' > 0). The staggered and the colinear antiferromagnetic magnetizations
are computed and their dependence on the anisotropy parameter A = |J'|/J is analyzed. It is found that an
infinitesimal interchain coupling parameter is sufficient to stabilize a long-range order with either a staggered
magnetization m, (J' > 0) or a colinear antiferromagnetic magnetization m.,; (J' < 0), both behaving as ~A!/?

for A — 0.
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The study of low-dimensional spin systems is an inter-
esting theoretical and experimental problem in condensed
matter physics [1]. Experimentally, the interest in these
systems is related to the unusual magnetic properties of lay-
ered perovskites (quasi-two-dimensional compounds) such as
Rb,MnF,, K,)NiF, [2,3], K,MnF, [4] (easy-axis anisotropy),
K,CuF,, NiCl,, BaNi(POy4), [5] (easy-plane anisotropy),
organic compounds [6], ferromagnetic films, multi layers, and
surfaces [7]. Another interesting category of low-dimensional
magnetic systems are the quasi-one-dimensional compounds
containing chains of magnetic atoms with a weak inter-
chain magnetic exchange, as for example the Sr,CuOs,
C32Cu03 [8], SI‘2V309 [9], BaCu2$i207 [10], Sr2Cu(PO4)2
and Ba, Cu(POy), [11], and Cs,CuCly [12], where the
magnetic properties are well theoretically described by a
quasi-one-dimensional spin-1/2 Heisenberg antiferromagnet
(HAF).

Most of the above real compounds exhibit a finite Néel
critical temperature 7y, which is caused by a weak interchain
(or interplane) exchange and/or anisotropy. For example,
the Cs,CuCly quasi-one-dimensional compound has an or-
thorhombic crystal structure [12]. The spin-1/2 Cu®* spins
are coupled into chains running parallel to the b axis,
with four such chains passing through each unit cell. The
magnetic properties, such as the susceptibility, are consistent
with the theoretical results [13] of a quasi-one-dimensional
spin-1/2 HAF with an interaction J = 0.34 + 0.02 meV and
chains coupled in the ¢ direction by a small exchange J' =
0.175 meV. Below Ty = 0.62 K the spins order into a cycloid
along the chain direction with an incommensurate wave vector
g = (0,0.472,0); the incommensurate ordering is due to the
frustration caused by the staggering of chains with respect
to their neighbors. A small anisotropy confines the spins to
rotate within a plane containing the b direction and making a
small angle with the (b,c) plane. This is a typical realization
of a system having weak interchain interactions. More details
in this particular material can be found in Refs. [14,15] and
references therein.
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Bearing in mind the experimental results of such magnetic
materials as a motivation for analytical models, a series of
previous theoretical studies, done by several authors [16-20],
have considered the ground-state magnetic properties of the
quasi-one-dimensional spin-1/2 HAF, as well as isotropic
and frustrated HAF models [21-25]. In particular, one basic
problem is the influence of spatial anisotropy on the ground-
state behavior of the staggered magnetization, m, of the two-
dimensional HAF. Although in some materials (as described
above for the Cs,CuCly) the underlying lattice of interactions
is an anisotropic triangular lattice (or more complex situations
as treated in Refs. [26,27]), the model we are concerned
with is described by the following Hamiltonian defined on
an anisotropic simple square lattice as

HZJZ&i'a_j+J/Zai‘6'jy (1)
(i.J)

(i)«

where (i, j).(,) denote nearest neighbors (NN) along the x(y)
direction on a square lattice, o; = (ai",oiy ,07) is the Pauli
vector spin operator at site i, J >0 (J' >0 or J' <0) is
the NN exchange interaction along the x(y) direction. Here
we define the anisotropy parameter A = |J'|/J € [0,1]. The
model is symmetric for A > 1.

For finite and positive values of the interchain exchange,
J’ > 0, the classical ground-state of the HAF is characterized
by the system possessing an antiferromagnetic (AF) long-
range order. Due to the quantum fluctuations the staggered
magnetization is smaller than the saturated value, i.e., m(A) =
1/2 — I'(}), which continuously increases when A increases.
In the case of negative interchain exchange, J' <0, we
have a collinear state, which is characterized by a parallel
spin orientation of NN in the vertical direction and an
antiparallel spin orientation of NN in the horizontal direction,
therefore exhibiting a Néel order of vertical chains along the x
direction. Figure 1 shows schematically the AF and the CAF
phases. In this case we denote this the Heisenberg collinear
AF (HCAF) model. A priori, the inversion in sign of the
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FIG. 1. The semiclassical ground-state of the spin-1/2 HAF
model on an anisotropic square lattice. We have two ordered states:
(a) antiferromagnetic J' > 0 (AF) and (b) colinear antiferromagnetic
J' < 0 (CAF).

interchain exchange (J' — —J’) could modify the value of the
staggered magnetization, i.e., ms(—J’) # mg(J’), as observed
in quantum Monte Carlo results [28]. However, within the
well-developed chain mean-field theory (see, for instance,
Ref. [29]), the results are not sensitive to the sign of J’. In the
isotropic square lattice limit (A = 1) with J’ > 0, the system
exhibits an AF long-range order (LRO) at zero temperature
with a finite value for my(A = 1) >~ 0.3075, while the one-
dimensional isotropic limit (A = 0) indicates an absence of
LRO [mz(A = 0) = 0] [30]. The exact solution of the spin-1/2
HAF chain shows that the low-lying excitations are spin-1/2
objects (now called spinons) [31], quite different from standard
spin waves. At finite temperature and dimension d < 2, the
thermal fluctuations destroy the LRO of the isotropic HAF or
HCAF [32].

There is still a quite basic question that has been intensively
investigated by several authors regarding the presence of an
order-disorder transition in model (1), i.e., the existence of
a critical value A, > 0 where there occurs a quantum phase
transition from a LRO (A > A.) to a spin liquid state with
pronounced AF short-range order (SRO) for & < A.. For exam-
ple, spin wave linear (SWL) theory [16] gives A, = 0.034 and
the one-loop renormalization group analysis [33] found A, =
0.047. The series approach [20] with Padé approximants to
Ising expansions for m (1) suggested that A. < 0.02, and field
theoretical studies indicate o < 0.1 [34]. On the other hand,
some results [16,18,35-39] have found a null value 1. = 0,
which seems to be more plausible, because the ground state
of the one-dimensional spin-1/2 HAF model is not gapped.
Model (1) has also been solved using the mean-field approx-
imation (MFA). The MFA is based on the Jordan-Wigner
transformation of spin-1/2 operators to the Fermi ones with the
subsequent mean-field treatment of the four-fermion term [40].
This method gives a coherent description of the ordered AF
state and produces nontrivial quantitative predictions for static
and dynamic quantities that have been successfully compared
to experiments. In particular, the mean-field treatment [29,41]
of the interchain ratio leads to m,(1) ~ A!/2, up to logarithmic
corrections. These relations are consistent with general scaling
arguments [42]. On the other hand, the renormalized SW
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theory [43] predicts a behavior m (1) >~ 1/1In(1/A), in clear
contradiction with scaling. It can be seen that even the problem
of the weakly coupled Heisenberg spin chains is indeed an
unsolved fundamental task in condensed matter physics. It is
not surprising that it has received a great deal of attention
over the last five decades. It encapsulates the physics of the
crossover from truly one-dimensional systems, dominated by
quantum fluctuation effects, to two-dimensional, renormalized
classical behavior.

In the present work we use a variational approach where
the fluctuations around the classical ground states (AF and
CAF phases) are treated by considering a trial vector state
of the form |Wy) = ]_[11\]:/14 |dor), where N is the total number
of spins on a two-dimensional lattice, |¢q;) is the state of a
plaquette of four spins as depicted in Fig. 2, and the product is
taken over the N /4 no overlapping plaquettes. The plaquette
state is itself defined as a linear combination of the vector
basis of the o° operator in such a way that Z?:l (of) =0,

namely {|1) = |7 0 12) =7 nB) =T 4 =7

5) =15 ;):16) = _)}. Thus one has

6
|do) = Y anln)y, )
n=1

where the coefficients {a,} are real variational parameters
obeying the normalization condition Y"°_, a? = 1. With this
choice of vector states, the mean value of the spin operator
in each site of the plaquette is given by (o;) = m;z, where
i =1,2,3,4asinFig. 2, m; = (67) = (dolo} |¢por), and we are
left with null components in the x and y directions.

Using the trial vector state defined in the Eq. (2), we obtain

the following magnetizations at each site
my =2(xu + yv — zw), my = 2(—xu + yv + zw), 3

ms = 2(xu — yv + zw), mg4 = 2(—xu — yv — zw),

5 6 7
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FIG. 2. Two-dimensional square lattice with a plaquette structure.

The shadowed one is composed with the four ,, 55,03, and 6, spin
operators that are considered in Eq. (2).

034101-2



BRIEF REPORTS

where we have used the same set of parameters (canonical
transformation) of Ref. [44], ie., x = (a1 + a2)/~/2,y =
(a3 + as)/~/2,2 = (as + ag)/2, u = (a1 — ar)/2,v =
(a3 —as)/~/2, and w = (a4 — ag)/~/2, which obey the
normalization condition x? + y*> + z2 + u? + v + w? = 1.
The ground-state energy per spin in units of J;, Ey =
(Wo|H|Wo) /4N J1, is given by
Ey = (01.62)a + A(02.03) 4 + (03.G4) 4 + A(04.01)a
+1(G1)a - (G5)B + A{G2)a - (G6)B + (G2)a - (T8)C
+(03)a - (o), 4)
where (O),, = (¢0.|O|¢o,) is the mean value of a given
observable O calculated in the vector state of the wu(=
A,B,C, D) plaquette as illustrated in Fig. 2.
The variational energy can be evaluated using the properties
of the spin-1/2 Pauli operator components o?|4) = £|£),

o*|x) = |F) and o”7|%) = £i|F), which can be expressed
as

A+ 1
Ey= — <%) (2 +u?) =200 + Dx2u?

(1-2)
2
+2(1 — M(y*v?

+ [y + v — 22 — w?]

— 22w +2x(yA+2). ()

To obtain the minimum energy with the boundary condition
given by normalization x> + y> + 22 + u?> + v + w? = 1 we
use the Lagrange multiplier method, which corresponds to the
minimization of the functional

F(x,y,z,u,v,w,n)
=Ep— 2+ Y+ 22+t 0P+ w = 1), (6)
in such a way that § F = 0. We then get

—(A 4 Dx(1 4 4u?) +2(yA + 2) = 2nx,
(1 — )yl +4v>) + 2x1 = 2y,

—(1 = Mz(1 + 4w?) + 2x = 2z,

—( + (1 + 4x>)u = 2nu,

(1 =01 + 4y = 2nv,

—(1 =01 + 425w = 2nw,

)

where 7 is the Lagrange multiplier.

The equations above can be solved numerically and when
several solutions are found the stable one will be that which
minimizes the energy. In this way, we always find a disordered
solutionm| = my = m3 = m4 = 0 with an energy higher than
those for the ordered phases.

In the AF phase, J' > 0, we have the staggered magne-
tization defined by my = (m| — my + my — m4)/4, where, in
the absence of any external field, gives m| = —my = mj3 =
—my4 = 2xu [see Fig. 1(a)]. The solution in this case is given
by v = w = 0and u,x,y,z # 0. The solution for u,x,y, and z
depends on XA and the staggered magnetization so obtained
is shown in Fig. 3. Note that in Fig. 3 we have defined
ma =my/2 = (S;), where §; = 5 = 1). In the isotropic
limit we have m4 = 0.44, which should be compared to a
more rigorous result m4 = 0.3075 from Ref. [30]. As A — 0
the magnetization goes to zero as m, ~ A!/2.
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FIG. 3. (Color online) Staggered magnetization m 4 as a function
of interchain ratio A of the quasi-one-dimensional spin-1/2 Heisen-
berg model obtained by using (a) variational method (present work),
where the solid and dashed lines correspond to the AF and CAF
states, respectively, and (b) spin wave linear theory [16]. The inset
shows the comparison of our results (solid line) with those obtained
by using a mean-field approximation (MFA) (dashed line) for the AF
state [29].

On the other hand, in the CAF phase, J' < 0, we have my; =
(my —my —m3 +my), where m; = —mp, = —mz = my =
2zw [see Fig. 1(b)]. The solution is now given by u = w =0
and v,x,y,z # 0. The CAF staggered magnetization as a
function of A is also shown in Fig. 3 for the ferromagnetic
interchain couplings. In the isotropic limit (A = 1) we find
m 4 = 0.46 for the CAF states, which is higher than the value
for the AF state, meaning that we have in fact my(J’ > 0) #£
my(J' < 0).In addition, a higher value of m 4 in the CAF phase
than in the AF phase has also been recently confirmed using
a continuous-time Monte Carlo method [28]. In both cases,
for any finite value of A, the system is magnetically ordered,
by a spontaneous breaking of the SU(2) spin symmetry. Our
results for both signs of the transverse coupling, depicted in
Fig. 3, have the same form at small A given by m 4 ~ A'/? as
A — 0. This is the same critical behavior from the mean-field
approach [29,41,42] in this limit, which is presented as a
comparison in the inset of Fig. 3. This is not surprising because
the variational approach used in this work corresponds to a
mean-field-like approach. Our results for the AF and CAF
staggered magnetizations deviate from the expected form at
values below A ~ 0.40. The model (1) with AF interchain
coupling was also studied by Sandvik [18] using quantum
Monte Carlo simulation within a multichain mean-field theory,
and reveals strong logarithmic corrections to the square-root
dependence, m 4 ~ 1!/ In'/3(1). This logarithmic correction
was not observed in the variational approach developed in this
work. Also presented in Fig. 3 are the results obtained using
SWL theory [16] that found a finite critical value A, = 0.034.

In summary, the present simple approach for the quasi-one-
dimensional antiferromagnetic Heisenberg model is able to
provide a zero critical value for the anisotropic exchange ratio
Ae = 0, as should be expected for this system [16,18,35-39],
and a higher staggered magnetization in the CAF phase than in
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the AF phase, in agreement to Monte Carlo simulations [28].
Although the asymptotic limit of the staggered magnetization
m 4 is the same as the MFA, its global behavior on A is much
better than the mean-field ones, as can be noted in the inset
of Fig. 3. We can argue that the present results indeed reveal

PHYSICAL REVIEW E 88, 034101 (2013)

the true behavior of the AF and CAF spin-1/2 quasi-one-
dimensional Heisenberg model.
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