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Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case
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Based on the Boltzmann-BGK (Bhatnagar-Gross-Krook) equation, in this paper a discrete unified gas kinetic
scheme (DUGKS) is developed for low-speed isothermal flows. The DUGKS is a finite-volume scheme with the
discretization of particle velocity space. After the introduction of two auxiliary distribution functions with the
inclusion of collision effect, the DUGKS becomes a fully explicit scheme for the update of distribution function.
Furthermore, the scheme is an asymptotic preserving method, where the time step is only determined by the
Courant-Friedricks-Lewy condition in the continuum limit. Numerical results demonstrate that accurate solutions
in both continuum and rarefied flow regimes can be obtained from the current DUGKS. The comparison between
the DUGKS and the well-defined lattice Boltzmann equation method (D2Q9) is presented as well.
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I. INTRODUCTION

With the increasing demand in simulating multiscale fluid
flows, numerical methods based on kinetic theory have
attracted much attention. A variety of kinetic methods have
been developed in recent years, such as the lattice gas automata
method [1], the lattice Boltzmann equation (LBE) method [2],
the gas kinetic scheme (GKS) method [3,4], and the dissipative
particle dynamics method [5], among which the LBE and
GKS methods are specifically designed for computational fluid
dynamics (CFD). The kinetic nature of the LBE and GKS has
led to many distinctive advantages that distinguish them from
classical CFD methods, and a variety of successful applications
in multiscale flows have been achieved [6–13].

Although sharing the common connection with the Boltz-
mann equation, the LBE and GKS methods exhibit some
clear differences. First, the LBE is a finite-difference scheme
with a discrete particle velocity set coupled with a regular
lattice, while the GKS is a finite-volume formulation with a
continuous particle velocity space. Second, the equilibrium
distribution in LBE is an approximation to the Maxwellian
distribution by its low-order expansion around zero velocity,
and so the LBE is limited to nearly incompressible flows
at low Mach number; on the other hand, the GKS uses a
complete Maxwellian distribution as the equilibrium state and
is therefore valid for fully compressible flow simulations.
Third, the LBE solves the (nearly) incompressible Navier-
Stokes equations implicitly through the proper choice of the
discrete velocity set and the discrete equilibrium distribution
functions, while the GKS solves the Navier-Stokes equations
explicitly by using the Chapman-Enskog expansion directly.
Recently a comparative study of the performance of the LBE
and GKS for nearly incompressible flow over a square cylinder
has been conducted [14].

Originally, both LBE and GKS were designed for contin-
uum flows. Extensions to rarefied gas flows have been devel-
oped recently. For example, the LBE with high-order moments
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or effective relaxation times have been proposed for flows with
finite Knudsen numbers [6–8,15], while gas kinetic schemes
with high-order expansions (Burnet and super-Burnet) are
used for nonequilibrium flow study [16,17]. However, these
improvements are still limited to weak nonequilibrium flows.
Recently, a unified GKS (UGKS) method for all Knudsen
number flows has been successfully constructed [4]. In UGKS,
the gas distribution function at discrete particle velocities is
numerically updated, as well as the conserved flow variables
inside each control volume. However, the use of discrete veloc-
ities to represent a Maxwellian distribution may introduce con-
servation error in the discrete collision operator when updating
the distribution function, although the conservation is precisely
satisfied in the update of conserved variables. With sufficient
number of discrete velocities, the UGKS is able to present
satisfactory solutions for both continuum and rarefied flows
efficiently and accurately [4,18]. Recently, the UGKS frame-
work has been adopted in the construction of an asymptotic
preserving (AP) scheme for radiative transfer problems [19].

In this series of work, we aim to develop a type of
discrete unified gas kinetic scheme (DUGKS) which combines
the advantages of both LBE and UGKS methods, and to
enlarge the applicable flow regime of the LBE method. First,
the DUGKS is a finite-volume scheme with flexible mesh
adaptation, just like the GKS. Second, the evaluation of the
flux at a cell interface in DUGKS is simplified by employing
a transformation of distribution function with collision effect,
which is used similarly in the LBE. Finally, by expanding the
Maxwellian distribution into a series of velocity polynomials
and choosing suitable discrete velocities, the DUGKS keeps its
conservation properties in the discrete collision operator. The
current paper presents the basic ingredients in DUGKS for
smooth isothermal continuum and rarefied flow computations.
The scheme for the general thermal flow will be presented in
subsequent papers.

II. DISCRETE UNIFIED GAS-KINETIC SCHEME

A. Updating rule

The starting point of the proposed DUGKS is the
Boltzmann equation with the Bhatnagar-Gross-Krook (BGK)
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collision model [20],

∂f

∂t
+ ξ · ∇f = � ≡ − 1

τ
[f − f eq], (1)

where f = f (x,ξ ,t) is the velocity distribution function for
particles moving with velocity ξ at position x and time t , τ

is the relaxation time, and f eq is the Maxwellian equilibrium
distribution function,

f eq = ρ

(2πRT )D/2
exp

(
−|ξ − u|2

2RT

)
, (2)

where R is the gas constant, D is the spatial dimension, ρ is the
density, u is the fluid velocity, and T is the temperature. The
conservative flow variables are the moments of the distribution
function,

W =

⎛
⎜⎝

ρ

ρu

ρE

⎞
⎟⎠ =

∫
ψ(ξ )f dξ , (3)

where ρE = ρ(u2 + DRT )/2 is the total energy, and ψ =
(1,ξ ,ξ 2/2)T is the collision invariant. Note that the BGK
model gives a fixed Prandtl number (Pr = 1). Other types
of equilibrium distribution functions, such as the Shakhov
model [21] or the ellipsoidal statistical model [22], can be
employed as well to adjust the Prandtl number.

Like the original GKS, the present scheme is also a
finite-volume method. First, the flow domain is divided into a
set of control volumes. As an illustration, a one-dimensional
schematic diagram is shown in Fig. 1. Integrating Eq. (1)
on a control volume Vj centered at xj from time tn to
tn+1 = tn + �t (the time step �t is assumed to be a constant
in the present work), one can obtain

f n+1
j − f n

j + �t

|Vj |F
n+1/2 = �t

2

[
�n+1

j + �n
j

]
, (4)

where the midpoint rule for the integration of the convection
term and trapezoidal rule for the collision term are used,
respectively, and

Fn+1/2 =
∫

∂Vj

(ξ · n)f (x,tn+1/2) dS (5)

is the microflux across the cell interface, where |Vj | and ∂Vj

are the volume and surface of cell Vj , n is the outward
unit vector normal to the surface, and fj and �i are the

f̄+
j+1

f̄+
j+1/2

f̄+
j

xj+1/2xj−1/2

xj+1xj

FIG. 1. (Color online) Schematic of one-dimensional cell
geometry.

cell-averaged values of the distribution function and collision
term, respectively, e.g.,

f n
j = 1

|Vj |
∫

Vj

f (x,ξ ,tn) dx. (6)

Note that the update of fj , as shown in Eq. (4), is implicit
in that the unknown macroscopic conserved variables W at
tn+1 are required to evaluate f eq in the collision term �n+1

j . In
order to remove this implicit treatment of the source term, a
new distribution function is introduced,

f̃ = f − �t

2
� = 2τ + �t

2τ
f − �t

2τ
f eq. (7)

Then Eq. (4) can be rewritten as

f̃ n+1
j = f̃

+,n
j − �t

|Vj |F
n+1/2, (8)

where

f̃ + = 2τ − �t

2τ + �t
f̃ + 2�t

2τ + �t
f eq. (9)

Since the collision operator conserves mass, momentum, and
energy, the conserved variables can be computed from f̃ ,

W =
∫

ψ f̃ dξ . (10)

With these facts, in the DUGKS we will track the evolution of
the distribution function f̃ instead of the original one.

The key point in updating f̃ according to Eq. (8) is to
evaluate the flux Fn+1/2. In order to get that, we first integrate
the Boltzmann equation within a half time step h = �t/2
along the characteristic line with the end point (xb) located
at the cell interface (xb = xj+1/2 in the one-dimensional case,
see Fig. 1),

f (xb,ξ ,tn + h) − f (xb − ξh,ξ ,tn)

= h

2
[� (xb,ξ ,tn + h) + � (xb − ξh,ξ ,tn)] , (11)

where the trapezoidal rule is again used to evaluate the collision
term. Then, similar to the treatment in Eq. (4), we introduce
another distribution function f̄ to remove the implicity in
Eq. (11),

f̄ = f − h

2
� = 2τ + h

2τ
f − h

2τ
f eq, (12)

or

f = 2τ

2τ + h
f̄ + h

2τ + h
f eq. (13)

As a result, Eq. (11) gives

f̄ (xb,ξ ,tn + h) = f̄ +(xb − ξh,ξ ,tn), (14)

where

f̄ + = 2τ − h

2τ + h
f̄ + 2h

2τ + h
f eq. (15)

Now the focus is on determining f̄ +(xb − ξh,ξ ,tn). With
the Taylor expansion around the cell interface xb, for smooth
flows, f̄ +(xb − ξh,ξ ,tn) can be approximated as

f̄ +(xb − ξh,ξ ,tn) = f̄ +(xb,ξ ,tn) − ξh · σ b, (16)
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where f̄ +(xb,ξ ,tn) and the gradient σ b = ∇f̄ +(xb,ξ ,tn) at the
cell interface can be approximated by linear interpolations.
For example, in the one-dimensional case shown in Fig. 1, the
reconstructions become

σj+1/2 = f̄ +(xj+1,ξ,tn) − f̄ +(xj ,ξ,tn)

xj+1 − xj

, (17a)

f̄ +(xj+1/2,ξ,tn) = f̄ +(xj ,ξ,tn) + σj+1/2(xj+1/2 − xj ). (17b)

Based on Eqs. (14) and (16), we can get

f̄ (xb,ξ ,tn + h) = f̄ +(xb,ξ ,tn) − ξh · σ b, (18)

from which the conserved variables at the cell interface can be
obtained,

W (xb,tn + h) =
∫

ψ f̄ (xb,ξ ,tn + h) dξ . (19)

As a result, the equilibrium distribution function f eq(xb,tn +
h) is fully determined, and the original distribution function
can be obtained from f̄ (xb,tn + h) as well:

f (xb,tn + h) = 2τ

2τ + h
f̄ (xb,tn + h)

+ h

2τ + h
f eq(xb,tn + h). (20)

With the determination of the distribution function at a cell
interface, the microflux F can be fully evaluated according to
Eq. (5). The update of the distribution function f̃ can then be
done according to Eq. (8).

It should be noted that the distribution functions f̃ , f̄ , f̃ +,
and f̄ + are all related to the original distribution function f

and the Maxwellian f eq (see Appendix A). Particularly, the
following relations will be used in computation:

f̄ + = 2τ − h

2τ + �t
f̃ + 3h

2τ + �t
f eq, (21)

f̃ + = 4

3
f̄ + − 1

3
f̃ . (22)

In summary, the update of f̃ from t to t + �t in the discrete
unified gas kinetic schemes (DUGKS) is the following:

f̃ (xj ,t)
(21), (22)−−−−→ f̄ +(xj ,t) and f̃ +(xj ,t)

−→ f̄ +(xb,t) and σ b

(18)−−→ f̄ (xb,tn + h)
(19)−−→ W (xb,t + h)

(20)−−→ f (xb,t + h)
(5)−→ F (xb,t + h)

(8)−→ f̃ (xj ,t + �t).

The above scheme is valid in a continuous particle velocity
space ξ . In practical computations, ξ will be replaced by
discrete particle velocities, which will be presented in the next
section.

B. Discretization of the particle velocity space

The discretization of the particle velocity space is important
for any discrete ordinate method. In DUGKS, the velocity
space is divided into a finite set of subcells, i.e.,

ξ ∈
N⋃

i=−N

[ξ i−1, ξ i ] ,

where i = (i1,i2, . . . ,iD), and N = (N1,N2, . . . ,ND), with Ni

being positive integers.
With the discrete velocity space, the moments of a con-

tinuous distribution function have to be expressed as discrete
moments,

m =
∫

φ(ξ )f (ξ )dξ =
N∑

i=−N

wiφ(ξ i )f (ξ i ), (23)

where φ is a polynomial of the particle velocity ξ and wi is
the weight of the numerical quadrature at the discrete velocity
ξ i . In general, the quadrature cannot present the same results
as the exact moments of a continuous distribution function
due to numerical errors, and the difference can be reduced
by increasing the number of discrete points. Particularly with
discrete velocities, the BGK collision operator may not be
fully conservative [23–25], i.e.,

W ≡
N∑

i=−N

wiψ(ξ i )f (ξ i ) �=
N∑

i=−N

wiψ(ξ i )f
eq(ξ i ,W ). (24)

However, one can define a discrete Maxwellian distribution
with some free parameters to be determined with the conser-
vation requirement [24], where a nonlinear system needs to be
solved.

In the following, a simple method to ensure the conservation
for low-speed isothermal flow is proposed, which is inspired
by the LBE method. At a constant temperature T and low fluid
velocity, i.e., the Mach number Ma ≈ |u|/√RT � 1.0, the
Maxwellian distribution can be approximated by its Taylor or
Hermite expansion up to second order of Ma, the same as the
LBE method [15,23,26]:

f eq(ξ ) = ρ

(2πRT )D/2
exp

(
− |ξ |2

2RT

)

×
[

1 + ξ · u
RT

+ (ξ · u)2

2(RT )2
− |u|2

2RT

]
. (25)

Then the conservations of mass and momentum can be realized
by choosing an appropriate quadrature rule with the following
moment evaluation:∫

ψ(ξ )f eqdξ =
∑

i

wiψ(ξ i )f
eq(ξ i ), ψ = 1, ξ . (26)

From the expression of Eq. (25), it is natural to choose
the Gauss-Hermite quadrature with the weight function
(2πRT )−D/2 exp(−|ξ |2/2RT ). Assuming that the abscissas
and the corresponding weights of the chosen quadrature are ξ i

and Wi , respectively, then we can identify the weights used in
evaluating the discrete moments in Eq. (23):

wi = Wi (2πRT )D/2 exp

( |ξ i |2
2RT

)
. (27)

Usually, it is difficult to obtain Gauss-Hermite formulas as
D > 1, but the tensor product of one-dimensional formulas can
be used to define a high-dimensional formula. Assuming that
ξi and Wi are the abscissas and weights of a one-dimensional
quadrature, the abscissas and weights of a D-dimensional
Gaussian-Hermite quadrature become

ξ i = (
ξi1 ,ξi2 , . . . ,ξiD

)
, Wi = Wi1Wi2 . . . WiD , (28)

where i = i1i2 . . . iD .
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It should be noted that the abscissas of Gauss-Hermite
quadrature are not uniformly distributed. In highly nonequi-
librium flow computations, the discrete velocities determined
in this way may not be appropriate due to the significant
deviation of f from the equilibrium. In such cases a uniformly
distributed discrete velocity is preferred, such as using Gauss
or Newton-Cotes rules.

C. Boundary conditions

Appropriate boundary conditions should be specified for
the discrete distribution functions at solid walls. Two types
of kinetic boundary conditions will be considered here: the
bounce-back rule and the diffuse-scattering rule. The former
is for a no-slip wall, which assumes a particle just reverses
its velocity after hitting the wall. Specifically, assuming the
wall is located at a cell interface xw, then the distribution
functions f (xw,ξ i ,t + h) for particles moving towards the
wall, i.e., ξ · n � 0 with n being the unit vector normal to
the wall pointing to the cell, can be constructed following the
procedure described in Sec. II A, and those for particles leaving
the wall are determined as

f (xw,ξ i ,t + h) = f (xw,−ξ i ,t + h) + 2ρw

Wi

wi

ξ i · uw

RT
,

(29)
ξ i · n > 0,

where uw is the wall velocity, and ρw is the density at the wall
determined by the definition of the density,

ρw =
⎡
⎣1 − 2

RT

∑
ξ i ·n>0

Wiξ i · uw

⎤
⎦

−1

×
⎡
⎣ ∑

ξ i ·n=0

wif (ξ i ) + 2
∑

ξ i ·n<0

wif (ξ i )

⎤
⎦ . (30)

For nearly incompressible flow, ρw can be approximated well
by the constant average density. The above method is also
widely used in LBE for no-slip walls [27].

The diffuse-scattering rule assumes the velocity distribution
is Maxwellian, with the wall temperature and velocity, once
the particles reflect from the wall, as follows:

f (xw,ξ i ,t + h) = f eq(ξ i ; ρw,uw), ξ i · n > 0, (31)

where the density ρw is determined by the condition that no
particles can go through the wall, i.e.,∑

ξ i ·n>0

(ξ · n)f eq(ξ i ; ρw,uw)

+
∑

ξ i ·n<0

(ξ · n)f (xw,ξ i ,t + h) = 0, (32)

which gives

ρw = −
⎡
⎣ ∑

ξ i ·n>0

(ξ · n)f eq(ξ i ; 1,uw)

⎤
⎦

−1

×
∑

ξ i ·n<0

(ξ · n)f (xw,ξ i ,t + h). (33)

D. Algorithm

In the following, we list the computation procedure for
the updating of the discrete distribution function. In the
computation, the weight coefficients wi can be absorbed into
the discrete distribution functions, i.e.,

fi = wif (ξ i ), f
eq
i = wif

eq(ξ i ).

Particularly, if the Gauss-Hermite quadrature is employed, the
expanded discrete equilibrium distribution function takes a
simple formulation,

f
eq
i = Wi

[
1 + ξ · u

RT
+ (ξ · u)2

2(RT )2
− |u|2

2RT

]
, (34)

which is very similar to that in LBE. Note that in the proposed
DUGKS, the distribution f̃ is recorded instead of the original
one, so that the density and velocity can be evaluated as

ρ =
N∑

i=−N

f̃i , ρu =
N∑

i=−N

ξ i f̃i . (35)

The update of f̃i is the same as that for the continuous case
presented in Sec. II A. Specifically, with initialized f̃ 0

j,i in all
cells centered at xj (j = 1,2, . . . ,J , with J being the total
number of cells), the procedure of the DUGKS at each time
step tn reads as follows:

(1) Compute the distribution functions f̄
+,n
j,i in each cell,

Eq. (21).
(2) Compute the distribution functions f̄

n+1/2
i (xb), Eq. (18).

(3) Compute the density ρn+1/2(xb) and velocity un+1/2(xb)
at the interface from f̄

n+1/2
i (xb), Eq. (19).

(4) Compute the original distribution function f
n+1/2
i (xb),

Eq. (13).
(5) Compute the microflux across the cell interfaces from

f
n+1/2
i (xb), Eq. (5).
(6) Update the distribution functions f̃ n+1

j,i via Eq. (8), where
f̃ + is computed according to Eq. (22).

III. PROPERTIES OF THE DUGKS

It is interesting to discuss the properties of the present
DUGKS. First, the DUGKS is a multidimensional scheme
in the reconstruction of the distribution function at the cell
interface. As mentioned in Ref. [28], it is not straightforward
to develop a multidimensional finite-volume scheme based
on the macroscopic fluid equations [3]. In the DUGKS,
instead of waves the particle is followed by its trajectory in
a multidimensional basis.

Second, the DUGKS exhibits the asymptotic preserving
(AP) property. As mentioned in Ref. [4], a kinetic scheme is AP
if (a) the time step is not restricted by the particle collision time
in the continuum regime; (b) it preserves the discrete analogy
of the Chapman-Enskog expansion as the Knudsen number
goes to 0; and (c) the scheme has at least second-order accuracy
in both continuum and free-molecular regimes. For the present
DUGKS, it couples the advection and collision processes of
particle transport, and the time step �t is independent of the
collision time τ for all flow regimes, which is determined by
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the Courant-Friedrichs-Lewy (CFL) condition [4],

�t = α
�x

C
, (36)

where α is the CFL number, �x is the minimal grid spacing,
and C is in the order of the maximal discrete velocity. For
continuum flow, C can be taken as the sound speed of the
flow. Therefore, the DUGKS satisfies the condition (a). For
condition (b), as shown in Appendix B, in the continuum limit
as τ � �t the reconstructed distribution function at the cell
interface given by Eq. (20) goes to

f (xb,ξ ,tn + h) ≈ f eq(xb,ξ ,t) − τ (∂t + ξ · ∇)f eq(xb,ξ ,t)

+h∂tf
eq(xb,ξ ,t), (37)

which recovers the Chapman-Enskog approximation for the
Navier-Stokes solution [3,4]. On the other hand, in a highly
nonequilibrium limit when the relaxation time is much larger
than the time step (τ 	 �t), Eq. (20), together with Eqs. (14),
(15), and (12), gives that f (xb,tn + h) ≈ f (xb − ξh,tn),
which presents the collisionless limit. Regarding the accuracy,
the use of the midpoint and trapezoidal rules in Eqs. (4) and
(11), as well as the linear reconstruction of the distribution
function at the cell interface, ensures a second-order accuracy
in both space and time. The above arguments indicate that the
present DUGKS is an asymptotic preserving scheme.

Now let us compare the present DUGKS with the original
UGKS [4,18,28]. It is clear that the DUGKS shares many
common features with the UGKS, such as the use of discrete
velocity space and the AP property. However, the differences
between these two schemes are also clear: First, in the original
UGKS [4], both the conserved flow variables W and the
discrete distribution functions are updated simultaneously in
each control volume Vj , i.e.,

Wn+1
j − Wn

j + 1

|Vj |
∫ tn+1

tn

F (t) dt = 0, (38)

f n+1
j =

(
1 + �t

2τ

)−1[
f n

j + �t

2τ
f

eq
j (Wn+1) + �t

2
�n

j

− 1

|Vj |
∫ tn+1

tn

F (t) dt

]
, (39)

where F = ∫
∂Vj

(ξ · n)ψf (x,ξ ,t) dS dξ and F = ∫
∂Vj

(ξ ·
n)f (x,ξ ,t) dS are the macroscopic and microscopic fluxes
across the cell interface, respectively. The distribution function
f (t) at the cell interface is reconstructed from an integral
solution of the BGK model, which is similar to the BGK
Navier-Stokes scheme [3]. On the other hand, in the present
DUGKS the update of the conserved flow variables W are
not required for the solution f̃ . Also, in the calculation of
the microscopic flux F , only the distribution function at
the discrete half time step, i.e., f (t + �t/2), is needed and
obtained explicitly through f̄ . With this technique the update
of the distribution function in the DUGKS is much simplified.

The second main difference between the DUGKS and
UGKS lies in the enforcement of the conservative property
of the discrete collision operator. In the UGKS, the use
of Maxwellian equilibrium with discrete velocities cannot
ensure the conservation of the discrete collision operator
rigorously [see Eq. (24)], even though the updated W in

Eq. (38) satisfies the conservation precisely due to the
use of

∑
i wiψ(ξ i)�(ξ i) = 0 inside each control volume.

Consequently, the nonconservation property of the discrete
collision operator may remain in the update of the distribution
function in Eq. (39). On the contrary, with an expansion of the
Maxwellian and suitable quadratures, the DUGKS can realize
the conservation in the update of f (and so W ).

It is also interesting to compare the present DUGKS with the
LBE method. The apparent common feature of both methods
is the use of an expanded equilibrium distribution function,
but the obvious difference between them is that LBE is a
finite-difference scheme which uses a regular lattice coupled
with the discrete velocities, while the DUGKS is a finite-
volume scheme which can employ irregular meshes. Another
difference is that the DUGKS can be easily applied to rarefied
gas flows, while the original LBE is mainly designed for the
Navier-Stokes equations. With the use of higher-order Gauss-
Hermite quadratures, having discrete velocity sets which are
usually incompatible with a regular lattice, the LBE can be
extended to nonequilibrium flows [15]. We note that some
finite-volume LBE discretizations (FV-LBE) (e.g., [29–32])
were also designed for solving the following discrete-velocity
model:

∂fi

∂t
+ ξ i · ∇fi = �(ξ i ). (40)

In FV-LBE, the transport term is usually discretized using the
first-order upwinding approach. The analysis in Refs. [31,33]
indicates that the FV-LBE method may suffer from severe
numerical dissipation and the time step �t is limited by
the collision time τ , meaning that the AP property is not
maintained in the FV-LBE method.

IV. NUMERICAL RESULTS

In this section, the DUGKS will be validated through some
numerical tests. The tests include two parts. In the first part, two
continuum flows are simulated and the results are compared
with the analytical solutions or benchmark data. In the second
part, the DUGKS will be used to study rarefied flows in the
transition and free molecular regimes.

For continuum flows, the three-point Gauss-Hermite
quadrature is used to evaluate the moments, which yields the
following discrete velocities and associated weights (D = 1),

ξ−1 = −
√

3RT , ξ0 = 0, ξ1 =
√

3RT ,
(41)

W0 = 2/3, W±1 = 1/6.

For higher-dimensional flows, the discrete velocities and
weights are generated using the tensor product method de-
scribed in Sec. II B. Furthermore, for continuum flows no-slip
boundary conditions, which are realized by the bounce-back
rule, are used at solid walls.

For the nonequilibrium microflows, the Knudsen number is
defined as Kn = λ/L, where λ and L are the mean free path and
characteristic length of the flow, respectively. Here λ is related
to the relaxation time τ through the viscosity coefficient, i.e.,

λ = μ

p

√
πRT

2
= τ

√
πRT

2
. (42)
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FIG. 2. (Color online) Velocity profiles at different times of the
Taylor vortex flow.

Because of low fluid speed in microflows, the expanded
equilibrium distribution function given by Eq. (25) is em-
ployed. The discrete velocities are chosen based on two types
of quadratures, depending on the flow properties, i.e., the
half range Gauss-Hermite quadrature [34,35] or the Newton-
Cotes quadrature. The former is found to be able to give
satisfactory predictions for flows close to the equilibrium,
while the Newton-Cotes quadrature can give good predictions
for nonequilibrium cases. Furthermore, the diffuse-scattering
boundary condition is employed in the simulations of mi-
croflows.

A. Taylor vortex flow

The first test problem is the two-dimensional incompress-
ible Taylor vortex flow in a periodic domain, which has the
following analytical solution:

u(x,y,t) = −u0

A
cos(Ax) sin(By)e−ναt , (43a)

v(x,y,t) = u0

B
sin(Ax) cos(By)e−ναt , (43b)

p(x,y,t) = −u2
0

4

[
cos(2Ax)

A2
+ cos(2By)

B2

]
e−2ναt , (43c)

where u0 is a constant, α = A2 + B2, ν is the shear viscosity,
and u = (u,v) and p are the velocity and pressure, respectively.

In our simulations, we set A = B = 2π , ν = 0.001, u0 =
1.0, and RT = 100, the computation domain is set to be 0 �
x � 1 and 0 � y � 1, and the CFL number is set to be 0.5
unless stated otherwise. For this unsteady flow, the distribution
function should be properly initialized by adopting the Navier-
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w
,
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y
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w

Ghia 
20 × 20
40 × 40
80 × 80

ux uy

FIG. 3. (Color online) Velocity across the cavity center at Re =
1000 on uniform meshes.

Stokes Chapman-Enskog expansion,

f (x,ξ ,0) = f eq − τ [∂tf
eq + ξ · ∇f eq], (44)

where the temporal and spatial derivatives are evaluated using
the analytical solution (43).

The velocity profiles at different times predicted by the
DUGKS on a 32 × 32 uniform mesh are compared with the
analytical solution in Fig. 2. It can be seen that the numerical
results are in excellent agreement with the theoretical ones. To
test the convergence order of the DUGKS, a set of simulations
on different meshes have been done. In the simulations, the
time step �t is directly set to a small value (10−5) in order
to reduce the time error in the evaluation of spatial accuracy.
The L2 errors in velocity and pressure field are measured in
Table I, where the L2 error is defined by

E(φ) =
√∑

x,y |φ(x,y,t) − φe(x,y,t)|2√∑
x,y |φe(x,y,t)|2

,

(45)
φ = u or p,

where φe is the analytical value given by Eq. (43). Second-
order convergency of the DUGKS is clearly confirmed.

B. Continuum cavity flow

The two-dimensional lid-driven cavity flow is a standard
benchmark problem for validating numerical schemes. The
geometry considered is a two-dimensional square cavity in the
Cartesian coordinate system (x,y), with a top wall moving
along the x direction with a constant velocity uw and three

TABLE I. Error and convergence order in velocity and pressure (�t = 10−5).

N 16 32 64 128

E(u) 3.7533 × 10−2 9.3909 × 10−3 2.3438 × 10−3 5.8156 × 10−4

order – 1.999 2.002 2.011

E(p) 7.6964 × 10−2 2.0807 × 10−2 4.3993 × 10−3 1.2751 × 10−3

order – 1.887 2.242 1.787
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FIG. 4. (Color online) Velocity across the cavity center at Re =
1000 on nonuniform and uniform meshes (30 × 30).

fixed walls. The flow is characterized by the Reynolds number
Re = Luw/ν, where L is the cavity length and ν is the shear
viscosity of the fluid. In the simulations the driven velocity is
set to be 0.1 and RT = 1/3 so that the Mach number is small
in order to ensure nearly incompressible flow; the length of the
cavity is taken to be 1.0, and the CFL number is set to be 0.5
in all cases unless stated otherwise. The top two corners are
singular points, and in our simulations both are assumed to be
stationary.

First, the DUGKS is used to simulate the flow at Re = 1000
on different uniform meshes. In Fig. 3 the velocity profiles,
u = (ux,uy), across the cavity center are shown after the steady
state is reached when the relative difference of the velocity at
the cavity center between two successive 1000 steps is less
than 10−6. The benchmark data [37] are also included for
comparison. It can be seen that the DUGKS solutions deviate
from the benchmark data in the 30 × 30 coarse mesh case,
which can be attributed to the large numerical dissipation with
the unresolved boundary layer. The solution approaches the
reference data as the grid resolution is increased, and good
agreement between the DUGKS and the reference solutions
can be observed on the 80 × 80 mesh.

The DUGKS also allows the use of nonuniform meshes,
which can improve the prediction by using a locally refined

mesh close to the boundary. To demonstrate this point, we
repeat the above simulations with N × N = 30 × 30 mesh
points in which the nodes (xi,yj ) are generated by xi/L =
(ζi + ζi+1)/2, yj/L = (ζj + ζj+1)/2 for 0 � i, j � N − 1,
where ζi is defined by

ζi = 1

2
+ tanh[a(i/N − 0.5)]

2 tanh(a/2)
, i = 0,1, . . . ,N, (46)

in which a is a constant that determines the distribution of the
grid. Generally, a large value of a leads to a dense distribution
of the mesh near the walls. In the current study a is set to be 2.5.
The velocity profiles with this nonuniform mesh at Re = 1000
are shown in Fig. 4, as well as those with a uniform mesh of
30 × 30. The improvement in accuracy with the nonuniform
mesh can be clearly observed, particularly in the transition
regions near the walls.

The same cavity flow at Re = 1000 has been calculated
as well using the D2Q9 LBE model with the same discrete
velocity sets as DUGKS. The halfway bounce-back rule is
employed to deal with the no-slip boundary conditions for both
schemes on the four walls [27]. It is found that the computation
blows up for LBE at Re = 1000 with a 64 × 64 uniform mesh.
We also measure the maximum reachable Reynolds numbers
of the DUGKS and LBE on a 80 × 80 uniform mesh. It is
found that oscillations appear at Re = 1190 for LBE and
the computation blows up at Re = 1195, while the DUGKS
presents a convergent stable solution at Re = 4000 with a
CFL number of 0.95. These results suggest that the DUGKS
has a better numerical stability than the LBE using the same
discrete velocity set and the same boundary treatments in the
continuum flow limit. Furthermore, it is found that the velocity
and pressure fields predicted by the LBE on an 80 × 80
uniform mesh at Re = 1000 have unphysical oscillations,
while those of the DUGKS are smooth. As an example, the
pressure contours predicted by both methods are shown in
Fig. 5, where strong unphysical oscillations can be observed
at the corners in the LBE solution, while the DUGKS solution
is still reasonable.

C. Micro-Couette flow

Now we apply the DUGKS to the rarefied flow simulations.
The first case is the microplanar Couette flow between two

(a) (b)

FIG. 5. (Color online) Pressure contours of the cavity flow at Re = 1000 on an 80 × 80 uniform mesh: (a) present DUGKS and (b) LBE.
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FIG. 6. (Color online) Velocity (a) and stress (b) of the Couette flow at different Knudsen numbers [k = (
√

π/2)Kn]. The DSMC data are
from [38], and the solutions of the linearized Boltzmann equation are by Sone et al. [36].

parallel plates with a distance H . The top and bottom walls
move with constant velocities uw and −uw, respectively, and
periodic boundary conditions are imposed on the inlet and out-
let of the channel. The micro-Couette flow has been studied us-
ing different methods, such as the linearized Boltzmann equa-
tion [36], the direct simulation Monte Carlo (DSMC) method

[38], and the information preservation-DSMC (IP-DSMC)
method [39], where benchmark solutions are available.

A number of simulations on the Couette flow from slip
to free-molecular regimes are carried out. The 14-point half
range Gauss-Hermite quadrature rule is used to determine
the discrete velocities and weights [34]. Figure 6(a) shows
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FIG. 7. (Color online) Velocity profiles across the cavity center at different Knudsen numbers. Open circle: DSMC data [40]; solid line:
DUGKS results.
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FIG. 8. (Color online) Velocity profiles across the cavity center at different Knudsen numbers.

the velocity profiles with k = (
√

π/2)Kn = 0.1, 1, and 10,
together with the DSMC data [38] and the solutions of the
linearized Boltzmann equation [36]. Clearly, the DUGKS
presents results which have good agreement with the reference
solutions at all Knudsen numbers. Particularly, the nonlinearity
of the velocity profiles near the wall is successfully captured.
The shear stress τxy , normalized by the free-molecular stress
τ∞ = −ρuw

√
2RT/π , is also measured and compared with

the DSMC data [38] and the linearized Boltzmann solution
[36]. As shown in Fig. 6(b), the results of the DUGKS are
nearly indistinguishable from the benchmark solutions in the
whole flow regimes.

D. Microcavity flow

The present DUGKS is also applied to the microcavity
flow, which has been studied numerically based on the
DSMC [40–42], linearized Boltzmann equation [43,44], and
continuum hydrodynamic models [45,46]. The unified gas
kinetic scheme has been applied here recently as well [28]. A
typical feature of the microcavity flow is that the distribution
function can become highly irregular with discontinuities
induced by the walls, particularly around the four corners.
The deviation from the local equilibrium increases with the
Knudsen number, and unphysical oscillations may appear in
the solution [43]. In order to reduce the oscillations, sufficient
discrete velocity points must be employed to recover the
irregularity of the distribution function. The difficulty in
using the Gaussian quadrature method is that the distribution
function is widely spanned in the whole velocity space and
the weights for those far away from the average velocity can
be rather small. Therefore, the contribution of these points
in the Gaussian quadrature is diminishing. So, the use of
Newton-Cotes quadrature is more appropriate in the highly
nonequilibrium case.

In the simulations, the Knudsen number ranges from 0.1
to 8.0, and the velocity of the top wall uw is given such that
uw/

√
γRT = 0.16. The velocity space is discretized via the

Newton-Cotes quadrature, with 100 × 100 nodes distributed
uniformly in [−4

√
2RT ,4

√
2RT ] × [−4

√
2RT ,4

√
2RT ],

which is sufficient for all cases in the current study. The
physical space is discretized with 40 × 40 uniform mesh

points, where the results are nearly identical to those on
80 × 80 mesh points. The CFL number is set to be 0.25 for all
cases.

Figure 7 shows the velocity profiles across the cavity center
for different Knudsen numbers, where the DSMC data with
the same Mach number [40] are also included for comparison.
It is observed that the DUGKS results agree excellently with
the DSMC solutions in all cases. In order to identify the effects
of the Knudsen number on the solutions, the velocity profiles
are put together in Fig. 8. It is apparent that the velocity
jump in both ux and uy along the wall increases with Kn.
Interestingly, the slip velocity of ux and uy approaches a finite
value at each wall. Also, the velocity component uy across
the horizontal centerline is almost symmetric in all Knudsen
number cases, which means that the vortex center is close to
the vertical line across the center of the cavity. Actually, the
measured locations of the vortex center (xc/L,yc/L) are about
(0.506,0.741), (0.501,0.710), (0.500,0.700), (0.499,0.693),
and (0.499,0.686) for Kn = 0.1, 0.5,1,2, and 8, respectively,
where the vortex center moves downward and slightly
leftward as Kn increases. These observations are consistent
with the solutions from the DSMC and linearized Boltzmann
equation [40,43]. These tests clearly show that the DUGKS is
an accurate flow solver for rarefied flow simulations.

V. SUMMARY

In this paper, a finite-volume DUGKS is constructed
for isothermal flow computations. The scheme shares many
common features with the UGKS method in the continuum
and rarefied flow study, such as possessing the asymptotic
preserving properties. As a result, in the continuum flow
regime the DUGKS can capture accurate Navier-Stokes
solutions without imposing the constraint of the time step
being less than the particle collision time. At the same time,
accurate solutions can be obtained in the transition and free
molecular regimes. In comparison with UGKS, due to the
adoption of a new distribution function with the inclusion of a
collision effect, the flux at a cell interface can be much more
easily evaluated.

The DUGKS has been validated through several test cases,
including both continuum and rarefied gas flows. Excellent
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agreement has been obtained between the DUGKS solutions
and the benchmark results in all cases. It is also found that
based on the same number of discrete velocity points and
boundary condition treatment, the DUGKS becomes more
robust and accurate than the LBE method for the continuum
flow computations, especially for the high-Reynolds-number
cases.

The present DUGKS is targeted toward isothermal smooth
flows, especially for comparison with the LBE method. Further
development of DUGKS for compressible flow with heat
transfer will be presented in subsequent papers.
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APPENDIX A: CONNECTIONS BETWEEN THE
DISTRIBUTION FUNCTIONS

The defined distribution functions, i.e., f̃ , f̄ , f̃ +, and f̄ +,
are all linear combinations of the original distribution function
f and the equilibrium state f eq. This is clearly shown in the
definitions of f̃ and f̄ . Here f̃ + and f̄ + can be expressed as

f̃ + = 2τ − �t

2τ
f + �t

2τ
f eq, (A1)

f̄ + = 2τ − h

2τ
f + h

2τ
f eq. (A2)

On the other hand, f can be expressed as linear combinations
of the newly defined distribution functions and the equilibrium
functions:

f = 2τ

2τ + �t
f̃ + �t

2τ + �t
f eq, (A3)

f = 2τ

2τ + h
f̄ + h

2τ + h
f eq. (A4)

In terms of the function f̃ , f̃ + and f̄ + can be expressed as

f̃ + = 2τ − �t

2τ + �t
f̃ + 2�t

2τ + �t
f eq, (A5)

f̄ + = 2τ − h

2τ + �t
f̃ + 3h

2τ + �t
f eq. (A6)

Eliminating the equilibrium parts and using h = �t/2, the
above two equations give

f̃ + = 4
3 f̄ + − 1

3 f̃ . (A7)

APPENDIX B: THE TIME-DEPENDENT CELL INTERFACE
DISTRIBUTION FUNCTION IN THE CONTINUUM LIMIT

In order to figure out the distribution function used for
the flux evaluation in the continuum limit, i.e., f (xb,ξ ,t + h)
given by Eq. (20), it is noticed that in the continuum limit
the initial distribution function f can be approximated by the
Chapman-Enskog expansion,

f (xb,ξ ,t) ≈ f eq − τDtf
eq + O

(
D2

t

)
, (B1)

where Dt ≡ ∂t + ξ · ∇. Furthermore, the time derivative and
spatial gradient of f eq can be related through the Euler
equations [3], i.e.,

∂tf
eq = ∂f eq

∂W
· ∂t W = −∂f eq

∂W
· ∇ · F eq, (B2)

where F eq is defined as

F eq =
∫

ψξf eqdξ . (B3)

Therefore, f eq(xb,ξ ,tn + h) can be approximated as

f eq(xb,ξ ,tn + h)

= f eq[ξ ,W (xb,tn + h)]

≈ f eq[ξ ,W (xb,t)] + ∂f eq

∂W
· [W (xb,tn + h) − W (xb,tn)] .

(B4)

From Eqs. (18) and (19), we have

W (xb,tn + h) = W (xb,tn) − h∇ · F (xb,tn). (B5)

Therefore,

f eq(xb,ξ ,tn + h) ≈ f eq[ξ ,W (xb,t)] − h
∂f eq

∂W
· ∇ · F (xb,tn)

≈ f eq(xb,ξ ,tn) + h∂tf
eq(xb,ξ ,tn). (B6)

It is clear that this is just the first-order Taylor expansion
of f eq(xb,ξ ,tn + h) with respect to time. In other words, the
calculation of f eq(xb,ξ ,tn + h) with W given by Eq. (19)
is equivalent to the direct Taylor expansion, which has been
used in the GKS as well for continuum flows [14]. However,
it should be noted that the above derivation is valid for the
continuum flow only.

With the above formulation, Eqs. (18), and (A2), Eq. (20)
goes to

f (xb,ξ ,tn + h)

= 2τ

2τ + h

{
2τ − h

2τ
[f (xb,ξ ,tn) − hξ · ∇f (xb,ξ ,tn)] + h

2τ
[f eq(xb,ξ ,tn) − hξ · ∇f eq(xb,ξ ,tn)]

}
+ h

2τ + h
f eq(xb,ξ ,tn + h)

= 2τ − h

2τ + h
f (xb,ξ ,tn) + h

2τ + h
f eq(xb,ξ ,tn) + h

2τ + h
f eq(xb,ξ ,tn + h) − hξ ·

[
2τ − h

2τ + h
∇f (xb,ξ ,tn) + h

2τ + h
∇f eq(xb,ξ ,tn)

]
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≈ 2τ − h

2τ + h
[f eq(xb,ξ ,tn) − τDtf

eq(xb,ξ ,tn)] + h

2τ + h
f eq(xb,ξ ,tn) + h

2τ + h
[f eq(xb,ξ ,tn) + h∂tf

eq(xb,ξ ,tn)]

−hξ ·
[

2τ − h

2τ + h
∇f eq(xb,ξ ,tn) + h

2τ + h
∇f eq(xb,ξ ,tn)

]
+ O(∂2)

= f eq(xb,ξ ,tn) − τDtf
eq(xb,ξ ,tn) + 2τh

2τ + h
Dtf

eq(xb,ξ ,tn) + h2

2τ + h
∂tf

eq(xb,ξ ,tn) − 2τh

2τ + h
ξ · ∇f eq(xb,ξ ,tn) + O(∂2)

= f eq(xb,ξ ,tn) − τDtf
eq(xb,ξ ,tn) + h∂tf

eq(xb,ξ ,tn) + O(∂2), (B7)

which is precisely a time-dependent Chapman-Enskog Navier-Stokes distribution function.
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