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Lattice-Boltzmann-based two-phase thermal model for simulating phase change
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A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when
the phase change effects are included in the model. This approach employs multiple distribution functions, one
for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS)
is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable
is constructed in such a manner that in the continuum limit one recovers the well known macroscopic energy
conservation equation for the mixtures. Heats of reaction, the enthalpy change associated with the phase change,
and the diffusive transport of enthalpy are all taken into account; but the dependence of enthalpy on pressure,
which is usually a small effect in most nonisothermal flows encountered in chemical reaction systems, is ignored.
The energy equation is coupled to the LB equations for species transport and pseudopotential interaction forces
through the EOS by using the filtered local pseudotemperature field. The proposed scheme is validated against
simple test problems for which analytical solutions can readily be obtained.
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I. INTRODUCTION

Coupling between thermodynamics and mass, momentum
and energy transport, produces a variety of complex problems
in fluid dynamics. An example of this is the phase change pro-
cess due to thermal effects. Simulation of flow with a phase
change is challenging as a result of the evolving nature of the
fluid-fluid interface. Various numerical schemes, such as the
volume of fluid method [1], interface tracking [2,3], the level
set method [4], etc., could be used for handling the evolving
interface and for the coupling of hydrodynamics, the species
and energy transport, with thermodynamics.

The lattice Boltzmann (LB) method offers some advantages
in simulating multicomponent multiphase flows by doing away
with interface tracking [5–11], but the interface does become
diffuse. It also provides a convenient framework to incorporate
thermodynamic effects, which naturally generate the phase
separation. Multiphase LB methods have been used widely in
isothermal flow simulations [12–20]; in contrast, their appli-
cation to nonisothermal flow simulations has been limited.

A number of authors have investigated rigorous LB methods
where the energy balance is recovered as the higher-order
velocity moments of the discrete species distribution functions
(mass and momentum are conserved by considering the first-
and second-order velocity moments) [21–24]. But progress
in these methods has been limited especially for thermal
two-phase flows due to the high computational demands and
numerical instabilities. To the best of our knowledge the
application of such approaches to nonisothermal reacting flows
has not received much attention.

Hybrid schemes where the flow is simulated using the LB
method and the energy balance is solved via conventional
computational fluid dynamics (CFD) schemes, such as the
finite difference method, have been employed in many studies
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[25–29]. As a more popular approach, several researchers have
explored solutions of the thermal energy balance via a LB
method by introducing an extra distribution function, over
and above those required to solve the mass and momentum
balances, this extra distribution function is evolved in time
and space in such a way as to (nearly) recover the desired
macroscopic energy balance equation [30–34].

In this article we construct the LB evolution equation
for a pseudotemperature variable in such a manner that the
macroscopic energy conservation equation for mixtures is
recovered in the continuum limit. The mass and momentum
transport equations as well as the nonideal equation of state
(EOS) are handled via the Shan and Chen multicomponent
multiphase LB formulation [5]. The extra distribution function
of the pseudotemperature is then coupled with flow at the
macroscopic level via an EOS. In a broad sense, this is similar
to the approach of [33], but there are important differences.
In our approach, heats of reaction, latent heat associated with
the phase change, reversible and irreversible conversion of
mechanical energy to thermal energy, and external heat sources
or sinks are readily included in the evolution equation for the
extra distribution function.

This paper is organized as follows. The model formulation
is presented in Sec. II, where we describe the proposed
scheme to couple the Shan and Chen multiphase formu-
lation with the energy equation. In Sec. III, we validate
the method using two illustrative examples; here, for the
sake of comparison with simple analytical solutions we limit
ourselves to one-dimensional (1D) examples involving a single
species (although we solve it as a 2D problem). However, it
will be readily transparent that the scheme can be applied
to multidimensional, multicomponent systems. The main
conclusive remarks of this study are summarized in Sec. IV.

II. NUMERICAL METHOD

In this section, we present the details of an approach based
on the lattice Boltzmann method to solve the heat equation
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in two-phase systems. We first summarize the widely used
Shan-Chen LB formulation for multicomponent two-phase
flow. We then present an LB scheme to handle the transport of
a scalar, which is specialized to capture the energy transport
equation.

A. Shan and Chen LB formulation for multicomponent
two-phase hydrodynamics

Following Shan and Chen [5], the discrete LB-based
evolution equation for the density distribution function of
component δ in the lattice direction i, fi,δ , is written as

fi,δ(x + ci ,t + 1) − fi,δ(x,t) = −fi,δ(x,t) − f
eq

i,δ (x,t)

τδ

. (1)

This equation is written in terms of lattice variables, where
length is scaled using the lattice spacing �x, and time is
made dimensionless using the time step �t . Here, ci is the
(lattice) vector associated with the lattice direction i (typically
connecting the node x to a neighboring node when i is not
zero and equal to the null vector for i = 0); τδ is the relaxation
time (in lattice units). The lattice speed cref = �x/�t is used
to scale the velocities and obtain the corresponding lattice
velocities; the speed of sound in lattice units, cs = 1/

√
3. The

equilibrium distribution function is written as

f
eq

i,δ (x,t)

= wiρδ

{
1 + ci · ueq

δ

c2
s

+ 1

2

(
ci · ueq

δ

c2
s

)2

− 1

2

ueq

δ · ueq

δ

c2
s

}
. (2)

Here, wi is the weight associated with direction i,

ρδ =
∑

i

fi,δ, ueq

δ = u′ + τδ

ρδ

∑
δ

Ftot
δ ,

(3)

u′ =
∑

δ

ρδ

τδ

uδ

/∑
δ

ρδ

τδ

, and uδ = 1

ρδ

∑
i

cifδ,i .

In these equations, all quantities are in lattice units. The
density ρ in physical units is scaled by a reference density
ρref to convert to lattice units. The forcing term Ftot

δ = Fδ +
Fext

δ includes the pseudopotential interaction force Fδ between
components occupying neighboring LB nodes and the external
force Fext

δ . In general, Fδ can be used to represent component-
component as well as component-solid boundary interactions
(e.g., see [17,35]). However, we consider only the former in the
illustrative examples discussed in the present study. Following
Shan and Chen [5]:

Fδ(x,t) = −ψδ(x,t)
∑

δ̄

Gδδ̄

∑
i

wiψδ̄(x + ci ,t)ci , (4)

where Gδδ̄ denotes the component-component interaction pa-
rameter and a suitable model for the pseudopotential function
ψδ is postulated.

The illustrative example discussed later considers a single-
component system following the Redlich-Kwong (RK) equa-
tion of state:

Pδc
−2
s = ρδθ

1 − bδρ
− aδρ

2
δ√

θ(1 + bδρδ)
. (5)

Here, the temperature in physical units, T , has been scaled
by Tref to convert to the lattice temperature θ ; θ = T /Tref .

Similarly, the pressure is expressed in lattice units as Pδ =
pδ/ρrefc

2
ref where c2

ref = RTrefc
−2
s using the gas constant R.

Following Yuan and Schafer [36], we write

ψδ =
√

Pδc
−2
s − ρδθ
1
2Gδδθ

(6)

and set Gδδ = −1, aδ = 2/49, and bδ = 2/21. These corre-
spond to the following critical state parameters in lattice units:
Pcδ = 0.1785c2

s = 0.0595, θcδ = 0.1961, and ρcδ = 2.73. The
kinematic viscosity of species δ (in lattice units), νδ , is given
by νδ = (τδ − 0.5)/3.

In brief, the density field in Eq. (1) is affected by the
temperature field through the EOS and by the corresponding
variables calculated in Eqs. (2)–(6).

B. Energy balance equation

It can readily be shown that the general balance equations
for species and energy in a multicomponent system take the
following form [37]:

∂ρδ

∂t
+ ∇ · nδ = rδ, (7)

∂

∂t

(∑
δ

ρδHδ

)
+ ∇ ·

(∑
δ

nδH̄δ

)

= ∇ · (K∇T ) + DP

Dt
+ τ̂ : ∇v +

∑
δ

jδ · Bδ + Q•. (8)

In the species balance, nδ and rδ denote the flux and rate of
generation (via chemical reactions) of component δ. DP/Dt ,
τ̂ , and Q• are the pressure gradient, stress tensor, and external
heat rate per unit volume, respectively. H̄δ(ρ,T ), the partial
specific enthalpy for component δ (appearing in the energy
balance), is in general a function of temperature, pressure,
and composition; however, in most practical applications,
the dependence of H̄δ in a given phase on pressure and
composition is only weak (when compared to the enthalpy
changes associated with progress in the reaction extent and/or
phase change). In what follows, we make this simplification.
With this restriction, we write

H̄δ(ρ,T ) = [1 − φ(ρ)]H̄ v
δ (T ) + φ(ρ)H̄ l

δ (T ). (9)

Here, H̄ v
δ (T )and H̄ l

δ (T ) are the partial specific enthalpies for
component δ in the vapor and the liquid phases at temperature
T , respectively. ρ = ∑

δ ρδ is the mixture density. φ(ρ) is a
(user-specified) density-dependent marker function such that
it assumes a value of 0 in the bulk vapor and unity in the bulk
liquid and increases monotonically with density in between.
For example, a piecewise linear model would take the form

φ(ρ) =

⎧⎪⎨
⎪⎩

0, ρ < ρ1,
ρ−ρ1

ρ2−ρ1
, ρ2 > ρ > ρ1,

1, ρ > ρ2.

(10)

Here, ρ2 and ρ1 are user-specified threshold mixture densities
which are used to identify the phase of the mixture. When
the mixture density is below ρ1, it is treated as a gas (vapor);
similarly, when it is larger than ρ2, it is treated as a liquid
phase. When ρ is in between these two, the property of interest
(such as the partial specific enthalpy) is suitably interpolated.
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It is clear that the principal purpose of Eq. (9) is to provide
estimates for enthalpy in the diffuse interface region. The
specific choice of φ(ρ) will affect the details of the profiles
in the interfacial region, but will have little effect in the bulk
regions far away from the interface. For later use, we note that

�H̄ lv
δ (T ) = H̄ v

δ (T ) − H̄ l
δ (T ) (11)

is the latent heat of vaporization at that temperature.
The heat capacity of the component δ is interpolated in an

analogous manner:

Cp,δ(T ) = (1 − φ(ρ))Cv
p,δ(T ) + φ(ρ)Cl

p,δ(T ) (12)

It makes physical sense to use the same marker function for
both enthalpy and heat capacity, but the error introduced by
using different marker functions for enthalpy and heat capacity
will invariably be small (as the mass of material in the “diffuse”
interfacial region is usually much smaller than that in the bulk).

To follow up with the description of the terms in the
energy balance equation (8), K = ∑

δ ρδKδ/ρ is the thermal
conductivity of the mixture. The third and fifth terms on the
right-hand side of the energy balance equation (8) represents
the rates of viscous generation of heat and external heat input
(per unit volume), respectively. The fourth term denotes the
rate of work done by the external (body) force on the diffusive
fluxes of various species; Bδ denotes the external force per
unit mass acting on component δ, and jδ is the diffusive flux
of component δ,

jδ = nδ − ρδv. (13)

The mixture velocity is defined by v = ∑
δ nδ/ρ. When the

external force per unit mass is the same for all the species,∑
δ jδ · Bδ = 0.

It is straightforward to rewrite the energy balance and the
above restrictions to get

∂T

∂t
+ v · ∇T = ∇ · (K∇T )∑

δ ρδCp,δ

+ S∑
δ ρδCp,δ

, (14)

where the source term S is given by

S = −
∑

δ

rδH̄δ +
(∑

δ

ρδ�H̄ lv
δ

)
φ′(ρ)

Dρ

Dt

−
(∑

δ

jδCp,δ

)
· ∇T +

(∑
δ

jδ�H̄ lv
δ

)
· φ′(ρ)∇ρ

+ DP

Dt
+ τ̂ : ∇v +

∑
δ

jδ · Bδ + Q•. (15)

In what follows, we present a lattice Boltzmann scheme
to solve Eq. (14). In preparation for that, we first cast
Eqs. (14) and (15) into dimensionless form (using the same
scales as used in defining lattice units) using �x, �t ,
cref = �x/�t , ρref,Tref , pref = ρrefc

2
ref , Cp,ref , and Cp,refTref

as the reference length, time, velocity, density, tempera-
ture, pressure, heat capacity, and enthalpy per unit mass.
The reference thermal conductivity, viscosity, diffusive flux,
reaction rate, and external heat source [corresponding to
the last term on the right-hand side of Eq. (15)] are
set as ρrefCp,ref�x2/�t, ρref�x2/�t, ρrefcref, ρref/�t , and
ρrefCp,refTref/�t , respectively. The resulting dimensionless

equations will be the same as Eqs. (14) and (15), except that
we now recognize all the variables as scaled quantities (with
the scaled T being the same as θ in the earlier section).

The scaled equations now read
∂θ

∂t
+ v · ∇θ = ∇ · K∇θ∑

δ ρδCpδ

+ S∑
δ ρδCpδ

, (16)

S = −
∑

δ

rδH̄δ +
(∑

δ

ρδ�H̄ lv
δ

)
φ′(ρ)

Dρ

Dt

−
(∑

δ

jδCp,δ

)
· ∇θ +

(∑
δ

jδ�H̄ lv
δ

)
· φ′(ρ)∇ρ

+
(

R

Cp,refc2
s

)(
DP

Dt
+ τ̂ : ∇v +

∑
δ

jδ · Bδ

)
+ Q•.

(17)

Here, we have retained the same symbols to indicate
scaled variables; in what follows, we consider only scaled
quantities and so there should be no confusion. Al-
though we could have chosen Cp,ref = R/c2

s , we chose
not to make this restriction as the contribution from
(DP

Dt
+ τ̂ : ∇v + ∑

δ jδ · Bδ)(R/Cp,refc
2
s ) is expected to be

quite small in most flow problems.

C. LB formulation for the energy balance equation

We introduce a distribution function g for a pseudotemper-
ature scalar such that

ρθ =
∑

i

gi (18)

and evolve it using

gi(x + ci ,t + 1) − gi(x,t) = −gi − g
eq

i

τH

+ wiS
LB. (19)

Here τH is the relaxation time for the pseudotemperature scalar
variable, and its equilibrium distribution function is defined as

g
eq

i = wiρθ{1 + 3ci · v} (20)

and v, the macroscopic velocity, is defined as [38]

v = 1

ρ

∑
δ

∑
i

cifi,δ + 1

2ρ

∑
δ

Fδ. (21)

One can readily show via a Chapman-Enskog or multiscale
expansion [39] that solving these microscopic equations is
equivalent to solving

ρ
∂θ

∂t
+ ρv · ∇θ = ∇ · [αLB∇(ρθ )] + SLB, (22)

where the lattice thermal diffusivity αLB = (τH − 0.5)/3.
Comparing Eqs. (16) and (22), we identify SLBas

SLB = S

Cp,mix
+ ∇ · (K∇θ )

Cp,mix
− ∇ · [αLB∇ (ρθ )], (23)

where the heat capacity of the mixture Cp,mix = ∑
δ ρδCp,δ/ρ.

Equation (23) can be rearranged to read

SLB =
10∑

n=1

SLB
n , (24)
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where

SLB
1 = −

∑
δ

rδH̄δ/Cp,mix,

SLB
2 =

(∑
δ

ρδ�H̄ lv
δ φ′(ρ)

Dρ

Dt

)/
Cp,mix,

SLB
3 = −

(∑
δ

jδCp,δ

)
· ∇θ/Cp,mix,

SLB
4 =

(∑
δ

jδ�H̄ lv
δ

)
· φ′(ρ)∇ρ/Cp,mix,

SLB
5 = R

(
DP

Dt

)/(
Cp,mixCp,refc

2
s

)
,

SLB
6 = R(τ̂ : ∇v)/

(
Cp,mixCp,refc

2
s

)
,

SLB
7 = R

(∑
δ

jδ · Bδ

)/(
Cp,mixCp,refc

2
s

)
,

SLB
8 = Q•/Cp,mix,

SLB
9 = ∇ · (K∇θ)/Cp,mix,

SLB
10 = −∇ · [αLB∇(ρθ )].

In most reacting flows, we expect SLB
5 ≈ 0, SLB

6 ≈ 0, and
SLB

8 = 0.

III. RESULTS AND DISCUSSION

Although the model is set up for a multicomponent system,
it suffices to examine a single-component system to validate
it. For a single-component system, SLB

1 = SLB
3 = SLB

4 = 0.

This simplification does not eliminate the complexity of the
model as many other source terms (e.g., that related to phase
change) still remain. When dealing with single-component
systems, there is no need for the component index δ and so it
is suppressed in the material below.

As mentioned earlier, in our illustrative examples discussed
below, the fluid is assumed to follow the Redlich-Kwong EOS.
For the parameter values listed below Eq. (6), one obtains
θc = 0.1961 and ρc = 2.73. In these examples, for θ < θc, the
system will undergo phase separation and form a two-phase
mixture; the densities of the saturated vapor and liquid phases
can readily be found by solving the LB evolution equations.
One can also find them via Maxwell’s equal area construction.
The saturated vapor and liquid densities determined via LB
simulations are compared with those obtained via a Maxwell
construction in Fig. 1. Good agreement is readily seen over
the range of θR = θ/θc values shown there. The liquid and
vapor densities reported in this figure are used in the following
examples.

A. Example 1: One-dimensional heat transport through a
liquid-vapor flat interface

In this example, we simulated one-dimensional
nonevaporative heat conduction in a system containing a single
planar vapor-liquid interface, which was located in the gap
between two parallel walls (and was also parallel to the walls).
All quantities are in lattice units and unless stated otherwise,

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

1

ρ/ρc

θ/
θ c

ρlρv

FIG. 1. Liquid and vapor density variations with temperature for
the RK EOS. Solid line, theoretical values obtained from the Maxwell
rule of equal areas; markers, LB simulations obtained from the Shan
and Chen formulation.

�z = 1, �t = 1 (also in lattice units). (Here, the z axis is
pointing perpendicular to the walls.) The Zou and He approach
[40] was used to implement the thermal boundary conditions
on the walls. The system was initially allowed to equilibrate at
a uniform reduced temperature θR0 = θ0/θc = 0.75 and form
the vapor-liquid interface as mentioned above. At equilibrium,
ρl/ρc = 2.6 and ρv/ρc = 0.0618 (see Fig. 1). The location
of the interface depended on the mass of material that was
placed in the gap, and, in this specific instance, the stationary
vapor-liquid interface was established at h/L = 0.55. Here,
L is the gap width and h is the approximate location of the
interface. In the numerical example presented here, L = 100.
In this one-component two-phase system, the thickness of
the vapor-liquid interface was between 3 and 7 (in lattice
units). (The interface thickness decreased upon lowering the
temperature.) After allowing the system to equilibrate, the
wall temperatures were changed and the routine for solving
the LB energy equation was switched on. Specifically, the
temperature of the left wall (in contact with the vapor phase)
was increased to θ1 while that of the right wall (in contact with
the liquid phase) was maintained at θ2 = θ0, θ1 being slightly
larger than θ2. In general, temperature changes would be
accompanied by a phase change, but in this simple example,
we disallowed phase change. This was achieved in the
simulations by simply letting the temperature appearing in the
EOS remain at θ0. Heat was still transmitted from the hotter
wall to the colder wall, across the liquid-vapor interface;
and we tested the adequacy of LB scheme for handling heat
transfer in the presence of an interface.

In this test example, the kinematic viscosities of the vapor
and liquid phases were assigned the same value νl = νv =
1/6. We set the Prandtl number in the vapor Prv = νv/αv = 1
and the one in the liquid Prl = νl/αl = 5, which led to
αv = 1/6 and αl = 1/30. The thermal diffusivities were used
to calculate the source contribution SLB

9 in Eq. (24). The
pseudotemperature relaxation time τH was assigned a value
very close to 0.5 in order to minimize the contribution from
the last term on the right-hand side of Eq. (23), which has to be
explicitly subtracted out through the term SLB

10 in Eq. (24) [33].
(In this example, SLB

9 and SLB
10 are the only nonzero source

terms.) The heat capacities of the vapor and liquid phases
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TABLE I. Physical properties of liquid and vapor phases using the RK EOS at θR0 = 0.75 with Prl = 5 and Prv = 1. (Note: All quantities
are in lattice units.)

Property ρl/ρc ρv/ρc ρl/ρv αl αv αl/αv Cl
p Cv

p Cl
p/Cv

p Kl/ρc Kv/ρc Kl/Kv

2.60 0.0618 42.07 1/30 1/6 0.20 2.62 2.5 1.05 0.227 0.0258 8.8

were calculated from the EOS [20] at θ0, although the scheme
does not require that the heat capacities be calculated in this
manner. All of these parameters were then used to calculate
the thermal conductivities of the two phases at θ0. Table I
summarizes the physical properties of the bulk fluids.

In addition to the values of the thermal conductivity K in
the bulk liquid and vapor phases (see Table I), the density
dependence of K in the interfacial region must also be
postulated. We demand dK/dρ = d(ρCpα)/dρ > 0 (in order
to avoid unphysical behavior). For example, one can satisfy
this requirement by letting α(z) = ε1(ρ(z))β1 and Cp(z) =
ε2(ρ(z))β2 with 1 + β1 + β2 > 0. We set α(z) = 0.0776ρ−0.43

and Cp(z) = 2.56ρ0.01. Figure 2 shows the spatial variation of
various physical properties for this example. The LB equation
for the pseudotemperature was then solved until a steady state
was attained. An analytical solution for this problem involving
heat conduction in a two-layered material is readily found;
the steady-state temperature profile in either layer is linear.
For convenience, we define θ̂ = 1 + (θ − θ2)/(θ1 − θ2) and
display the steady-state profile of temperature scaled in such a
manner. Figure 3 compares the steady-state temperature field
obtained from the LB simulations (shown by open circles)
with the analytical solution for a system with a sharp interface
(shown by solid line). The accuracy of the simulation results
was assessed by calculating the error ∈ between the analytical
(AN) results and LB simulations over the entire domain
(iz = 1–nz):

∈=
√∑

iz

[θLB(iz) − θAN (iz)]2
/√∑

iz

[θAN (iz)]2
. (25)

0 0.2 0.4 0.6 0.8 1
0.2

1

10

40

z/L

P
h
y
si

ca
l
pr

op
er

ti
es

FIG. 2. Scaled density (thick solid line), scaled thermal diffusiv-
ity (thin solid line), scaled thermal conductivity (dashed line), and
scaled heat capacity (dash-dotted line) as functions of the coordinate
normal to a gas-liquid interface.

The inset of Fig. 3 reveals that the accuracy of the current
formulation depends on the relaxation times τH ; the accuracy is
improved as τH is decreased towards the minimum permissible
limit of 0.5. Equivalently, to get the best accuracy, αLB

should be set to be very close to zero. This rather simple
example illustrates that the vapor-liquid interfacial region
where the physical properties change rapidly does not cause
any computational difficulty and that the expected analytical
solution is recovered.

In this example, the temperature field was deliberately not

coupled to the hydrodynamics, i.e., while the temperature field
evolved towards steady state, the density and velocity fields
remained invariant. Next we consider an example where local
temperatures are coupled back in the EOS, so that the density
and velocity fields will also evolve while the temperature field
develops; the phase interface is now dynamic as evaporation
and condensation can occur.

B. Example 2: Evaporation of a liquid film upon heating

In this example, we assess the accuracy of the proposed LB
scheme when evaporation occurs as a result of heating. We
consider the response of a single-component system obeying
the Redlich-Kwong EOS to a constant uniform heat input.
Figure 4 illustrates the state of a system initially equilibrated
at a homogeneous reduced temperature θR0 = 0.75. In this
example, the total length of the domain L = 200 (lattice
units), and the liquid layer occupies approximately 40% of
the domain. At the two ends, we applied periodic boundary
conditions. (Adiabatic wall boundary conditions would have

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

z/L

θ̂

FIG. 3. Steady-state temperature obtained for Example 1 from
LB-based model (circles) compared with the analytical solution (line)
for the one-dimensional thermal diffusion problem. Inset: Error ∈
between LB simulation results and the exact solution at various
relaxation times τH .

033302-5



KAMALI, GILLISSEN, VAN DEN AKKER, AND SUNDARESAN PHYSICAL REVIEW E 88, 033302 (2013)

Periodic 
boundary

Interface

Periodic 
boundary Liquid VaporVapor

Interface Heat

FIG. 4. Schematic representation of Example 2 involving evapo-
ration in 1D. A two-phase system as shown in the figure is exposed to
uniform heating, which causes vaporization of the liquid. As periodic
boundary conditions are employed in these simulations, the total mass
is conserved; so vaporization is accompanied by an increase in the
vapor phase density (and pressure).

led to the same results.) The physical properties reported
in Table I were used. The temperature and phase densities
evolved with time, and so did some of the physical properties
such as heat capacity (although, small variations in the course
of this numerical experiment were observed) and thermal
conductivity.

The following procedure allowed us to establish efficiently
the initial condition for the transient heating simulations. The
LB evolution equations for the species and the pseudotemper-
ature were solved towards steady state first without coupling
them through the EOS; then the coupling between the energy
equation and hydrodynamics via the EOS was turned on and
the system was allowed to equilibrate. The system was then
subjected to uniform heating. This heat flux (Q• = 10−6)

and the enthalpy of the phase change (�H
lv = 0.5) entered

in the simulation via the local source terms in Eq. (24),
SLB

8 and SLB
2 , respectively. With a spatially uniform heat

source (fixed rate of heat addition per unit volume), one can
readily expect the vapor to heat up faster than the liquid. As
the system heated up, vaporization occurred, resulting in a
movement of the vapor-liquid interface. It was found in the
simulations that the pseudotemperature variable manifested
small fluctuations in the vicinity of the phase interface,
and that these fluctuations could sometimes destabilize the
computations. These fluctuations mainly originate from the
density variation along the diffused interface. In order to
avoid such instabilities, the local temperature field close to
the interface at each time step was smoothed (the smoothing
parameter is 100) using a regularized robust spline algorithm
due to Garcia [41]. Figure 5 illustrates temperature filtering at
a certain instance of time of the simulation. As no mass leaves
the system (due to the periodic boundary conditions), the vapor
density increased with time as result of evaporation, and so did
the pressure in the computational domain. When the system
temperature reached the critical point, the phase interface
disappeared, as one would expect. We present only results from
before the critical point was reached, as our primary intention
is to demonstrate that the proposed LB scheme works well for
two-phase systems.
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FIG. 5. Density profile (thin solid line read from right y axis),
temperature profile (thick solid line read from left y axis), and the
smoothed temperature profile used in the EOS (broken line read from
left y axis) at t̃ = 0.03 in Example 2. Only one-half of the domain is
shown; the other half of the domain is simply a mirror image of the
region shown. A two-phase system is exposed to uniform heating,
which causes vaporization of the liquid (see Fig. 4 for a schematic).
The vapor heats up faster as its density is lower than that of the liquid
and the heating rate per volume is uniform in this example. Inset:
Zoom of temperature close to the diffused interface region.

Figure 6 shows the LB simulation results for the unfil-
tered temperature profiles at different dimensionless times
t̃ = tQ•/(ρcC

l
p
θc). At t̃ = 0, the system was at a uniform

temperature θR0 = 0.75. Starting up the simulations at lower
initial temperature than the ones reported in this example
may be possible by improving the explicit pseudopotential
interparticle interactions in the Shan and Chen approach as
reported by Kupershtokh et al. [42]. Filtering is not found to
be influential in this respect. The nearly parabolic profile in
the gas phase can readily be understood, as the quasisteady
limit for the temperature profile is indeed a parabola with

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 6. Temperature profiles at various dimensionless times in
Example 2. A two-phase system is exposed to uniform heating, which
causes vaporization of the liquid (see Fig. 4 for a schematic). The
vapor heats up faster as its density is lower than that of the liquid
and the heating rate per volume is uniform in this example. The
pure substance considered in this example obeys the Redlich-Kwong
equation of state.
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FIG. 7. Comparison between LB simulations and exact solution
for total heat input vs total heat contained in the system in Example 2.
A two-phase system is exposed to uniform heating, which causes
vaporization of the liquid (see Fig. 4 for a schematic). The pure
substance considered in this example obeys the Redlich-Kwong
equation of state. The total heat contained in the system was found by
integrating (over the domain). The parity plot shows that the evolution
of the LB distribution functions for the species and pseudotemperature
are correctly coupled with the equation of state. The maximum
relative error throughout the simulation is 7%.

time-dependent coefficients. The nearly flat temperature of
the liquid phase can be traced to its high thermal conductivity.
As more and more vaporization occurs, the densities of the
two phases approach each other and the temperatures in the
two phases approach one another.

The total amount of heat supplied to the system clearly
increased linearly with time and is trivially computed from
the specified heating rate. This allowed us to check the
accuracy of the LB scheme by determining the total enthalpy
of the system as a function of time. For this calculation,
we set the specific enthalpy of the liquid at the reference

temperature θ0 to zero: H
l
(θ0) = 0. Thus, the enthalpy of the

vapor at this temperature is the latent heat of vaporization

H
v
(θ0) = �H

lv
(θ0). The specific enthalpies of the bulk liquid

and vapor at different temperatures were then calculated
from

H
l
(θ ) =

∫ θ

θ0

Cl
P dθ, H

v
(θ ) = �H

lv
(θ0) +

∫ θ

θ0

Cv
P dθ.

(26)

Then, by using the marker function φ(ρ) in Eq. (10), the
specific enthalpy at any intermediate density H (ρ,θ ) was
captured via Eq. (9). A mass-weighted sum of H (ρ,θ ) over
the whole domain yielded the total enthalpy of the system at
any time Qtot

cont.
Figure 7 compares the dimensionless total heat input to the

domain Q̃tot
in = Qtot

in /(ρcC
l
p
θcL) and the computed dimension-

less total enthalpy of the system Q̃tot
cont = Qtot

cont/(ρcC
l
p
θcL).

This comparison shows a maximum 7% error between the
numerical LB results and the theory throughout the simulation.
This good agreement shows that the proposed LB scheme
for the coupling between the pseudotemperature and the

hydrodynamics via the EOS correctly captures the energies
associated with the phase change.

IV. CONCLUSIONS

A lattice Boltzmann method is presented for dealing
with heat transport in two-phase systems with the ability
of incorporating phase change phenomena. This approach
employs multiple distribution functions, one for a pseudotem-
perature variable and the rest for various species. A nonideal
equation of state is introduced by using the Shan and Chen
method [5].

Starting from the well-known macroscopic energy con-
servation equation for mixtures, we first constructed the
continuum limit of the LB evolution equation for the pseu-
dotemperature variable. Using this limit as the guide, the LB
evolution equations were then formulated. In the proposed
scheme, heats of reaction, the enthalpy change associated
with the phase change, and diffusive transport of enthalpy
are all readily taken into account. However, the dependence
of enthalpy on pressure has been ignored. In most chemically
reacting flows encountered in chemical industries, the pressure
dependence of enthalpy contributes very little to the evolution
of the temperature field and therefore this simplification is not
a serious limitation. (If the pressure dependence is important
in a given problem, improvements to the present model will
be needed.)

As in other numerical schemes, such as the volume of
fluid method, the vapor-liquid interface in the LB simulations
is more diffuse than in real systems. As a result, one has to
postulate how physical properties vary with density across the
diffuse interface; any postulate one makes about this variation
is only an approximation. We present a simple model based on
marker functions. The details of the variations in the diffuse
interface will necessarily depend on the choice of marker
functions; however, as the amount of material in this diffuse
interface is small compared to the total mass in the system,
the overall influence of the choice of marker functions is
generally insignificant.

The energy equation is coupled to the LB equations
for species transport through the EOS. We found that the
computed (pseudo)temperature field in the vicinity of the
diffuse interface manifested noisy fluctuations, which under
some conditions caused the coupled scheme to be unstable.
This problem was easily removed by employing in the EOS
a filtered temperature field obtained by using a regularized
robust spline algorithm due to Garcia [41]. Furthermore, the
thermal boundary conditions were implemented following the
model proposed by Zou and He [40].

The proposed scheme was validated against several simple
test problems, two of which are illustrated in this article. The
first example considered a case where the temperature field
was not coupled to the EOS. This example demonstrated
that heat conduction across the vapor-liquid interface when
the liquid and vapor physical and thermal properties are
very close to the values in the real systems could be handled
without any problem.

The second example allowed for coupling of the EOS with
the energy equation and examined heating of a two-phase
mixture. The heat source appeared in the energy balance,
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which altered the temperature field; the EOS then dictated
if and where phase change should occur; the phase change led
to species transport and a change in the temperature field. We
demonstrated that the proposed scheme correctly captured a
readily verifiable macroscopic quantity, namely, the enthalpy
content in the system. In our opinion, the proposed scheme can
be used to simulate nonisothermal multiphase reacting flows,
which are encountered widely in chemical industries.
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