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Filtering schemes in the quantum-classical Liouville approach to nonadiabatic dynamics
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We study a number of filtering schemes for the reduction of the statistical error in nonadiabatic calculations by
means of the quantum-classical Liouville equation. In particular, we focus on a scheme based on setting a threshold
value on the sampling weights, so that when the threshold is overcome the value of the weight is reset, and on
another approach which prunes the ensemble of the allowed nonadiabatic transitions according to a generalized
sampling probability. Both methods have advantages and drawbacks, however, their combination drastically
improves the performance of an algorithm known as the sequential short-time step propagation [MacKernan
et al., J. Phys: Condens. Matter 14, 9069 (2002)], which is derived from a simple first order expansion of the
quantum-classical propagator. Such an algorithm together with the combined filtering procedures produce results
that compare very well with those obtained by means of numerically accurate path integral quantum calculations
for the spin-boson model, even for intermediate and strong coupling regimes.
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I. INTRODUCTION

In the field of condensed matter, many systems can be
modeled using a quantum subsystem coupled to a classical
bath. When energy is free to be exchanged between the
subsystem and the bath, the resulting dynamics is known to
be nonadiabatic. This type of dynamics is very difficult to
simulate due to the quantum back-reaction of the subsystem
onto the bath [1–5]. A number of numerical methods have
been proposed for the calculation of nonadiabatic dynamics on
a computer, the most common of which are so-called surface
hopping schemes [6–12]. More recently, an approach based on
the quantum-classical Liouville equation has been applied with
success to condensed matter systems [13–19]. This approach
allows one to construct a proper formulation of the statistical
mechanics of quantum-classical systems [20,21] which can
also be generalized to situations where the bath follows a
non-Hamiltonian dynamics [22,23].

A simple and efficient algorithm suited for the computer
simulation of the quantum-classical Liouville equation is the
sequential short-time propagation (SSTP) algorithm [24]. The
SSTP algorithm is based on a first order expansion in time of
the Dyson form of the quantum-classical propagator and, when
combined with the momentum-jump approximation [25,26],
leads to a representation of nonadiabatic dynamics in terms
of piecewise adiabatic trajectories of the bath coordinates,
interspersed with stochastic transitions between the energy
levels of the subsystem. Despite the similarities to a recently
introduced scheme based on a Trotter decomposition of
the quantum-classical propagator [27], the basic version of
the SSTP algorithm is not as stable at long times and it
also displays problems in the region of intermediate and
strong coupling to the bath, as illustrated by the results of

calculations on the spin-boson model [25,28,29]. The growth
of the statistical error in time can be mitigated by means of
filtering schemes. One such scheme [30] is essentially based
on establishing a cutting threshold of the observable when it
becomes too large because of the accumulation in time of the
sampling weight. Such a scheme will be referred to in the
following as the observable-cutting scheme. More recently,
another filtering algorithm, which is based on a generalized
sampling of nonadiabatic transitions, has been proposed. Such
an algorithm has been proven to dramatically reduce the
statistical error at long time [28,29]. This other scheme will be
called in this paper as the transition-filtering scheme.

In this work, we use the SSTP algorithm to integrate the
quantum-classical Liouville equation for the spin-boson model
and perform a comparison of the performances of the two
filtering schemes discussed above. The main result of this
paper is that the SSTP algorithm used in conjunction with
the combination of the observable-cutting and the transition-
filtering schemes performs as well as the Trotter algorithm also
in the intermediate and strong coupling regimes. This result is
desirable since the SSTP algorithm is easier to implement than
its Trotter counterpart, especially when the number of quantum
states greater than two must be considered. This promises to
be advantageous when studying quantum systems which are
more complex than the spin-boson model.

The structure of the paper is as follows. Section II sketches
the derivation of the quantum-classical Liouville equation and
its representation in the adiabatic basis. In Sec. III, the basic
version of the SSTP algorithm is illustrated together with the
observable-cutting and the transition-filtering schemes. In the
same section, the combined filtering scheme is introduced.
Section IV discusses the results of the numerical calculations
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on the dynamics of the spin-boson model using the various
filtering schemes. Finally, our conclusions are given in Sec. V.

II. QUANTUM-CLASSICAL LIOUVILLE EQUATION

Let us consider a nonrelativistic system that is defined by
the following Hamiltonian operator:

Ĥ = ĤS + ĤB + ĤSB , (1)

where S, B, and SB are subscripts denoting the subsystem,
bath, and the coupling, respectively. The Heisenberg equation
of motion for an arbitrary operator Â can be written in
symplectic form as [22]

∂

∂t
Â = i

h̄
[ Ĥ Â ]Bc

[
Ĥ

Â

]
, (2)

where the symplectic matrix [31] Bc is given by

Bc =
[

0 1
−1 0

]
. (3)

It is assumed that the Hamiltonian of the bath depends on a
pair of canonically conjugate operators X̂ = (R̂,P̂ ), and that
the coupling Hamiltonian ĤSB depends only on R̂ and not P̂ .
The partial Wigner transform of the operator Â over the bath
coordinates is

ÂW(X) =
∫

dz eiPz/h̄
〈
R − z

2

∣∣∣Â∣∣∣R + z

2

〉
. (4)

The partial Wigner transform of the density matrix ρ̂ of the
system described by the Hamiltonian in Eq. (1) is

ρ̂W(X) = 1

(2πh̄)3N

∫
dz eiPz/h̄

〈
R − z

2

∣∣∣ρ̂∣∣∣R + z

2

〉
, (5)

where X = (R,P ) are now no longer operators but canonically
conjugate classical phase-space variables. The partial Wigner
transform of the Heisenberg equation of motion can be written
in matrix form upon introducing the antisymmetric matrix
operator D given by [22]

D =
⎡
⎣ 0 e

ih̄
2

←
∂ kBc

kj

→
∂ j

−e
ih̄
2

←
∂ kBc

kj

→
∂ j 0

⎤
⎦ . (6)

The symbols
←
∂ k = ←

∂ /∂Xk and
→
∂ k = →

∂ /∂Xk denote the oper-
ators of derivation with respect to the phase-space coordinates
acting to the left and right, respectively. The summation over
repeated indices must be understood here and in the following.
The partially Wigner-transformed Hamiltonian can be written
as

ĤW(X) = ĤS + HW,B(X) + ĤW,SB(R), (7)

where we have assumed that the bath dependence of the
coupling terms is on positions only:

ĤW,SB = VB(R) ⊗ Ĥ ′
S, (8)

where H ′
S acts only in the Hilbert space of the subsystem.

The above representation is equivalent to the Heisenberg
representation, but in general calculations are difficult to
perform. However, in many instances a quantum-classical

approximation can be taken by means of a linear expansion of
the exponential terms in the D matrix, giving

Dlin =
⎡
⎣ 0 1 + ih̄

2

←
∂ k Bc

kj

→
∂ j

−1 − ih̄
2

←
∂ k Bc

kj

→
∂ j 0

⎤
⎦ . (9)

This allows one to write the quantum-classical Liouville
equation as

∂

∂t
Â(X,t) = i

h̄
[ ĤW(X) ÂW(X,t) ]Dlin

[
ĤW(X)

ÂW(X,t)

]
. (10)

When VB(R) is linear in R and HW,B is quadratic in the
bath coordinates, the linear expansion is exact (Dlin = D)
and quantum-classical dynamics is equivalent to full quantum
dynamics.

In order to perform calculations, Eq. (10) must be rep-
resented in a basis. The adiabatic basis leads naturally to a
splitting of nonadiabatic and adiabatic terms, which is ideal
for surface-hopping algorithms. To this end, the partially
Wigner-transformed Hamiltonian in Eq. (7) can be rewritten
as ĤW = (P 2/2M) + ĥ(R), so that the kinetic energy of the
bath (represented in phase space) is separated from the rest of
the energy terms that define the adiabatic Hamiltonian ĥ(R).
The adiabatic basis is defined as the solution to the eigenvalue
equation

ĥ(R)|α; R〉 = Eα(R)|α; R〉. (11)

In this basis, the quantum-classical evolution takes the form

Aαα′
W (X,t) =

∑
ββ ′

(eitL)αα′,ββ ′A
ββ ′
W (X), (12)

where the quantum-classical Liouville operator [14] is given
by

iLαα′,ββ ′ = (iωαα′ + iLαα′ )δαβδα′β ′ + J MJ
αα′,ββ ′

= iL0
αα′δαβδα′β ′ + J MJ

αα′,ββ ′ , (13)

where the MJ superscript denotes that we have used the
momentum-jump approximation [25,26]. The Bohr frequency
is defined as

ωαα′ (R) = Eα(R) − Eα′ (R)

h̄
, (14)

and the classical-like Liouville operator for the bath degrees
of freedom is given by

iLαα′ = P

M

∂

∂R
+ 1

2

(
Fα

W + Fα′
W

) ∂

∂P
, (15)

where Fα
W = −∂Eα(R)/∂R and Fα′

W = −∂Eα′ (R)/∂R are the
Hellman-Feynman forces for adiabatic energy surface Eα and
Eα′ , respectively.

The operator J MJ
αα′,ββ ′ is known as the transition operator in

the momentum-jump approximation [25,26], and is responsi-
ble for the nonadiabatic transitions in the quantum subsystem
and the accompanying changes in the bath momentum. It is
given by

J MJ
αα′,ββ ′ = T MJ

α→βδα′β ′ + T ∗MJ
α′→β ′δαβ, (16)
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where

T MJ
α→β = P

M
dαβ(R) exp

[
1

2

	Eαβ(R)dαβ(R)
P
M

dαβ(R)

∂

∂P

]
. (17)

In Eq. (17), the symbol dαβ (R) = 〈α; R|(∂/∂R)|β; R〉 denotes
the coupling vector, while 	Eαβ(R) = Eα(R) − Eβ(R) stands
simply for the energy difference between the adiabatic eigen-
states |α; R〉 and |β; R〉. In the momentum-jump approxima-
tion, the back-reaction on the bath (i.e., the change to bath
momenta) accompanying a nonadiabatic transition can be
calculated analytically. If we consider an α → β transition,
the momentum-shift approximated J operator J MJ produces a
shift in the bath momenta P . This shift is defined as

P → P ′ = P + 	MJ
αβ P, (18)

where

	MJ
αβ P = −(P d̂αβ )d̂αβ

+ d̂αβ sgn(P d̂αβ)
√

(P d̂αβ )2 + M	Eαβ . (19)

The symbol d̂αβ = dαβ/
√

dαβdαβ is the unit vector associ-
ated with the coupling vector in the multidimensional space
of all the particle coordinates. Note that in the above, we have
assumed that all the masses are the same, however, it is a
simple matter to extend this to a system where the masses
are different. If we expand the square root on the right-hand
side of Eq. (19), we obtain the approximated form for the
momentum-shift rule

	̃MJ
αβ P = 1

2

	Eαβ(R)
P
M

d̂αβ

d̂αβ . (20)

Note that while the exact momentum-shift rule in Eq. (19)
exactly conserves the energy, the approximated form in
Eq. (20) does not. In our calculations, only the exact form
of the momentum-shift rule was used.

III. FILTERING SCHEMES FOR THE SSTP ALGORITHM

The SSTP algorithm is derived upon considering the
evolution along a quantum-classical trajectory given by the
solution of Eq. (12) as a series of sequential small time steps
τ . Hence, the short-time expression of the quantum-classical
propagator [exp(iτLMJ)]αα′,ββ ′ is approximated to linear order
in time as

eiτL0
αα′

(
δαβδα′β ′ + τJ MJ

αα′,ββ ′
) = Wαα′ (τ )eiLαα′ τ

× (
δαβδα′β ′ + τJ MJ

αα′,ββ ′
)
.

(21)

In Eq. (21), the phase factorsWαα′ (τ ) are defined asWαα′ (τ ) =
exp[−i

∫ τ

0 dτ ′ωαα′ (τ ′)], where the dependence on time of
ωαα′ , which is defined in Eq. (14), arises, in a Lagrangian
point of view, from the time evolution of the coordinates
of the bath R. In the limit τ → 0, the concatenation of
the short-time steps exactly reproduces the Dyson integral
expansion of the operator exp(iτL)αα′,ββ ′ for finite times
[24]. The computational evaluation of each single step τ can
be evaluated upon considering the short-time propagator in
Eq. (21) as a stochastic operator. The action of the transition
operator J MJ

αα′,ββ ′ is then sampled using a suitable transition

probability. This transition probability is not uniquely fixed but
has to be chosen following the criteria of physical reasonability
and computational efficiency.

The transition probability is defined as the probability of a
nonadiabatic transition occurring in a time interval τ . A basic
choice for this probability is given by

P0
αβ(X,τ ) = τ | P

M
dαβ(R)|

1 + τ | P
M

dαβ(R)| . (22)

This transition probability then defines the probability of no
transition occurring in the same time interval as

Q0
αβ(X,τ ) = 1 − P0

αβ

= 1

1 + τ | P
M

dαβ(R)| (23)

when at time step tj (tj − tj−1 = τ ) in the calculation
the transition probability is sampled, and a transition
occurs, the observable is multiplied by a factor Wj =
(℘αβ)−1Wαα′ (P/M)dαβ(P0

αβ)−1, where ℘αβ is the probability
with which one selects state |β; R〉 being in state |α; R〉.
The (P/M)dαβ term originates from the action of the J MJ

αα′,ββ ′
operator. If no transition occurs, then the weight at time tj

is defined as Wj = Wαα′ (Qαβ
0)−1. In the SSTP algorithm,

the total weight that multiplies the observable arises from the
concatenation of all the weights Wj from t = 0 to the j th time
step considered: W = ∏

j Wj . The growth of W with time and
the fact that each nonadiabatic transition is accompanied by a
shift of the momenta that can lead the bath to explore unstable
regions of phase space cause an error in the calculation of
the observable which also increases at longer times. We thus
need to sample nonadiabatic transitions in such a way that
minimizes this statistical error.

The first method for reducing statistical error tackles the
problem directly. It is a simple but effective approach. As
mentioned above, the magnitude of the weight, which is used
to calculate the observable, grows with time and causes the
value of the observable to grow, leading to large statistical
error. Knowing this, we can introduce a threshold value κt

which sets an upper bound to the magnitude of the weight. If
at a time tj in the calculation of a trajectory we have that the
magnitude of the weight W becomes larger than κt, it is instead
set to the value of κt. Mathematically, we can write this as

W =
{

W if |W | < κt,

sgn(W )κt if |W | > κt.
(24)

Note that this cutting only affects the magnitude of the
weight, the sgn remains the same. This cutting ensures that
the weight can never grow to values where a single trajectory
is having an overly large effect on the value of the observable.
Consequently, we do not see the large statistical error in the
result at longer times. Indeed, the logic behind the choice of κt

is that of reducing the statistical error: a series of calculations
has to be performed to discover the optimal choice of κt. While
effective, however, this scheme does not have any physical
basis, unlike the transition filtering scheme.

Another approach to the reduction of the statistical error has
been recently proposed in Refs. [28,29]. Essentially, it is based
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on filtering out those nonadiabatic transitions which would
lead to too big a change in the momenta. In order to illustrate
such an approach, it is useful to recall the form of the energy
variation because of a nonadiabatic transition calculated using
an approximate form of the momentum-shift rule:

Eαβ = P ′2

2M
+ Eα(R) −

(
P 2

2M
+ Eβ(R)

)
, (25)

where P ′ = P + 	̃MJ
αβ P . Upon introducing the parameter κE

and the weight ω(κE ,Eαβ ), one can define a generalized
transition probability

PEC
αβ (X,τ ) = τ | P

M
dαβ(R)|ω(κE ,Eαβ )

1 + τ | P
M

dαβ (R)|ω(κE ,Eαβ)
. (26)

This in turn defines the probability of no transition
occurring as

Qαβ(X,τ ) = 1 − PEC
αβ

= 1

1 + τ | P
M

dαβ(R)|ω(κE ,Eαβ )
. (27)

The weight ω(κE ,Eαβ) is defined as

ω(κE ,Eαβ ) =
{

1 if Eab � κE ,

0 otherwise.
(28)

The transition probabilities in Eqs. (26) and (27) allow one
to control the amplitude of energy fluctuations that would be
caused by an approximate momentum-shift rule through the
use of the numerical parameter κE . Whenever a nonadiabatic
transition would cause a virtual energy fluctuation that is
larger than κE , the transition probability becomes zero, and no
transition can occur. As in the case of κt in the observable-
cutting scheme, the choice of κE in the transition-filtering
scheme is dictated by the rationale of reducing the statistical
error of the results of the calculations. This generalization of
the basic sampling scheme allows nonadiabatic transitions to
occur only in regions where the approximate momentum-shift
rule causes small virtual variation of the energy of the system:
this happens when the change in the momentum is not too
big. Such a scheme has been proven numerically to be very
efficient in reducing statistical error at long times [28,29]. In
the transition sampling scheme defined by Eqs. (25)–(28), the
use of the virtual energy variation in Eq. (25), as arising from
the approximated momentum-shift rule in Eq. (20) which is
not used in the actual calculation, must be considered as a
computational trick in order to select nonadiabatic transitions
that do not lead the system to an unstable region of phase
space because of too great a change in the bath coordinates’s
momenta. As a matter of fact, the approximated momentum-
shift rule in Eq. (20) coincides numerically with the exact
momentum-shift rule in Eq. (19) for small changes of the
momenta.

Since each of the above filtering techniques approach
the statistical error problem from different angles, it is
interesting to combine them within a single simulation
algorithm. According to such an idea, in each simulation, the
nonadiabatic transitions are filtered according to the transition-
filtering scheme, using the parameter κE , in addition to the

observable being cut when it grows too large, according to the
parameter κt.

IV. NUMERICAL CALCULATIONS

Our numerical study was performed on the spin-boson
model [32], which can be considered as a paradigmatic exam-
ple for quantum dynamics [25] for which the adiabatic states
are known exactly. For this system, there are also available
accurate numerical results arising from the integration of
its quantum dynamics by means of path integral techniques
[33–38] and classical mapping approaches [39]. Such a system
comprises a single spin coupled to a bath of harmonic
oscillators. Since the bath is harmonic and the coupling to
the spin is bilinear, the quantum-classical Liouville equation
is formally identical, after the partial Wigner transform over
the bath coordinate, to the Heisenberg equation of motion
so that the quantum-classical dynamics of this model is
exact, i.e., perfectly equivalent to its quantum dynamics.
Using adimensional coordinates [24,25,27], the spin-boson
Hamiltonian is given by defining the various terms in
Eq. (7) as

ĤS = −
σ̂x, (29)

HW,B =
N∑

i=1

(
P 2

i

2
+ 1

2
ω2

i R
2
i

)
, (30)

ĤW,SB = −
N∑

i=1

ciRiσ̂z, (31)

where σ̂x and σ̂z are the Pauli spin matrices and ci are the
coupling coefficients. These coefficients are determined by
requiring that the system spectral density is Ohmic [36]. In adi-
mensional units, they are defined as cj = √

ξ (ω0/ωc)ωj where
ξ is the Kondo parameter and ωc the frequency characterizing
the Ohmic spectral density and which provides the fundamen-
tal unit of measure for all the other quantities. The mode fre-
quencies are defined as ωj = − ln(1 − jω0/ωc) and the zeroth
frequency is defined as ω0 = ωc[1 − exp(−ωmax/ωc)]/N .

In simulations, we have set the spin in an excited state
at t = 0, and the quantum harmonic modes are at thermal
equilibrium, with no coupling before t = 0. After t = 0, the
coupling is switched on, and we calculate the observable
〈σ̂z(t)〉, or population difference of the system. We have
considered n = 2 nonadiabatic transitions per trajectory, as
this was sufficient for the results to converge. Each simulation
used a total of Nmcs = 105 sampled phase-space points for the
initial conditions. The integration time step was dt = 0.1 in
dimensionless units.

Figures 1 and 2 give the results for weak coupling, with
system parameters β = 0.3, ξ = 0.007, and 
 = 1

3 . From
Fig. 1, we see that both filtering techniques give results
that agree well with the influence functional path integral
calculations [36], however, the two results deviate from each
other at longer times. For both cases, we can observe the
growth of the statistical error at longer times, although it
is relatively minimal for weak coupling. Figure 2 displays
the weak coupling result for the combined filtering scheme.
In this case we again see the excellent agreement with the
influence functional results, but the error bars are smaller
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FIG. 1. Comparison of the SSTP with the observable-cutting
(filled square, panel a) and the transition-filtering algorithm (filled
diamond, panel b) to path integral quantum results (open triangle)
from Refs. [33–35]. System parameters were β = 0.3, ξ = 0.007,

 = 1

3 , corresponding to weak coupling. The value of the threshold
parameter for the observable cutting was κt = 100.0, and the value
of the control parameter for the energy conserving filtering was κE =
0.005. Two nonadiabatic transitions were included in the calculations.

than the points for the entire simulation time. Moreover, the
calculation remains stable for longer times [28,29] than those
obtained in previously published results.

Figures 3 and 4 show the results for mid-range coupling.
The system parameters used were β = 12.5, ξ = 0.09, and
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 1

 0  20  40  60  80  100

<
σ z

>

t

FIG. 2. Comparison of the SSTP with the combined filtering
algorithm (filled circle) to path integral quantum results (open
triangle) from Refs. [33–35]. System parameters were β = 0.3,
ξ = 0.007, 
 = 1

3 . The value of the threshold parameter was κt = 1.5,
and the value of the energy conserving filtering control parameter
was κE = 0.005. Two non-adiabatic transitions were included in the
calculations.
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FIG. 3. Comparison of the SSTP with the observable-cutting
(filled square, panel a) and the transition-filtering algorithm (filled
diamond, panel b) to path integral quantum results (open triangle)
from Ref. [36]. System parameters were β = 12.5, ξ = 0.09, 
 =
0.4, corresponding to mid-range coupling. The value of the threshold
parameter for the direct filtering was κt = 50.0, and the value of the
control parameter was κE = 0.025. Two nonadiabatic transitions were
included in the calculations.


 = 0.4. Figure 3 gives the comparison of the two filtering
schemes. The results for both filtering schemes agree very
well with the path integral quantum result from Ref. [36]
up until approximately t = 20, but after this time the results
deviate somewhat. In the case of the transition-sampling
filter, we do not observe the damping that occurs in the
path integral result: the oscillations remain large. For the
observable-cutting scheme, however, we see the opposite.
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t

FIG. 4. Comparison of the SSTP with the combined filtering
algorithm (filled circle) to path integral quantum results (open
triangle) from Ref. [36]. System parameters were β = 12.5, ξ = 0.09,

 = 0.4. The value of the threshold parameter was κt = 3.5, and the
value of the control parameter was κE = 0.05. Two nonadiabatic
transitions were included in the calculations.
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FIG. 5. Comparison of the SSTP with the observable-cutting
(filled square, panel a) and the transition-filtering algorithm (filled
diamond, panel b) to path integral quantum results (open triangle)
from Ref. [38]. System parameters were β = 0.25, ξ = 2.0, 
 = 1.2,
corresponding to high coupling. The value of the bound parameter
for the direct filtering was κt = 50.0, and the value of the control
parameter was κE = 0.5. Two nonadiabatic transitions were included
in the calculations.

The observable-cutting filter damps the result too much at
longer times, causing it to become zero. In Fig. 4, we have the
result for the combined filtering scheme. We see a dramatic
improvement over both the individual filtering scheme since
the combined filter does not exhibit either of the problems
observed above. The combined filtering result agrees far better

0

 0.2
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 0.8

1

0  0.5 1  1.5 2  2.5

-1
-0.5
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1
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FIG. 6. Comparison of the SSTP with the combined filtering
algorithm (filled circle) to path integral quantum results (open
triangle) from Ref. [38]. System parameters were β = 0.25, ξ = 2.0,

 = 1.2. The value of the threshold parameter was κt = 5.0, and
the value of the control parameter was κE = 1.0. Two nonadiabatic
transitions were included in the calculations.

with the path integral quantum result at longer times, with the
error bars smaller than the points for the entire simulation
time.

In Figs. 5 and 6, the results for strong coupling are
presented. For these results, we adopted the system parameters
β = 0.25, ξ = 2.0, and 
 = 1.2. From Fig. 5 we can see that
the two filtering schemes are incapable of reproducing the
quantum results of Ref. [38] at even short times. Although
both schemes are successful at reducing the statistical error,
we do see that the error bars become larger than the points at
approximately t = 2. In Fig. 6, we show the result obtained
with the combined filtering scheme for strong coupling.
Again, the improvement is remarkable. In the main figure,
an excellent agreement with the quantum result is illustrated,
while the inset shows that the result can be extended to
long times with statistical error remaining smaller than the
points.

V. CONCLUSIONS

We have studied three different methods for reducing
the statistical error when simulating the quantum-classical
Liouville approach to nonadiabatic dynamics by means of
the sequential short-time step algorithm [24]. The first two
methods are the observable-cutting scheme (which uses the
reset to threshold value for the statistical weights entering
the definition of the observable) and the transition-filtering
approach (which prunes the ensemble of allowed nonadiabatic
transitions on the basis of a generalized sampling probability).
We have used the spin-boson model as a paradigmatic example
of quantum dynamics in a dissipative environment [32] and
performed numerical calculations on the evolution in time of
the state population difference of this model. The use of either
scheme gives rise to results that have smaller statistical error
than those obtained when using the basic sampling, and both
filtering techniques are capable of producing results in good
agreement with the numerically accurate path integral quantum
results for short times, but only for the intermediate and weak
coupling regimes. Although both schemes are an improvement
over the basic sampling method in the SSTP algorithm,
they are still unable to reproduce the numerically accurate
path integral quantum results for strong coupling, and fail
at longer times for intermediate coupling as well. Moreover,
both schemes, when used in separation from the other, are
not able to curb the increase of the statistical error at longer
times.

Nevertheless, we have shown that the combination of these
two filtering methods in a single scheme solves both of the
problems encountered by the individual filtering schemes. This
is the main result of this paper. Upon using the combined
filtering scheme, we have produced results that not only
have negligible statistical error for longer simulation time
than that accessible in previously published calculations, but
compare far more favorably with the numerically accurate
path integral quantum results. The combined method is able
to nearly perfectly reproduce the strong coupling results,
whereas the individual schemes could not do this even at
very short times. Our results are also as good as those
obtained with the Trotter-based algorithm for the simulation
of the quantum-classical Liouville equation [27]. However,
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since the SSTP algorithm is easier to implement for systems
which have a number of quantum states greater than two,
our proposal of the combined filtering scheme promises to
be advantageous for more complex numerical studies of
nonadiabatic dynamics.
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