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This paper reports a super-resolution imaging approach based on orbital-angular-momentum diffraction
tomography (OAM-DT), which makes an important breakthrough on the Rayleigh limit associated with
conventional diffraction tomography (DT) technique. It is well accepted that orbital-angular momentum (OAM)
provides additional electromagnetic degrees of freedom. This concept has been widely applied in science and
technology. In this paper we revisit the DT problem extended with OAM, and demonstrate theoretically and
numerically that there is no physical limit on imaging resolution with OAM-DT. The physical mechanism behind
it is that either the near field or superoscillation of the transmitter is employed to super-resolve probed objects. This
super-resolution OAM-DT imaging paradigm does not require near-field measurement, a subtle focusing lens,
or complicated postprocessing, etc., thus providing an approach to realize the wave-field imaging of universal
objects with subwavelength resolution.
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I. INTRODUCTION

In 1879 Lord Rayleigh formulated a criterion that a con-
ventional imaging system cannot achieve a resolution beyond
that of the diffraction limit, i.e., the Rayleigh limit. Such a
“physical barrier” characterizes the minimum separation of
two adjacent objects that an imaging system can resolve.
In the past decade numerous efforts have been made to
achieve imaging resolution beyond the Rayleigh limit. Among
various proposals dedicated to surpassing this “barrier,” a
representative example is the well-known technique of near-
field imaging, an essential subwavelength imaging technology.
Near-field imaging relies on the fact that the evanescent
component carries fine details of the electromagnetic field
distribution at the immediate vicinity of probed objects [1].
Over the past decades, several innovative imaging instruments
(e.g., the metamaterial superlens [2], metalens [3], etc.) have
been invented, which detect the evanescent spectrum well
to improve imaging resolution and operational distance of
sensors to certain extents. Nonetheless, the strong confine-
ment of measurements for near-field evanescent components
precludes their widespread use as tools for general-purpose
applications. To circumvent this limitation, superoscillation-
based imaging has been developed as an alternative attempt
to break the Rayleigh limit [4]. The superoscillatory method
indicates that over a finite interval, a wave form oscillates
arbitrarily faster than its highest component in its operational
spectrum, and thus makes it possible to encode fine details
of the probed object into the field of view beyond the
evanescent fields. In light of this property, several optics
devices have been built to achieve super-resolution imaging
from far-field measurements [4,5]. Although superoscillation-
based imaging alleviates the requirement of probe-object
proximity, the achievable enhancement in resolution is es-
sentially dependent on signal-to-noise ratio (SNR) and other
factors, and it requires a huge-size mask with enough fabri-
cation finesse. In addition to the methods mentioned above,
there are other approaches that try to beat the Rayleigh
limit; for example, most recently Gazit et al. proposed a

technique of computational imaging which is dedicated for
sparse or compressible objects via solving a time-consuming
nonlinear optimization problem constrained by sparse
regularization [6].

It is well known that the electromagnetic fields can carry
not only energy and linear momentum but also angular
momentum [decomposed into spin-angular momentum (SAM)
and orbital-angular momentum (OAM)] over a very large
distance [7]. It has been demonstrated that in the optics [8]
and radio regimes [9], a beam with the distribution of a helical
phase front carries the OAM information. Several solutions
to generate this kind of vortex field have been developed as
well [9,17]. OAM-carrying beams can provide more fruitful
degrees of freedom for beam manipulation, and has been
benefiting applications ranging from information processing
and communications [10,11] to imaging in the optical and
quantum regimes [12]. However, less than ten years ago
researchers realized that OAM is promising for resolving two
optical sources separated at a distance smaller than that of the
Rayleigh limit. Swartzlander discovered that the optical vortex
mask with unit topological charge can be applied to distinguish
two sources separated by a distance slightly smaller than that
of the Rayleigh criterion [13]. Tamburini et al. found out that
when two sources separated by an angular distance below
the Rayleigh criterion crossed an optical vortex mask with
unit topological charge, the peak intensity ratio was highly
sensitive to the distance between the separated sources; hence
it can be used as a means to resolve two sources spaced at a
distance smaller than the Rayleigh limit [14]. These methods
aiming to break the Rayleigh limit seek to build heuristically
the relation between the measured OAM spectrum and some
critical parameters of targets of interests, such as location,
size, and number of separated objects [15,16]. In this paper,
we revisit the problem of diffraction tomography (DT) and
formulate a variant by exploiting the concept of OAM, termed
OAM-DT. The core idea behind the OAM-DT is that either the
near field or superoscillation of the transmitter is employed to
super-resolve probed objects. The current study indicates that
this technology has no physical limits on imaging resolution
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FIG. 1. The geometrical configuration adopted to study OAM-DT.

in principle, and can be universally used for imaging of
complicated objects.

II. PROPOSED METHODOLOGY

Diffraction tomography is capable of not only retrieving
quantitatively the distribution of the dielectric constant of
weak scattering objects, but also treating strong ones [18,19].
To facilitate discussion, we adopt the configuration of
transmission measurement, as sketched in Fig. 1. In this
setup, there are two sets of coordinate systems; namely, the
local system O-xyz is obtained by rotating the global system
of O-XYZ around the y axis by θ . The transmitter array is
distributed within the region denoted by a gray-filled square
located at zt while the array of receivers is at zr . According to
the vectorial wave equation, a time-harmonic electrical field
E(r,ω), in the inhomogeneous nondispersive medium with
relative dielectric parameter ε(r), obeys [21]

∇2E(r,ω) + k2
0ε(r)E(r,ω) + ∇[E(r,ω) · ∇ ln ε(r)] = 0, (1)

where k0 = 2π/λ is the wave number in free space, and λ is the
operating wavelength. With the assumption of slowly varying
medium in the scale of λ, i.e., |∇ ln ε(r)| � λ, the third term
in the left-hand side of Eq. (1) falls off [21]; consequently,

∇2E(r,ω) + k2
0ε(r)E(r,ω) = 0. (2)

Here three components of E(r,ω) are decoupled in Eq. (2).
For convenience, the nonbold letter E for a component of
E is utilized below, and the argument ω is suppressed as
well.

With the use of the Born approximation, the OAM-carrying
electrical field Esca(r,�) scattered from probed targets reads

Esca(r,�) =
∫

ROI
G(r,r′)Ein(r′,�)O3D(r′)dr′,

(3)
r = (x,y,z) ∈ Dr, r′ = (x ′,y ′,z′) ∈ ROI.

Herein, Dr is the region where receivers are placed, O3D(r′) =
k2

0[ε(r) − 1] represents the contrast of three-dimensional (3D)
objects with respect to background medium (free space in this

paper), G(r,r′) = ejk0 |r−r′ |
4π |r−r′ | is the Green’s function in free space,

and j = √−1. Inside the region of interest (ROI) where the
probed objects are embedded, the incident wave is assumed
to be OAM-carrying with the topological charge of � (� =
0, ±1, ±2, . . . , ±L), and propagates along the z direction,
i.e., Ein(r′,�) = A(r ′)ej (�ϕ′+k0z

′), where ϕ′ is the polar angular
in the O-xy plane, and the core of this vortex field is along
the z axis. In this work Ein(r′,�) = ej (�ϕ′+k0z

′) is adopted. Bear
in mind that the case of � = 0 corresponds to traditional DT
technique.

Following the line adopted in the standard DT technique,
the algorithm implementation of OAM-DT super-resolution
imaging can be straightforwardly developed. In the matrix
form, Eq. (1) becomes

E� = A�O3D, (4)

where � = 0, ±1, ±2, . . . , ±L; L is a truncated number.
Equation (4) can be immediately solved by a standard least
squares method; more specifically, the solution reads

Ô3D =
[

L∑
�=−L

A∗
�A�

]−1 [
L∑

�=−L

A∗
�E�

]
, (5)

where the superscript ∗ indicates the conjugate transpose.
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FIG. 2. (Color online) The distributions of normalized amplitudes (top row) and phases (bottom row) of OAM-carrying fields at z = 0
produced by the phased antenna array located at zt = −5λ. From left to right, they correspond to � = 0, 1, 3, and 5. In these figures, all axes
are scaled by operational wavelength λ.
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FIG. 3. (Color online) Reconstruction of a small cube with a size of 0.1λ × 0.1λ × 0.1λ, and refraction index of 1.01. (a) L = 0 (equivalent
to traditional DT method), (b) L = 3, (c) L = 5, (d) L = 10, and (e) L = 20. From (a) to (e), the cores of the incident vortex fields are located
at the origin of the global coordinate system. Panel (f) is the result of moving the cores of incident vortex fields along x = λ. In all of these
images, all axes are scaled by operational wavelength λ.

A. The generation of OAM-carrying illumination

In optics, there are numerous methods of generating OAM-
carrying beams, such as with the use of a spiral phase plate
(SPP), computer-aided hologram, etc. In radio, it was shown
that an OAM-carrying radio beam can be generated by a
circular phased antenna array [9], or other means [17]. In
this paper the OAM-carrying field of Ein(r ′) = A(r ′)ej (�ϕ′+k0z

′)

inside the ROI is produced by a phase antenna array. In
the simulation 400 elements of half-wavelength dipoles are
uniformly distributed within the rectangle plane of [–5λ, 5λ]
× [–5λ, 5λ] at zt = −5λ. OAM-carrying radio beams can be
generated by adaptively controlling phases and amplitudes of
elements of the antenna array. In the top row of Fig. 2, the
distributions of normalized amplitudes of resulting incident
fields inside at the location of z = 0 are illustrated for
topological charges of � = 0, 1, 3, and 5 from left to right. In
the bottom row of Fig. 2, corresponding phase distributions are
shown as well. Notice that the sizes of the vortex fields follow
the rules, in particular, (a) Ein(r ′,�) ≈ ej�ϕ′

for r ′ � r0(�),
otherwise being approximately zero, where r0(�) is a positive
nondecreasing function of |�|; for instance, r0(�) ≈ 0.16|�|
for zt = −5λ. (b) For a given value of �, r0(�) is inversely
proportional to the distance |zt |.

B. Super-resolution imaging mechanism

We investigate the capability of the OAM-DT scheme
for super-resolution imaging by examining the imaging of a
thin dielectric slab, mathematically, O3D(r′) = O(x ′,y ′)δ(z′).
For this case only one-view measurements are taken into

consideration, specifically, θ = 0. Regarding the reconstruc-
tion of more general 3D objects, discussions in this article are
applicable with multiview measurements by changing θ . After
applying the Weyl equation [21] to the Green’s function in
Eq. (1), we obtain

Esca(x,y,�) = j

8π2

∫ +∞

−∞

∫ +∞

−∞
dkxdky

×Õ(kx,ky ; �)
ejkxx+jkyy−jkzzr

kz

, (6)

where kz =
√

k2
0 − k2

x − k2
y , Õ�(kx,ky) =∫

O(x ′,y ′)ej�ϕ′
e−jkxx

′−jkyy
′
dx ′dy ′. Taking the two-

dimensional (2D) Fourier transform of Esca(x,y,�) with
respect to x and y leads to

Ẽsca(kx,ky,�) ∝ ejkzzr

kz

(Õ ⊗ F̃�)(kx,ky), (7)

where ⊗ indicates convolution, Õ(kx,ky) =∫
O(x ′,y ′)e−jkxx

′−jkyy
′
dx ′dy ′, and [22]

F̃�(kx,ky) =
∫

e−jkxx
′−jkyy

′
ej�ϕ′

r ′dr ′dϕ′

∝ j−|�|ejlθk

∫ ∞

0
J|�|(kr ′)r ′dr ′ ∝ j−|�||�|k−2ej�θk .

(8)

Here θk = tan−1(ky/kx), and J|�|(·) is the |�|-order first-kind
Bessel function. It is not hard to prove that in the far field of
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FIG. 4. (Color online) (a) The ground truth. (b) The result obtained by traditional DT method. (c), (d) The results of OAM-DT with L = 5
and L = 10, respectively. (e) The result of moving the cores of incident vortex fields along the diagonal of ROI. For all these figures, all axes
are scaled by working wavelength λ.

k0zr � 1 and � = 0, Ẽsca(kx,ky,�) ∝ e−jkzzr

kz
Õ(kx,ky) is band

limited to k2
x + k2

y � k2
0 which attributes to the Rayleigh

limit. In contrast, the convolution depicted in Eq. (4) with
nonzero � allows the conversion of high-frequency compo-
nents of Õ(kx,ky) outside k2

x + k2
y � k2

0 into Ẽsca(kx,ky,�)
inside k2

x + k2
y � k2

0, giving rise to the feasibility of super-
resolution imaging. It can be shown clearly by applying∑∞

�=−∞ ej�(ϕ−ϕ′) = δ(ϕ − ϕ′) to Eq. (7), that the deduced
imaging with arbitrarily high angular resolution, at least in
principle, can be readily achieved.

In the following, further insights into the super-resolution
imaging mechanism by OAM-DT are discussed from two
aspects, i.e., near-field coupling and superoscillation. Firstly,
Eq. (2) exhibits that there is a spatial-frequency mixing char-
acterized by the multiplication between illumination Ein(r′,�)
and probed target O3D(r′). That is when the illumination
contains a spatial frequency kin; then spatial frequency k of
the probed target can be observable if it lies within the region
of |kin − k| � k0, where the far-field observation, i.e., large
|zr |, is implied. Consequently, to maximize the resolution it
is desirable for the illumination to contain as high spatial
frequency kin as possible. On the other hand, the Ein(r′,�),
generated by a array of phased antennas located at zt , is
formally expressed by

Ein(r′,�) =
∑
m

∑
n

Jm,nG
(
r′,rm,n

)
. (9)

Here, Jm,n is the exciting complex-valued current of the
(m,n)th antenna element. In the case of a small |zt |, i.e., the
probed target is placed closely to the array of transmitting

antennas, the module of kin can be substantially larger than
k0 owing to evanescent wave components of fields from
transmitting antennas. As a result, the super-resolved imaging
can be readily deduced from far-field measurements, i.e.,
k0|zr | � 1.

Secondly, the OAM-based super-resolved imaging can be
obtained for the large |zt | from so-called superoscillation phe-
nomena. Superoscillation means that a band-limited function
can be oscillating arbitrarily faster than its highest Fourier
component within a finite interval. It is the fact that the spatial
bandwidth of the whole illumination radiated from transmitters
cannot be beyond k0, which means that an incident wave
cannot be characterized by ej�ϕ′

in the whole space. However,
it can be faithfully conceived that the illumination can be well
approximated to be of ej�ϕ′

within a region of r1 � r ′ < r2 (r1

and r2 are two non-negative real numbers). Thus, it is a clever
way to place the probed targets inside the area of r1 � r ′ < r2;
correspondingly, the integrand of Eq. (1), originally restricted
into the domain of r1 � r ′ < r2, can be extended into the whole
space, and Eq. (1) becomes

Esca(r,�) =
∫

G(r,r′)ej�ϕ′
O3D(r′)dr′. (10)

Obviously, the “illumination” represented by ej�ϕ′
contains

a spatial frequency kin substantially higher than k0, which
immediately leads to the super-resolution imaging by the
mixing-frequency principle as discussed above.

Finally, we would like to look into the above claim
by considering the so-called point-spread function (PSF) of
OAM-DT. After some straightforward implementation, the
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FIG. 5. (Color online) (a) The ground truth. (b) The result obtained by traditional DT method. (c) The result of OAM-DT with L = 5,
where cores of incident vortex fields are fixed at the center of ROI. (d) The result of moving the cores of incident vortex fields along the diagonal
of ROI. In these figures, all axes are scaled by working wavelength λ.

expression of the reconstruction of O(x ′,y ′) in terms of PSF is

Ô(x ′′,y ′′) =
∫

R(x ′,y ′; x ′′,y ′′)O(x ′,y ′)dx ′dy ′,

(x ′,y ′),(x ′′,y ′′) ∈ ROI, (11)

where in the limit of L → ∞ the PSF of OAM-DT is

R(x ′,y ′; x ′′,y ′′) =
�=+∞∑
�=−∞

e−j�(ϕ′−ϕ′′)
∫ +∞

−∞

∫ +∞

−∞
dkxdky

× e−2Im(kz)zr

|kz|2 ejkx (x ′−x ′′)+jky (y ′−y ′′)

≈ δ(ϕ′ − ϕ′′)
∫ k0

0
J0(k|r ′ − r ′′|)kdk

= k0δ(ϕ′ − ϕ′′)
J1(k0|r ′ − r ′′|)

|r ′ − r ′′| , (12)

where Im(kz) is the imagery part of kz. Equation (12) reveals
that with the use of topological charges varying from −∝
to ∝, the extremely high angular resolution can be achieved
while there is no obvious improvement in the radial resolution.
Inspired by this we expect the imaging with super-resolution
in the angular and radial directions can be obtained by
changing cores of the vortex incident fields.

III. RESULTS

To demonstrate previous investigations, a set of numerical
experiments are conducted, where the synthetic measurements
are generated using the full-wave simulation of method of
moment (MoM) [20] and corrupted by some additive Gaussian
noise. In the simulation the region of interest (ROI) of 4λ

× 4λ × 0.1λ, centered at the origin, is divided into 41 ×
41 × 1 sub-blocks with a size of 0.1λ × 0.1λ × 0.1λ,
and only one-view measurements (i.e., θ = 0) are served as
the input of OAM-DT. An array of 30 × 30 receivers are
arranged uniformly within a rectangle region of [–5λ, 5λ] ×
[–5λ, 5λ] at the location of z = 5λ, and distributed regularly
within a square of 10λ × 10λ with a spatial step of 0.5λ.
As the first example, the target being imaged consists of
a small cube with a size of 0.1λ × 0.1λ × 0.1λ with a
refraction index of 1.01 located at (0, λ, 0), and the SNR
of the measurement is set to be 40 dB. Figure 3 compares
reconstruction results obtained by traditional DT and the
proposed OAM-DT technique. Figure 3(a) gives the result
by traditional DT method equivalent to the case of L = 0,

while Figs. 3(b)–3(e) are results by proposed OAM-DT with
L = 3, 5, 10, and 20. These results reveal that with the
increase of truncation index L, reconstructed images become
remarkably sharper, especially the strong enhancement on the
angular resolution, as predicted previously. To further improve
the radial resolution, we move the cores of OAM-carrying
incident fields from −1.5λ to 1.5λ with a step of 0.5λ along
the line of x = λ, and the corresponding result is shown in
Fig. 3(f), where the image is almost a perfect reconstruction
of the “true” object. The second example is more complicated
targets consisting of three separated U-shaped structures with
different orientations. In this simulation, all parameters are the
same as above except for a lower SNR of 30 dB. Figures 4(b)–
4(d) give, respectively, the results reconstructed by OAM-DT
techniques with L = 0 (traditional DT), 5, and 10. To improve
imaging quality further, cores of OAM-carrying incident fields
are moved along the diagonal of the ROI with steps of 0.5λ,
and we use L = 5. The corresponding results demonstrated in
Fig. 4(e) reveal an almost perfect reconstruction of the ground
truth in Fig. 4(a).

In the last example, we consider the reconstruction of 3D
objects [as shown in Fig. 5(a)] by applying the proposed
OAM-DT approach, where the simulation data are produced
by commercial software FEKO Suite 5.3 and are corrupted
with white noise with SNR of 30 dB. In this case all other
parameters are the same as the above examples. The simulation
took multiview measurements of θ =0◦, 45◦, 90◦, and 135◦.
Figure 5(c) shows the result of OAM-DT with L = 5. The
corresponding results computed by standard DT technique are
displayed in Fig. 5(b) for comparison. To further improve
imaging quality, the centers of the vortex fields are moved
along the diagonal of the ROI with step of 0.5, and the imaging
results are shown in Fig. 5(d). A function of “isosurface” in
MATLAB 7.3 with a threshold value of 0.0031 is applied in
Figs. 5(c) and 5(d), while a value of 0.000 78 in Fig. 5(b)
is due to relatively underestimated values by traditional DT
technique. For this 3D example, conclusions drawn previously
are confirmed.

IV. CONCLUSION

In summary, in this paper we demonstrate theoretically and
numerically that it is indeed possible to significantly refine
the imaging resolution of traditional diffraction tomography
by applying electromagnetic OAM. This discovery serves
an approach for subwavelength wave-field imaging in a
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rather efficient manner, which has no harsh requirements for
elaborate imaging lens, near-field measurement, sophisticated
and heavily computational postprocessing, etc. It is con-
ceivable that the proposed OAM-DT technique is promising

for the development of novel information-rich radar, smart
antenna arrays, and other imaging systems. A concept-of-proof
imaging system is under construction, and will be reported in
the near future.
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