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Radiation reaction on a classical charged particle: A modified form of the equation of motion
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We present and numerically solve a modified form of the equation of motion for a charged particle under
the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-
differential, as Dirac-Rohrlich’s, but has several technical improvements. First, the equation has the form of
Newton’s second law, with acceleration isolated on the left hand side and the force depending only on positions
and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction
perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and
the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it

numerically for several examples of external force.
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I. INTRODUCTION

Accelerated particles carrying electric charge are a source
of electromagnetic radiation. The momentum carried away
by the radiation field affects the particles’ classical motion,
imparting a recoil force traditionally known as “radiation
reaction.” It is somewhat frustrating that a century and a half
after the first attempts, “a completely satisfactory classical
treatment of the reactive effects of radiation does not exist” [1].
Other treatments employing QED have been proposed; see, for
example, [2,3]. Nevertheless we feel that classical treatments
are still interesting, as attested by the continuing theoretical
efforts [4-7].

Most physicists are familiar with the Abraham and Lorentz
[8] equation of motion [9],

.. , 26%..
mX = fo (x,X) + = =X, (1)
3¢3
which incorporates a radiation reaction force %% X into
Newton’s second law, in addition to any external forces fex
accelerating the particle. (Usually, m and e will be the mass
and charge of the electron, but the equation will be valid
for any pointlike charged system.) An alternative to Eq. (1),
the Landau-Lifshitz equation, has been carefully compared
in a very clear way in [10]. Although the Landau-Lifschitz
formulation has some advantages, stating that it is the correct
one seems to be an overstatement, as remarked in [10]. The
results in this work are based on the classical Abraham-Lorentz
equation and its generalizations.
A well known one is the relativistic four-vector form, known
as Lorentz-Dirac equation,

2(x*‘(v) + EE)HEGs),  (2)

mit(s) =

fext(s) +

whose derivation can be found in standard textbooks [11,12].
A few remarks are, however, carried into this work later in
Sec. II.

This equation has traditionally being recognized as affected
by the problem of self-accelerated solutions, discussed later
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in Secs. II and IV A. Therefore, it is often replaced with an
integral equation, the Dirac-Rohrlich equation [13-15],

() = / oods/e“‘f’“(f“‘( )+( (s i (s )) 3)

This is an integro-differential equation for the acceleration,
featuring a characteristic length, L = 2¢?/(3mc?) that for
the electron is called the “electron relaxation length,” L, =
1.876 fm. The self-accelerated solutions of Eq. (2) are absent
by construction (the formal integration is carried out with the
condition that the acceleration does not increase exponentially
as e*/" or faster at infinity).

We present in this work an alternative equation, equivalent
to Eq. (3), but that has several important technical improve-
ments. This is

it(s) = miLxu(s) / ds' O™ (fRE" — R M),
)

Equation (3) is indeed known to have several drawbacks.
The first one is the apparent lack of causality as the acceleration
depends on the force at future times, but this “advanced”
formulation is not in itself a real difficulty, as we show
in Sec. III. The second and most serious drawback is the
phenomenon of “preacceleration,” at scales of order L where
the particle accelerates before the external force begins.
In this respect our equation will not improve the existing
situation. Nevertheless, our alternative equation (4) is superior
in several important technical counts that make its numerical
implementation and solution much simpler. These are as
follows.

(1) Our equation is linear in the highest (second) derivative,
while Eq. (3) is quadratic in it.

(2) The acceleration X appears in both the left and right hand
sides of Eq. (3), while in our proposed equation Eq. (4) the right
hand side depends only on four-position and four-velocity, but
the four-acceleration is formally solved for.

(3) Ifthe external force vanishes for all times, the alternative
equation (4) yields zero acceleration automatically. This
happens also in Eq. (3), although it is not as obvious.

(4) The right hand side of Eq. (3) is orthogonal to the four-
velocity, but this is not evident. In our Eq. (4), orthogonality
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follows trivially from the antisymmetry of the integrand under
<> v. This orthogonality guarantees x,x* =0 and thus
%2 = constant at every step on an iterative solution without
relying on cancellations that are not always obvious.

We derive, analyze, and numerically solve Eq. (4) for
several simple cases of interest. Our numerical methods are
described in Sec. V and the actual computations are reported in
Sec. VI. Section VII wraps up the discussion and summarizes
our findings.

II. DERIVATION OF THE ALTERNATIVE EQUATION

A. Self-accelerated solutions

The Lorentz-Dirac equation (2) features two radiation-
related self-forces. One is mL(¥(s))*x"(s), which accounts
for the power radiated [see below Eq. (54)] in an irreversible
manner. The other, the Schott term mLX*"(s), also present
in the relativistic generalization of the Abraham-Lorentz
equation (see the derivation in [11]), represents a reversible
positive or negative transfer of four-momentum between the
charged particle and its near field. This structure entails
that setting fl,(s) =0 for all times is not sufficient to
guarantee X = 0 in Eq. (2). Moreover, the Schott term brings
about self-accelerated solutions with exponentially diverging
accelerations.

Indeed, the “free” Dirac-Lorentz equation,

©(s) = L(X"(s) 4 (¥)%5%), (&)

can be multiplied by X,, and using the orthogonality be-
tween four-velocity and four-acceleration x - X = O the radiated
power term vanishes, leaving

Li-X = i?, (6)

which can be integrated to yield a family of solutions
characterized by an arbitrary real constant b

§ = —blet. 7)

This solution is self-accelerated, in the sense that for large
proper time s the acceleration grows exponentially as e*/%, a
clearly unphysical behavior. The integration constant b hap-
pens to be the component of the three-dimensional acceleration
at s = 0 that is parallel to the velocity, a(0) - v(0) = b|v(0)], as
can be seen employing the reduction in Eq. (50) below.

Thus, customarily the Dirac-Lorentz equation is com-
plemented by a physical boundary condition requiring the
acceleration to vanish at infinite time, lim,_, , |a]| — O (free
particle), or a less restrictive one asking that the product

lim e*/L|a| — 0, (8)
§—>00

so that the acceleration does not grow faster than 'L thus

getting rid of the runaway solutions of the free case. Any of

these boundary conditions at infinity is sufficient to eliminate

the self-accelerated solutions and yields the expected behavior

foa)=0Vs = i's)=0Vs. 9)

B. Construction of the Dirac-Rohrlich equation

Let us briefly remind the reader how the traditional equation
of motion Eq. (3) is obtained. Start by multiplying Eq. (2) by
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an integrating factor e ~*/L. The Dirac-Lorentz equation then

reads
u mn
o—SIL <"f - x") =/t (—ZL‘ + (jc')zx“). (10)

The left hand side can be then written as a total derivative,
d 123
—— (e iy = emS/E LY + (¥)%x" ). (11)
ds mL

This can be integrated to yield an integral equation where the
integration constant sets the acceleration at initial proper time
s; (since the starting point was the third order Lorentz-Dirac
equation), yielding

e i (s) = e S/ ExH(s;)

K 123
- f ds’eS’/L<i“+(5c')2x“>(s’). (12)
5 mL

i

In this expression we already see that the right hand side builds
up a four-force that is nonlocal in time. Imposing now the four
conditions to the acceleration

lim (e */Li*(s)) =0 (13)

that eliminate the self-accelerated solutions of the free Lorentz-
Dirac equation, we can evaluate Eq. (12) at s = oo to read

[e%s) , fl’-
e*Sf/Lje“(s,-)zf ds'e™ /L<th+(5c‘)2x“)(s’), (14)
S m

which, upon substitution in Eq. (12) and combining the two
integrals, results in Eq. (3). The self-accelerated solutions of
the free equation satisfying Eq. (7) have been eliminated [16].
This, however, is certain only when the external force is
identically zero for all times.

Several authors have attempted to provide more satisfactory
equations in one or another respect. For example, Kazinski and
Shipulya [17] have isolated the acceleration on the left hand
side of the equation in a simplified two-dimensional problem
with constant electromagnetic field. We find this to be an
attractive way of proceeding and show here the solution to this
problem for arbitrary dimension and arbitrary electromagnetic
fields.

C. New treatment

To obtain Eq. (4) we multiply Eq. (11) by x"(s), which turns
the vector family of equations with an index u into a tensor
family with u, v, and we antisymmetrize in the two indices p,
v. This manipulation has the merit of canceling the nonlinear
radiation term.

Barut [11] employed the same antisymmetrization in the
absence of external forces to identify and then eliminate self-
accelerating unphysical solutions, but did not extend it to the
general case with external forces, as we do here.

We are left with a differential equation equivalent to the
Lorentz-Dirac equation but where the nonlinearity in the
highest derivative has been traded for a higher-rank tensor

033203-2



RADIATION REACTION ON A CLASSICAL CHARGED ...

structure:
Ay d —s/L 2
x (S)E(e EE(s)) = (< v)
efs/L ) " )
= - mL (xvfext_xufelit)' (15)

The left hand side of this equation is an exact derivative. Let
us shorten the notation defining two auxiliary antisymmetric
tensors,

CH = x*x¥ — xVxH, (16)
K" = fld" — fox", a7)
which, substituted in Eq. (15), turn it into [18]
d /L U Iz
— (e o = — K™ (s). 18
Is (e () s () (18)

A formal integration leads to an expression analogous to
Eq. (12), in terms of the initial condition for C*"(s;).

We now restrict ourselves to forces that vanish when
s — oo and solutions satisfying the asymptotic condition (that
eliminates self-accelerated solutions of the free equation of
motion),

lim (e */EC*'(s)) = 0, (19)
§—>00
SO we obtain

[e.¢]
e — / ds'e” /"KM (s)). (20
mL [
To return this equation to one with the acceleration solved for,
as in Newton’s second law, we employ the property x,C*" =
i that follows from %2 = 1. Multiplying Eq. (20) by %" and
applying this property,

h(s) = 2 z) / ds' e =LK (s, @1
m s

which is Eq. (4), and completes the demonstration.
Finally, we note the form that the equation takes if the
external force is of electromagnetic nature,

e o ,
F(s) = () f ds'eC T (FLT %Y — Folixp i) (s"),
S
(22)

showing that the equation is cubic in the velocity (the position
dependence will enter through the external electromagnetic
field).

III. INTEGRAL FORMULATION OF
NEWTON’S SECOND LAW

While the Lorentz-Dirac equation is local in proper time,
eliminating the initial condition with a future boundary
condition [19] turns on an integration over future proper time
in Egs. (3) and (4).

This, however, is by itself not an obstacle. Newton’s second
law itself can be cast in the very same form by means of one
integration, so that the velocity is related to an integral over
all future times of the force. In this section we examine this
formulation of this most basic law of mechanics in order to
dispel some causality objections addressed here below and
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in Sec. IV A and to test numerical iterative methods later in
Sec. VA.

A. Three-dimensional version

Let us start this discussion by integrating the traditional
form of Newton’s second law in three dimensions,

mj—tv(t) =F(t), (23)

in a form analogous to Eq. (12),

t
v(t) = v(t;) + i/ di'F(¢). (24)
m J,
At this point the velocity is expressed as an integral over the
force at prior times, back to the time chosen for the initial
condition, so causality is manifest.

We now select those solutions that are asymptotically free,
so that the velocity takes a constant value at large time,
lim;_, o, V(¢) = vo. Evaluating Eq. (24) at t = oo, we see that

V(t;) = Voo — l/ dt'F(t"), (25)
mJ,

which expresses the velocity at time #; as an integral of the
force over later times, in analogy to Egs. (3) and (4) (except
these provide the acceleration and not the velocity). This
equation is obviously not in violation of causality, as one can
reinterpret it easily as an initial value problem for v.,. Thus,
one could understand equations such as (3) or (4) as integral
initial value problems for an acceptable (not exponentially
increasing) acceleration at infinite future time.

The whole point of this exercise is that advanced effects do
disappear by rewriting Newton’s second law in integral form
in Eq. (25) as an equation for v,. If we had instead imposed as
asymptotic condition that the particle be left at rest for t = oo
(Voo = 0), we would have obtained

v(t) = —l /Oodt/F(t’), (26)
m J;

an advanced equation such as Eq. (3) or (4) in apparent
violation of causality (which it is not).

B. Four-dimensional version of Newton’s equation

Let us take now the relativistic generalization of Newton’s
second law in Eq. (23):

mit(s) = f4(s). Q7

This can be multiplied by an integrating factor %e’s/ L (here L
is any positive constant, not necessarily the electron relaxation
length) to yield

1
—e M fi(s) = e i (s)
m
d —s/L .. 1 —s/L ..
= 7 (e xH(s)) + Ze xH(s). (28)

We can group two terms into an effective force per unit mass,

f;ﬁ — @, and express the equation, integrating once with
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initial condition at s;, as
e it (s) = e E kM (sy)

+ /S ds’e_‘v//L<—fM(S/) — XM(SI)>, (29)
s m L

again in total analogy with Eq. (12). If we now restrict the
solution space to those whose Lorentz dilatation factor y (v) =

(/1 — v2/c?)~! cannot grow exponentially [20], by imposing
lim (e7*/*x#(s)) = 0,
§—>00

we can eliminate the initial condition by performing an
evaluation of the integral equation (29) at infinity, and obtain

i(s) = — / mds/ew—s/)/L(f ) s )). (30)
s m L

Once more we write it as an advanced integral equation that
has several similarities with our Eq. (3). First, in both equations
the highest order derivative of the position [x in Eq. (30), X
in Eq. (3)] appears on both sides of the equation. Second, the
integrand in the right hand side of both equations has two
terms, one depending on the external force and the other one
on the movement of the particle [21].

However, Eq. (30) is different in one important count from
Eq. (3): As we show with several numerical examples, the
velocity solving Eq. (30) remains constant at any time for
which the external force vanishes, while the acceleration solv-
ing Eq. (3) begins changing before the force (preacceleration).

IV. FURTHER THEORETICAL DETAILS

A. Problems with causality

The boundary condition in Egs. (13) and (19) guarantees
that the solution to the equation of motion does not grow
up as ¢*/ at infinity, and this eliminates the self-accelerated
solutions from the free Lorentz-Dirac equation (and from
the integro-differential equations derived thereof), when the
external force vanishes for all times.

Nevertheless, what happens if the external force f.y does
not always vanish?

The issue of preacceleration has been often remarked.
Note from Egs. (3) and (4) that the acceleration at time s
depends on the force at later times s’ > s. Therefore, barring
a built-in cancellation as happens in Newton’s law in integral
form, Eq. (30), acceleration predates the force: For a force
vanishing before some given time, an observer that would
have a time resolution of order L could, in principle, see the
particle accelerate before its action. This will be visible in the
numerical examples.

One often reads the argument that classical physics does not
apply below the Compton scale, which is much bigger than the
electron relaxation length,

Acompton = Z—C ~ 385 fm > L ~ 1.876 fm.
e

While true, two observations are in order. First, from a more

practical point of view, the scale L in the equation of motion

divides proper time into units. From the point of view of the

laboratory, the relevant scale is the dilated distance y (v)L. For

a 3-GeV electron typical, for example, of synchrotron light
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sources (such as ALBA [22]) in Barcelona, this factor is 5870,
sothat y(v)L = 0.011 nm. This means that the preacceleration
can be a phenomenon at the atomic, not nuclear scale.

Second, we should note that the electron relaxation length
L has dimensions of length and a fixed value independently
of i, while the Compton wavelength depends linearly on 7.
It would be puzzling that if 7 happened to be a factor 1000
smaller, preaccelerations would manifest themselves at length
scales larger than the new Compton wavelength. Quantum
mechanical effects would not provide an escape in this case.

Let us also briefly discuss the Dirac-Lorentz equation in the
following form:

gL = I g 31)
m

If the radiation term in the right hand side was absent, this
would be a linear inhomogeneous equation. Its general solution
would have been an affine space spanned by the solutions of
the homogeneous equation with fe set to 0, added to any
particular solution of the inhomogeneous equation. The self-
accelerated solutions described in Eq. (7) are eliminated from
the set of homogeneous solutions by setting the boundary
condition at infinite time given by Eq. (8). This is sufficient to
obtain only physical solutions.

When solving the equation of motion numerically, one
might come across an invariant interval s with f., = 0 but
X* 2 0. Then one knows that a self-accelerated mode is active.
Since this is not a defect of our equation, but of the entire
theoretical setup, we continue with this warning in mind.

Some authors discussed in the past [23,24] whether the
preacceleration phenomenon is related to the lack of analyticity
of the functions employed to expose the phenomenon (see, for
example, Fig. 6 below). The (shortened) argument is that the
Lorentz-Dirac equation requires certain analyticity hypothesis
not satisfied by such forces (so the claim is that they should not
be used at all with the Lorentz-Dirac equation). With analytic
forces the particle at times before the beginning of the force is
not really preaccelerated by a future force; instead it reacts to
the analytic extension of the future-time force to present times.
We are not totally satisfied by this argument because Newton’s
equation in integro-differential form, Eq. (30), has a similar
mathematical structure and does not present this behavior, as
seen in Fig. 2.

We have constructed another clarifying example below
in Eq. (52) that presents the unwanted preacceleration phe-
nomenon while the force is exactly zero, although the function
representing the force, given in Eq. (52) and shown in Fig. 9,
is continuous and all of its derivatives are continuous on the
real line, even if it is not analytic in the complex plane. Still,
it satisfies all conditions for the Lorentz-Dirac equation to be
valid on the real line, thus weakening Valentini’s argument
about preacceleration being artificially induced by a poor
mathematical choice for the external force.

B. Further integrations

The class of nonlinear integral equations of motion that
we consider here requires an iterative solution. Once we have
performed one iteration of the integral in the relevant equation
of motion, for example Eq. (4), we have the highest derivative
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in hand for all times, for example, X(s). This can, in turn, be
immediately integrated to obtain the function and its lower
derivatives, for which there is no inconvenience in setting
initial conditions at initial time x(z;), x(¢;).

Thus, the velocity at arbitrary time is calculated from the
acceleration as a simple quadrature,

s
xH(s) = xH(s;) + / ds'x*(s"), (32)
Si
and the position is obtained in an analogous manner once the
velocity is known,

xt(s) = x*(s;) + / ds'x"(s"). (33)
Velocity and position are updated iteratively at every step using
these quadratures.

All functions would be known at this point in terms of
the invariant interval s. To plot them in terms of laboratory
time, all one needs to do is keep track, for each s, of
the pairs (x°(s),X"(s)), (x°(s),%*(s)), and (x°(s),x/(s)). The
pair (s,x°(s)) itself provides the time-dependent Lorentz
contraction factor y for all proper times and can be used to
trade proper and laboratory times for each other.

C. Small-L approximation

The parameter L is small, even for electrons, and more so
for protons or heavier particles. Keeping only the zeroth and
first orders in L, we can find interesting results, to which we
dedicate this section. (For the opposite limit of small L, or a
massless particles, see Refs. [25,26].)

In this limit, Eq. (4) accepts a perturbative solution
complementary to the iterative one that is pursued in Sec. V A.

Changing the variable under the integral sign in Eq. (21)
from s’ to o = (s’ — s5)/L, we have that the right hand side of
the equation of motion mx* = F*(s) becomes

FH(s) = xv(s)/ doe K" (s + Lo), (34)
0

with K*¥ defined in Eq. (17).
If we expand around L = 0,
dK"(s)
—
which we substitute into Eq. (34), keeping only the zeroth order
and first orders, and employing |, OOO doe™? = 1, this gives back

K" (s + Lo) >~ K" (s)+ Lo

mi* ~ %, K" + Lx, K", (35)

which is a form of the Lorentz-Dirac equation where terms
with both the third derivative and the square of the second
derivative have been eliminated in terms of the external force.
Simple algebraic manipulations reduce it to the form

milt = fho+ Liy (4" = f58") (36)

= fo+ L(f& = G fex)), (37)

accurate to first order in L. This last equation seems to
be a relativistic version of the Landau-Lifschitz equation
(see Eq. (36) of [10]) [27], valid for an arbitrary external

force (the presentation of Landau and Lifschitz emphasizes
electromagnetic forces only).
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The first term returns the relativistic form of the second
Newtonian law in the absence of radiation (e.g., neutral
particle). Both terms are seen to be explicitly perpendicular to
the four-velocity, as befits a relativistic force dx* f,, = 0. (This
property is kept order by order in the L expansion.) Equation
(36) is local; the acceleration at time s depends on the external
force and its time derivatives and the velocity of the particle at
the same time s. There is no preacceleration (it vanishes also
in the integro-differential formulation when L — 0). As the
second term of Eq. (37) is proportional to the external force
(and its derivatives), there are no runaway solutions, unlike
those found for the Lorentz-Dirac equation (2).

If higher order terms in L are kept, one can express the
radiation force on the particle in terms of its velocity, the
external force, and its derivatives alone: The equation of
motion remains quasilineal.

In this same expansion, the radiated power can be written
in terms of the external force alone as

L2 df2(s)

m ds (38)

R@=—£ﬁ@%—
m
(remember that the external force is a spacelike four-vector,
f2<0).

V. NUMERICAL METHOD

A. Tterative approach

The iteration of Newton’s second law in integral form (30)
and also of the traditional equation of motion (3) presents a
difficulty not affecting Eq. (4).

To appreciate it, imagine applying the simplest approach
to the iterative solution of the equation of motion [we eschew
Minkowski indices and all other unnecessary details, and refer
simply to x as the solution to the dynamical problem, as in
Newton’s case, but this might be X if attempting a solution of
the more technically involved Dirac-Rohrlich equation (3)].

In the most naive approach, one simply guesses or calculates
by other approximate means (e.g., the solution in the absence
of forces, or the solution in the absence of radiation reaction,
or an otherwise simple analytical case) a first guess xjg). Then
one plugs this guess into the right hand side of the integral
equation to obtain

x1y(s) = /dS’N(fC[O](S/))»

where N is the simplified form of

i (s H(g'
e e
Iterating several times, the generic equation becomes
1,(5) = [ d5 N6 (40)

If, to within some criterion (ours is specified below in
Sec. VD), convergence is reached, ||xpi(s) — Xp—13(s)]] < €,
one would have achieved a solution of the integral equation by
iteration.

However, the appearance of the highest derivative on the
right hand side of the older Eq. (3) brings about well-known
instabilities, and this approach can fail. Consider the simpler
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force-free relativistic Newton’s equation, which accepts a
solution with arbitrary constant velocity (set by the initial
condition). The iteration of

*© ds’ ,
x(s) :/ — (s, (41)
s L
with a constant solution becomes
o0 ds/
. . s—s")/L
Xk = X1y X / 22 pls=sh/L
s L

Analytically this equation is perfectly fine as the integral in
the right hand side equals one. However, any finite-precision
implementation on a computer means that the integral equals
(1 — €) (with € either positive or negative depending on the
numerical integration algorithm).

Then one obtains

X = Xp—1p X (1 —€),
which becomes, upon iteration,
X[k] = X[0] X (1 — 6) .

Depending on the sign of ¢, this converges (when the number
of sweeps k is sufficiently large) to O or diverges to oo, with
all other constant values being unstable points of the system.
Thus, valid solutions are lost upon iteration.

Of course, this can be alleviated by Jacobi’s method. To
see it, let us recover the force and write the simpler relativistic
Newton’s equation (30) in discretized form as a linear system

Ax = b, (42)

with

N
’ w,
by, = — Z e(srsn/)/Lf;”wn,7 Apy = S — T”e(snfsn/)/L'

n'=1

Here the integration weights have been denoted by w,, .
Jacobi’s method separates the diagonal piece n = n/,
Wy,
Dn = 8nn’ - 5

L
so that part of what would have been the right hand side in a
plain iteration becomes part of the left hand side, yielding the
vector equality

Diyg = b — (A — D)ip_1), (43)

which is immediately solved by inverting D (a diagonal
matrix). The convergence of this equation depends on the
spectrum of D!, If the integration weights w, are small
(tightly spaced grid), then §,, dominates in D, so its
eigenvalues are near 1 and no quick divergence destabilizes
the code. Cancellations between the terms on the right hand
side of Eq. (43) are then facilitated and finite solutions can
be found. Less favorable situations require more sophisticated
algorithms.

These difficulties are a consequence of the highest deriva-
tive appearing inside the integral in the equation of motion.
The modified Eq. (4) can be solved by simple iteration of
the system and does not require the Jacobi method. However,
to stabilize the iteration we have found it convenient to slow
down the rhythm of updates [28], so that given Xp;_jj, and
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after calculating the right hand side, [ K (xj—1;), the update
becomes, instead of Eq. (40),

f=a / KGgor) + (1 — @)y » (44)

with the slow-down parameter a typically 0.5-0.75.

B. Computation of integrals over invariant interval

The grid over the invariant interval is composed of equidis-
tant points sq,s2, ...,Sy. At the end of the computation the
grid is translated (for plotting purposes) into laboratory time
t, and it ceases being equispaced given that the time-dilation
factor y (v) is variable.

To calculate the integral over the closed interval (s,00),
represented as (s;,...,sy) on a discrete grid, we employ
Simpson’s rule (supplemented by a trapezoidal rule for the
last integration interval if the number of points between s; and
sy 1s even).

With finite computer time, s = co must in practice be
replaced by a cutoff sy, on the maximum invariant interval of
the particle. Since X(s = smax) can no more be calculated from
the integral equation (the later being advanced), the choice
of the cutoff has to be such that this calculation is no longer
necessary. This can be achieved, for example, if the external
force vanishes after a certain value of s. Then one expects that
the particle will see vanishing accelerations at later times, and
the acceleration a can just be set to zero in the vicinity of the
cutoff without need of calculation. Each physical case requires
separate examination here to set the boundary conditions. This
will be revisited in Sec. V C.

The number of points of the grid has to be such that
s; — Si—1 < L ~ 1.876 fm, particularizing to an electron. This
guarantees that the fast-changing exponential factor ¢©—5/%
is integrated over with sufficient accuracy.

If one wants to follow the motion of the electron at large,
superatomic scales at the nanometer or above, one then needs
several million points on the grid for a slow electron. However,
radiation emission and radiation reaction are very small for
slow electrons, and more interesting is the case of electrons
with y factors of order 5-10 (emitted by 8 decay and other
nuclear processes or accelerated by small machines) up to
the thousands (for synchrotron light sources) or hundreds of
thousands (for colliders at the energy frontier). Since sy =
tmax/7 for some average Lorentz contraction factor on the
trajectory, to reach the nanometer scale in the laboratory the
grid in s can be much coarser. We use steps of order 0.1-1 fm
in s and our calculations typically require 10 000 points as
an order of magnitude estimate. Such calculations can run
on a typical 2- to 3-GHz processor in few minutes. Large
computations running on a dedicated cluster or supercomputer
can potentially reach human size scales even with Fermi steps
in invariant interval.

C. Behavior at large times, initial condition

Since the integral equation is built with a boundary
condition at infinite time, it is worth delving into the behavior
of the computer code at long times.

Vlasov [29] has observed that the solution with preaccelera-
tion present and X" finite as s — oo is unstable to perturbations
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of the acceleration in the future. Our experience with the
system confirms that setting and maintaining the boundary
condition at infinity requires some care in the numerical
analysis.

Checking first Newton’s Eq. (30), it is easy to note that
if we set fox = 0 at large times (asymptotically free-particle
condition), then the zeroth component of the velocity satisfies

[ed] 200/
(s) = / ds’x—is)e“*sw (45)

(for large s) and thus a constant solution is possible, and after
pulling x° out of the integral, shifting this, and using

*dt
/ —e¢ "t = constant = 1,
o L

we obtain that x° =y (constant) at long time, so that

the coordinate time scales linearly with invariant interval,
as expected. The same reasoning holds for the spacelike
components of Eq. (30), yielding a constant velocity at infinite
time, as expected from Newton’s first law.

To implement this behavior on the computer, all we do is
require, after reaching a certain sg.. large enough, to read off
the last calculated point and prolong the solution continuously
to the cutoff s,,x, so that

X(s € (Sfree»Smax)) = X (Sfree)- (46)

In the next iteration, we start computing the integral right hand
side of Eq. (30) for s < sgee, and at the end, we set again the
last points in the large-s interval equal to the new value at S

The initial condition drifts from iteration to iteration in
Jacobi’s method and needs to be reimposed in the iterative
process. We do this by rescaling the entire function, be it
by employing a linear shift or a dilatation, depending on
whether the initial condition was or was not zero. The rescaling
stops being necessary once convergence has been achieved,
so that the integral equation and the initial condition have
simultaneously been satisfied.

The advantages of the modified equation [that accepts a
simple iterative solution such as Eq. (44)] come again to the
forefront; all we need to do to impose initial values of position
and velocity (and zero acceleration in the absence of forces), is
to set xqo;(s1)x70;(s1), and X[g)(s1) in the first iteration, and not
recalculate them. The program keeps their value for its entire
duration.

D. Convergence criterion

At each iteration [n] we need to decide whether the solution
is converging (the integral equation at hand is closer to being
satisfied). As a diagnostic number we employ an integral
measure for each of the position and velocity [for Newton’s
Eq. (30) in relativistic form] and an additional one for the
acceleration [for Eq. (4)].

For example, the convergence function for the velocity is,
assuming s; = 0,

C. — (foOO ds’ ZZ:O (xf:z+1](s/) - )-C[;;](S/))Z)l/z
(fo ds' Zi:o (ETMNCORS x[,:l](s,))z) 12

(47)
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(where we are not employing the Minkowski metric, but a sum
over absolutely positive quantities). In the limit n — oo, one
would expect, if the numeric method approaches convergence,
that C; — 0. In practice, this is reached to very good accuracy
after several dozens of iterations.

We find that the iteration does not tend to drift between
solutions (a common problem in numerical analysis), but
it may develop instabilities and lose all contact with an
approximate solution of the integral equation. In such case, one
must stop execution of the program in an orderly manner by
testing whether C; is near 1 (since the criterion is constructed as
aratio of difference over sum, this means that the two functions
X{,41; and X{,, are not commensurate and one is dominating
the difference in the numerator, which is a signal of numeric
divergence). After the stop, the program is run again with a
different initial guess or a tighter grid.

E. Parameter relaxation

Since the equation of motion is nonlinear in x, often a
solution will not be easily found for a given force. This is, for
example, the case for oscillatory forces that have complicated
solution functions, such as the particle in a magnetic field that
we study below.

A workable strategy to find such solutions is to select a
physical or a grid parameter and start with a trivial value. For
example, extend the grid only as far as the first oscillation
of the force, and for larger s cut the force off. One can then
increase the cutoff in small steps to include more and more of
the force.

Another example is the parameter L, in certain cases it is
convenient to work with very large or very small L, and then
relax it to its physical value.

In either case, one lets the computer code find a fully
converged solution for a given L or sy, then varies this
parameter slightly, and find convergence again, a procedure
iterated as many times as needed until the necessary value of
the parameter is reached. We have used this method extensively
in the computations in Sec. VL.

VI. NUMERICAL EXAMPLES

In this section we present several numerical examples. We
use a system of units with 7 = ¢ = 1, and length measured in
fm. Also, F represents the force per unit mass in the laboratory
frame.

Section VI A serves to gain experience with the algorithm
with Newton’s equation in integral form, be it the standard
three-dimensional or the covariant form in Minkowski space.

In Sec. VIB we consider several examples with radiation
reaction: In each one, we define a force F in the laboratory
frame, iterate the covariant equation (4) until the desired
convergence is reached [30], and then we represent the results
in the laboratory frame with the help of relations (50) and
(51). For simplicity we consider first a step function and then
an oscillatory force. In all cases represented in this section, the
force plotted is the force per unit mass.

Section VI C demonstrates that the equation and algorithm
can be scaled to larger systems much beyond the few-Fermi
scale, showing their practical use for real problems.
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FIG. 1. (Color online) Solution of Newton’s equation in integro-
differential form in three dimensions, Eq. (26), for a step force
(dashed line). We plot the velocity (solid line). The numerical solution
coincides with the expected one if we impose the boundary condition
that the velocity vanishes at infinity. (Arbitrary units of length.)

A. Solution to Newton’s equation in integro-differential form

As a test of our numerical iteration algorithm, let us take as
a first example the three-dimensional second law of Newton
in Eq. (26) for a square well repulsive potential, depicted in
Fig. 1. The force (in the z direction) can be written in terms of
two step functions as

Fo=—f(0 — 1) — 0 — 1)) (48)
and the general analytical solution is

V(1) = vo — fL(t —10)(O — 1) — Ot —11))
+ (11 — 1)0(t — 1)) (49)

(remember that we use the force per unit mass).

This solution for the velocity (incidently, showing no
preacceleration) for the particular values f = 1 and [as built-in
in Eq. (26)] imposing v, = 0, is computed iteratively with
Eq. (26) and plotted in the figure, coinciding with the exact
analytical solution [31].

Next we perform the same computation with the relativistic
Newton law, Eq. (30), and plot the result in Fig. 2. Again
causality is manifest and there is no preacceleration. We set as
an initial condition v(¢;) = 0.9ce, and the force parallel to the
velocity.

Finally we solve again Eq. (30) with a periodic potential
truncated at two times #( and ¢;, with the result visible in Fig. 3.
The initial velocity is again parallel to e, and the oscillatory
force is now perpendicular to this, along the OY axis.

Again there is no preacceleration. Moreover, Newton’s first
law is manifest, as it is seen that every time for which the force
vanishes features also an extremum of the velocity (vanishing
acceleration).

In conclusion of these first exercises, there is nothing
unexpected in casting and solving Newton’s law in either three-
dimensional or Minkowski form as an integro-differential
equation with an advanced boundary condition at = co.
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FIG. 2. (Color online) Solution of the relativistic version of
Newton’s equation in integro-differential form in four dimensions,
Eq. (30), for a step force (dashed line). We plot the velocity (solid
line). The numerical solution coincides again with the expected
one, and in particular there is no preacceleration. (Arbitrary units
of length.)

B. Elementary solutions with radiation reaction

Studies of radiation reaction have a long history. An
interesting early paper with numerical and analytical solutions
compiled together was written by Plass [14].

In line with this classic work we now proceed to show
example solutions of Eq. (4). The components of the velocity
and acceleration in the laboratory shown in the figures have
been obtained from the four-dimensional covariant quantities
that appear in that equation through the relations

V= % (50)
..l' _ ..0 l'
a = xy# (51)

The calculation is reported in Fig. 4. The iteratively
calculated solution of Eq. (4) shows the following. The particle
begins accelerating before the force starts. Once it does start
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FIG. 3. (Color online) Solution of the relativistic version of
Newton’s equation in integro-differential form in Minkowski space,
Eq. (30), for an oscillating force (dashed line). We plot the velocity
(solid line). There is no preacceleration. In fact, Newton’s first law is
fully satisfied, the velocity being extremum at the zeros of the force.
(Arbitrary units of length.)
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FIG. 4. (Color online) Solution to the modified equation of
motion with radiation reaction, Eq. (4), for a feeble step force (top
plot: dashed line, modulus of the three-force in the laboratory; solid
line, acceleration). While the velocity is far from ¢ (bottom plot), the
acceleration is practically constant. It diminishes slowly as the particle
becomes relativistic. We see distinctly preacceleration. The positive
acceleration decreases rapidly before the force stops, but due to the
logarithmic scale this effect is not visible in the figure; we show it in
linear scale in Fig. 5. (Units of length are fm; note that the OY axis rep-
resents inverse fm for the acceleration and for the force per unit mass.)

acting, the acceleration is almost constant and approximately
equal to the external force per unit mass, the energy radiated
being very small [32].

Further on, if the velocity in the laboratory tends to one,
the acceleration must necessarily go to zero; but if the external
force stops before approaching this asymptotic limit, as in
Fig. 4 the acceleration falls suddenly to zero before the
force ends, a phenomenon visible in some of the figures of
Plass [14] (although traditionally emphasis was put only on
the preacceleration). Finally, after the external force ends the
acceleration vanishes, as is evident looking to Eq. (4).

In Fig. 5 we show the preacceleration effect with more
detail by looking closely to the times f, and ¢;, where the force
starts and ends its action.

If classical electromagnetic theory could be applied to very
intense forces, acting during very short times, the oddities
would manifest themselves in a more extreme way: We show
them in the following examples as an extreme manifestation
of the mathematical properties of the formalism, without any
pretension of physical application.

FIG. 5. (Color online) Detail of Fig. 4, where we show smaller
time intervals around 7y and ¢, to discern the effects of preaccelera-
tion. These effects are a consequence of the advanced integration in
Eq. (4).

In Fig. 6 we employ again a step force, affecting a particle
initially at rest. The advanced features are obvious in that
preacceleration is present before the force acts, but also the
acceleration is dropping quite fast well before the action of the
force stops. In the bottom panel, it even starts dropping before
the force acts. This last effect is a consequence of relativity;
as the particle’s velocity in the laboratory approaches ¢ = 1,
the laboratory acceleration needs to vanish. To show this we
plot in Fig. 7 the relativistic kinetic energy per unit mass,
T/m = y(v(t)) — 1, where we see that the energy increases
steadily.

In Fig. 8 the force is the same as in Fig. 6, but we set as an
initial condition a particle propagating (parallel to the force)
with initial velocity 0.9c¢, so the effective change of the velocity
(shown in the bottom plot) is much smaller.

We now address the objection of Valentini [23] discussed
in Sec. IV A, stating that the Lorentz-Dirac equation was
initially deduced under the hypothesis that further derivatives
of the acceleration existed, and thus one should not employ a
discontinuous force. We show in Fig. 9 an example where the
force is proportional to a function,

0 if t <ty
F(t) = | e~ M@0 4 ¢ (40.4)), (52)
0 if t>1,
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FIG. 6. (Color online) Solution to the modified equation of
motion with radiation reaction, Eq. (4) for a step force (dashed line,
modulus of the three-force). The acceleration (solid line) takes off
at a time of order L = 2¢%/(3m,c?) before the actual application
of the force, in violation of causality, as is well known from other
formulations of the theory. The particle is initially at rest. The force
in the bottom plot triples the intensity of the force in the upper plot.
(Units as in Fig. 4.)

which, although not being analytic, is continuous and has
continuous derivatives to any order throughout the entire ¢ real
line. In this extreme (very large force acting during a very short
interval) the resulting acceleration and velocity (we now take
vo = 0.001) are similar to that shown in Fig. 6, demonstrating
that the discontinuity of the force plays no particular role:
Preacceleration is also present.

In Fig. 10 we solve the same equation (4) with a periodic
force thatis switched on and off (modulated) by a step function,
so that only three periods of the sinusoidal force are active. The
solution presents preacceleration.

The reader should remember that in the figures we plot the
laboratory force F' = f!/y, whichis not directly what enters
the four-force in the equation of motion due to the extracted
Lorentz y (v) factor, so that the effective acceleration is not
sinusoidal, but depends on the velocity.

The last of this series of exercises is reported in Fig. 11,
where the electron relaxation length L is artificially diminished
by a factor of about 20 to approach the nonrelativistic limit of
Sec. IV C. The acceleration is now almost in phase with the
force as expected (although at zero crossing of the force it has
appreciable nonvanishing values).
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FIG. 7. (Color online) Kinetic energy per unit mass y(v(t)) — 1
(solid line) for a square-hat force that acts on a finite interval of time,
same as the bottom panel of Fig. 6.

C. Solving the equation with radiation reaction
for large systems

In this section our aim is to demonstrate that Eq. (4)
including radiation reaction, in spite of having a natural scale
of L = 1.876 fm for an electron, can be scaled to work with
large systems. We climb to six orders of magnitude larger
lengths in laboratory time, to the nanometer scale.
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FIG. 8. (Color online) Same as in Fig. 6, except the particle moves
initially along the force axis with velocity v/c = 0.9. The actual
acceleration |a| (dotted line in the top plot, note the log scale) is thus
much less pronounced. In addition we also plot the velocity (solid
line in the bottom figure). (Units as in Fig. 4.)
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FIG. 9. (Color online) We soften the step-function force to make
it continuous, and with all derivatives also continuous, by employing
Eq. (52). (Units as in Fig. 4.)

The external force in the next example is caused here by an
external electromagnetic field; thus,

fe/;(l = eFe’;f(x)fcu. (53)

Our first example again is an oscillating field, but its
magnitude and physical size is loosely inspired by the
relatively new concept of crystal undulator [33].

An undulator is a well known device employed in syn-
chrotron light sources and free electron lasers to produce
electromagnetic radiation. An alternating magnetic field with
a period of a few centimeters forces electrons to wiggle and
emit synchrotron light or x rays, which are collected for
applications. Our equation with radiation reaction could be
applied to these systems, but we start here with a smaller
device, for an exercise with less computing power, where in
several thousand steps the effect of radiation reaction is clearly
visible.

In a crystal undulator, positrons (and somewhat less
effectively, because of their attraction to the positively charged
crystal sites, electrons) are channeled between crystal planes.
The elementary charge can suffer a hard collision with another

0.1 T I\\ ,/\ T Ir\
Iy Lo [ F ]
b ¢
0.05 by b e a,®)
| | | | |

-0.05

1o ‘ 10 ‘ 20

FIG. 10. (Color online) Solution to the equation of motion
under a rapidly oscillating sinusoidal force of finite extent. The
phenomenon of preacceleration and the asymptotic condition of
vanishing acceleration at t — oo are clearly visible. While the force
is acting, the acceleration is dephased by about 7 /2 with respect to
it, and they do not vanish simultaneously. (Units of length are fm.)

PHYSICAL REVIEW E 88, 033203 (2013)

0.1 A

0.051

-0.05

1o 10 ‘ 20

FIG. 11. (Color online) Same as Fig. 10 but artificially reducing
the effect of radiation reaction by taking a much smaller L >~
0(0.1) fm instead of the actual value L = 1.876 fm equivalent to
2a/(3m,). As can be seen, now the acceleration is practically in
phase with the force, and in agreement with Newton’s equation for
the motion in an electric field without radiation reaction, showing
that the integral formulation and computer code are not responsible
for the preacceleration in Fig. 10, the cause is rather intrinsic to the
theory starting with Eq. (2). Note also that the acceleration in that
figure was damped with respect to this, as the radiation reaction much
reduces the acceleration of the particle, the forces being equal. (Units
of length are fm.)

electron in the medium or with a nucleus. Such processes
require a quantum electrodynamical description [34,35] and
are beyond our scope. However, the continuous interaction
with the crystal oscillating Coulomb field resulting in the
emission of relatively low-frequency radiation (as opposed
to hard photons) is amenable to a classical description.

We take as a model electric field E = Eysin(2rx/a)e,
with Ey =~ e/r?, and a typical nanometer length r ~ a = 1 x
10° fm. Thus, the electron, with initial velocity vpe,, perceives
aperpendicular oscillating field. One can characterize this field
by a length scale Ag = Ji that is of order 2.8 x 10'0 fm.
Thus, there is a hierarchy ‘of scales L K a < Ag and we
are happy that the computer code can handle all three scales
without special attention.

Taking L as the scale of the computation, Ag is a huge
number, so that the force O(ALE is tiny, but if left to act for long
times above a, it certainly has an important influence on the
trajectory.

The trajectory is not particularly interesting, but we follow
the emission of radiation for electrons of two energies,
300 MeV and 3 GeV, respectively, in Fig. 12.

To make the example more interesting, to this electric field
we add an additional field of equal intensity but rotating in the
following way,

E' = Ey(sin 27 x/(10a))e, + cos (2 x/(10a))e,),

that is, with a period ten times larger. This does not have any
claim of realism to describe an existing device, but again it
is just used to demonstrate the capability of our equation.
For real undulators the period should at least be a factor
of 10 larger, approaching even the micrometer scale, but
maybe our calculation is more directly applicable to so called
“nanowigglers” [36] that are conceived at the nanometer scale.
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FIG. 12. (Color online) Power radiated by an electron channeled
along a toy crystal of physical nm dimension for energy 300 MeV
(lower curve, red online) and 3 GeV (top curve, black online). The
full Eq. (4) is used.

At any rate, the motion of the electron emitting classical
radiation can be numerically followed, as we do in Fig. 13,
concentrating again on the emission of radiation, which
presents strong oscillations and interference effects between
the two periodic fields.

We now turn to our second example, inspired by the physics
near a neutron star crust. We take a positron (emitted in 8
decay or by any other means) with an initial Lorentz factor
of ¥ =10 to be injected in a constant and homogeneous
magnetic field along the OZ axis of intensity By = 10'* G,
at the upper limit of the conditions usually agreed for such
stars. The characteristic length for the field intensity is A =
e’”?o 2~ 470 fm, so that the hierarchy of scales is not as marked
as in the previous example.

Neglecting first the radiation reaction, the trajectory is
helicoidal around the magnetic field B = Be,, which projects
to a circumference on the XY plane with radius r; = 4.7 x
103 fm. This trajectory provides a good zeroth order guess xo,
for the program iteration. Of course, the energy and gyration
radius will vary once radiation reaction is included.

Qg %15 g
T T T
T

dE/dt (eV/nm)

Oog
| -

R E AL A

T ' T T T ! T

4x10° 8x10°  1x10”  2x10’
t(fm)

2x107

FIG. 13. Power radiated by a 3-GeV electron channeled along a
toy crystal with initial velocity along the O X axis. An oscillating field
along OY has period 1 nm. An additional field rotating in the XY
plane, and of equal strength as the first, has period 10 nm (simulating
a wavy crystal deformation); the periodicity of the motion can be
appreciated. The total energy radiated is here much smaller than the
total energy.
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FIG. 14. (Color online) A positron with energy 5.1 MeV and
initial velocity along %(1,0,1) is injected into a region with a
constant, homogeneous magnetic field B = Be,. We plot v, and v,
(dashed lines, v, starting at zero), shifted by /2, as well as the total
v, (solid line) and v, (constant dotted line).

Figure 14 shows the velocity corresponding to having
solved Eq. (4) for this field. Initially, we inject the positron

with equal
v, =v =,/vi+v;

at the origin of coordinates (therefore, the axis of the helicoidal
motion is parallel to, but not coincident with, the O Z axis).
However, the emission of radiation slows down the electron so
that v, decreases, as seen in the figure (the maximum v, and
v, values are decreasing).

Although the total velocity remains above 0.9¢ (having
started with 0.99¢), we see in Fig. 15 that the energy per unit
mass drops rapidly to less than half its initial value in only three
oscillations, below the nanometer scale. This is natural since
the radiated synchrotron power for a circular trajectory [taken
from Eq. (5.14) in Eq. (3), up to the metric’s signature] from

2
R = —?“552 (54)
grows with the fourth power of the energy,
2a v\ ?
=37\ \7) (55
r

so the trajectory will be much more severely distorted for
large velocities. The loss of energy is compensated by this
emitted radiation (bottom plot of Fig. 15) since the magnetic
field performs no work on the particle.

The asymptotic condition in this calculation is implemented
here simply by the fact that, as the particle radiates energy
away, the Lorentz force e x B vanishes with the velocity and
the particle reduces its radius of gyration and is thereafter left
to coast freely in the z direction with no external acceleration.
So at some large syax We simply set the acceleration to zero.

A closely related example has been considered by Plass
[14]. Plass, due to computer limitations, employs a nonrela-
tivistic approximation to a charged electron in a constant and
uniform magnetic field that is way stronger than our example
(already a very large B at a neutron star). The trajectory in
velocity space, projected on the plane (vy,v,), is depicted in
Fig. 16 and it closes towards the origin very fast (very strongly
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FIG. 15. For the same particle and field as in Fig. 14, we plot the
Lorentz contraction factor, or kinetic energy per unit mass (top plot).
Since a magnetic field does not do work on a charged particle, the
energy lost must be carried away by the radiation. The computation
of R is shown in the bottom plot.

damped motion). We have taken the v, velocity component as
vanishing at# = 0 (and thus, at all times), as well as a dilatation
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FIG. 16. (Color online) Velocity-space trajectory in the (v,,vy)
plane for a particle initially moving along the OX axis inside a
magnetic field BZ . Solid red line, our computation; broken blue line,
Plass’s nonrelativistic approximation in Fig. 9 of [14]; dotted outer
circle, motion without radiation reaction. Note that neither trajectory
reaches the origin for finite time; if we zoom towards the origin, we
see that the electron continues inspiraling indefinitely.
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FIG. 17. (Color online) Velocity-space trajectory in the (vy,v,)
plane for a particle initially moving along the OX axis inside a
magnetic field BZ; the velocity here is taken to be 0.1 (¢ = 1). Solid
red line, our computation;broken blue line, Plass’s nonrelativistic
approximation. The agreement is now excellent. The distance of the
electron to the origin vanishes exponentially, without reaching it at
any finite time.

factor y = 10 as an initial condition. As the initial velocity
is thus 0.99, it is not surprising that our fully relativistic
calculation differs appreciably from that of Plass.

To check agreement with Plass we have also considered
an initial condition with the same strong magnetic field
but an initial velocity v = 0.1, where the approximation of
Plass should work much better. We find that our numerical
computation falls exactly on top of the analytical result (see
Fig. 17).

Finally, we have considered an initial velocity vy = 0.1 but
a weaker magnetic field. The agreement with Plass is again
perfect (within our numerical precision of 2 parts in 10 000)
(see Fig. 18).

The dynamical situation with both initial velocity and
magnetic field taking large values, depicted in Fig. 16, is
numerically somewhat more subtle due to poor stability of the
solution at intermediate steps of the numerical computation.

|
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FIG. 18. (Color online) Velocity-space trajectory in the (vy,v,)
plane for an electron with the initial condition v = 0.1 and field 2.5%
of Fig. 17. Again, the agreement is excellent. The distance betweeen
consecutive orbits decreases as the electron slows down.
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We have improved on the algorithms described so far incorpo-
rating a Runge-Kutta integrator for the differential equation
and a piecewise integration dividing the total proper time
interval. The results shown are converged to better than a per
1000 precision.

Thus, we have shown in this section the possibilities that the
new formulation opens to accommodate nontrivial calculations
of physical interest.

VII. SUMMARY AND DISCUSSION

In this work we have presented a modified equation of
motion for a classical particle under the influence of radiation
reaction. We have not attempted to solve the problem of preac-
celeration, which is a pathology associated with the Dirac-
Rrlich integro-differential equation. (Differential-equation
treatments for point particles, such as the Lorentz-Dirac or
Landau-Lifschitz formulations, do not present it, and of course
we do not presume that it is a characteristic of nature either).
This unpleasant feature could be avoided considering extended
charge distributions, but this is beyond the scope of this paper.

Nevertheless, although our alternative equation (4) does not
cure this flaw, it is superior in several technical advantages
for its numerical implementation that may make it useful
for systems as varied as the astrophysics of neutron stars,
or the synchrotron light emitted by a crystal undulator or
nanowiggler. We have by far not exhausted the number of areas
where Eq. (4) could be of use. For example, intense laser fields
are increasingly becoming available and awakening interest
in the community [37], and, reaching 10*?> watt per square
centimeter [38], they are believed to enter the regime where
radiation reaction is important. Since the field is characterized
by extreme oscillations, our worked examples could be
extended to cover the motion of a charge inside such field.

Another striking example where we should like to apply
our equation in the future is “classical tunneling,” possibly a
consequence of preacceleration, by which an electric charge
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can preincrease its energy of motion by absorbing it from
the near field, to shed it later, thus passing classically
above nominally forbidden barriers. This concept has been
demonstrated for the Lorentz-Dirac equation [39] and we are
curious about whether the integral formulation here presented
also supports it. This interesting feature deserves a complete
(and thus, labor intensive) analysis that we postpone for
another work. Our treatment of this problem by means of the
integral formulation will avoid the conundrum of separating
self-accelerated solutions in the presence of a force and will
thus have different systematic uncertainties.

We have found, confirming the work of other authors [39],
that discontinuities of the force function or its derivatives are
features that are not essential for the counterintuitive behavior
of the motion influenced by radiation reaction.

The differential equation of Landau-Lifschitz shares with
our integral version of the equation of motion the convenient
feature of quasilinearity, the highest (second) derivative of the
position being isolated on the left-hand side as in a classical
Newtonian formulation. Indeed, in Sec. IV C we have also
derived a relativistic version of the Landau-Lifshitz equation
as an approximation to the integral equation of motion.

The new Eq. (4) (or new formulation of the existing equa-
tion, if one wishes) is linear in the highest (second) derivative,
which is explicitly solved for and not left implicit. Practitioners
of numerical analysis in classical electrodynamics will no
doubt find this and the other advantages of the new equation
superior and useful. We look forward to the further applications
of the theory.
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