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Thermal transparency with the concept of neutral inclusion
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The concept of the electromagnetic wave transparency is introduced into the thermal field. The conditions of
the thermal transparency for a multilayered sphere with isotropic coatings, a coated spheroid with an isotropic
coating, and a coated sphere with a radial anisotropic core or a radial anisotropic coat are deduced with the
help of the idea of the neutral inclusion. The thermal transparency can be achieved by making the effective
thermal conductivity of the composite inclusion equal to the thermal conductivity of the surrounding matrix.
The validity of the theoretical analysis is checked by the corresponding simulated results, which indicate that the
designed neutral inclusion can be transparent perfectly. A specific case of interest of the thermal transparency
is its application to cancel the thermal stress concentration resulting from the existence of the inclusions in the
particle (even the thermal-insulated particle) -reinforced composites.
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I. INTRODUCTION

Many researchers have focused on thermal cloaks using
transformation media [1–9] for years. The related work showed
that thermal cloaks can ensure the target a uniform temperature
field to protect the target thermally without disturbing the
surrounding field. However, all cloaks are composed of in-
homogeneous anisotropic metamaterials, which is too difficult
and complicated for the practical applications to be realized.
In order to cancel the anisotropy and release the inhomo-
geneity, Ref. [5] designed a multilayered cloak consisting
of homogeneous isotropic concentric layers based on the
homogenization approach. The anisotropy and inhomogeneity
of the thermal cloaks also can be canceled by the method
used for the electromagnetic (EM) cloak in Ref. [6]. More
recently, Han et al. [8] reported a new method to construct a
homogeneous anisotropic thermal cloak. In terms of making
the whole thermal cloak isotropic, Ref. [8] requires only two
types of thermal materials throughout, while Ref. [5] needs
2N types. However, all of these approximate models cannot be
achieved unless the cloak is decomposed into a multilayer one,
which is still complicated. The thermal transparency based on
the concept of neutral inclusions is more flexible and feasible,
because it can be achieved by just one homogeneous and
isotropic coat. Furthermore, the phenomenon of the thermal
transparency has many intriguing potential applications. For
example, it can protect the composites with inclusions from
the thermal stress concentrations resulting from the serious
disturbance of the temperature around the interfaces between
the inclusions and matrix (when we are not concerned with
the temperature field in the inclusion region). In addition, the
particle coated by a thermal insulator can be protected from
the high temperature without disturbing the temperature field
of the matrix medium.

Two useful methods to design transparent inclusions given
by Alù [10] and Hu [11], respectively, are mainly used to
design the EM wave [12–19] and elastic wave transparent
entities [20–24]. Alù [10] utilized a plasmonic or metamaterial
coating to cover a spherical or cylindrical dielectric core. By
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adjusting the material and geometrical parameters, they found
that at certain configuration, the total scattering cross section of
this coated sphere can be extremely low. That work introduced
a new way to achieve the “invisibility”. Hu [11] pointed that the
transparency conditions deduced by Alù are the same as that
achieved by the neutral inclusion concept proposed by Milton
[25]. Milton has deduced many neutral inclusion models for the
conductivity and elastic moduli, such as multilayered spheres
and coated spheroids. Wu [26] achieved a coated sphere neutral
inclusion for the magnetic permeability using a three-phase
model based on the variational principle, which has been
verified to be the same as the result given by Milton [25].

According to the strong analogy between the steady-
state thermal conductivity equation and the DC conductivity
equation, the expressions of the effective conductivities of
different particles given by Milton [25] are generalized into
the effective thermal conductivity in this paper. Thus the
conditions of the EM wave transparency for a multilayered
sphere and a coated spheroid can be introduced into the
investigation of the thermal transparency for the same particles.
Moreover, considering the completeness of this paper, the
conditions of the thermal transparency for a coated sphere
with a radial anisotropic core or a radial anisotropic coat
are deduced with the help of the idea of the neutral inclusion.
The invisible property of the transparent entities will be
validated by finite element method (FEM) simulations.

II. THEORETICAL ANALYSIS

According to the analytical results given by Hu [11], the
effective thermal conductivity of the isotropic multilayered
spheres can be given by

σ l
∗ = σl + 3(1 − fl)σl(σ l−1

∗ − σl)

3σl + fl(σ
l−1∗ − σl)

, l = 2,3,4, . . . ,L, (1)

where fl = 1 − r3
l−1/.r

3
l is the volume fraction of the lth layer

in the l-layer sphere (see Fig. 1), and σ l
∗ and σl represent

the effective thermal conductivity of the l-layer sphere and the
thermal conductivity of the lth layer, respectively. The effective
thermal conductivity σ 1

∗ is equal to the thermal conductivity
σ1 of the sphere core 1. The transparency condition for the
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multilayered sphere can then be obtained by setting σL
∗ =

σ0, where σ0 is the thermal conductivity of the surrounding
matrix. For a coated sphere (l = 2), the transparency condition
becomes

r3
1

r3
2

= 1 − f2 = (σ2 − σ0) (2σ2 + σ1)

(σ2 − σ1) (2σ2 + σ0)
. (2)

We have after some manipulation that if σ2→0, the
transparency condition given above will be valid (0 < r3

1 /r3
2 <

1) when σ1 > σ0 > 0, 0 > σ1 > σ0, or σ1 < 0 < σ0, which
means that the sphere can be protected thermally by a thermal
insulator with thermal conductivity σ2→0 without giving rise
to thermal stress concentration by disturbing the temperature
field of the background medium.

In addition, Milton [25] has deduced the effective thermal
conductivity of a coated ellipsoid, according to which the
transparency condition of a two-layer confocal ellipsoid can be
achieved. However, if the parameters of the ellipsoid core and
the coating are isotropic simultaneously, the effective thermal

conductivity of the coated ellipsoid is anisotropic due to the
shape asymmetry. In order to cancel the shape anisotropy
and to make the coated ellipsoid effectively isotropic, we
introduce the transversely isotropic model given by Hu [11]
where the spheroid core is anisotropic and the conformal
coating is isotropic. In the Cartesian system, the semiaxes
of the spheroid core and coating are denoted by al , al , and ρal

(l = 1 for the core, l = 2 for the coating), respectively, where
ρ is the aspect ratio of the spheroid. By setting the thermal
conductivities of the core and the coating as σ̄1 = (σ1,σ1,ησ1)
and σ2, respectively, the effective thermal conductivity tensor
of the coated spheroid can be given by σ̃∗ = (σ ∗

11,σ
∗
22,σ

∗
33),

where [11]

σ ∗
11 = σ ∗

22 = σ2 + f (σ1 − σ2)σ2

σ2 + P (1 − f )(σ1 − σ2)
,

(3)

σ ∗
33 = σ2 + f (ησ1 − σ2)σ2

σ2 + (1 − 2P )(1 − f )(ησ1 − σ2)
,

where η is a constant and f = a3
1

/
a3

2 . For prolate spheroids,

P = 1

2

{
1 + 1

ρ2 − 1

[
1 − 1

2
√

1 − 1/ρ2
ln

(
1 +

√
1 − 1/ρ2

1 −
√

1 − 1/ρ2

)]}
, ρ � 1, (4)

and for oblate spheroids,

P = 1

2

{
1 + 1

ρ2 − 1

[
1 − 1√

1/ρ2 − 1
tan−1(

√
1/ρ2 − 1)

]}
, ρ � 1. (5)

When σ ∗
11 = σ ∗

33 = σ0, the transparency condition of the
coated spheroid can be easily derived as

f = (σ2 − σ0) [Pσ1 + (1 − P )σ2]

(σ2 − σ1) [Pσ0 + (1 − P )σ2]
, (6a)

f = (σ2 − σ0) [(1 − 2P )ησ1 + 2Pσ2]

(σ2 − ησ1) [(1 − 2P )σ0 + 2Pσ2]
, (6b)

from which the relationship between ρ and η can be achieved
by setting the two expressions to be equal.

1 

2

l

rl

L
L+1

FIG. 1. The configuration of a multilayered sphere.

Considering the fact that the inclusions in practical appli-
cations may be anisotropic, the transparency condition for a
coated radial anisotropic sphere (shown in Fig. 2) is deduced by
the following method to make such an anisotropic inclusion
transparent. In the spherical coordinate system, the thermal
conductivities of the core 1 and the coating 2 are defined as
σ1 = (λr , λt , λt ) (λr and λt are the radial and tangential thermal
conductivities, respectively) and σ2, respectively. Since the
effective thermal conductivities of a two-layer isotropic sphere
and a radial anisotropic sphere have been given by Eq. (2) and
Milton [25], respectively, the effective thermal conductivity of

1

2 

1=(λr, λt, λt) 

2 

a2 a1 

FIG. 2. The configuration of a coated sphere with a radial
anisotropic core 1 and an isotropic coating 2.
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FIG. 3. The configuration of a coated sphere with an isotropic
core and a radial anisotropic coating.

the coated radial anisotropic sphere shown in Fig. 2 can be
easily achieved by

σ∗ = σ2 + 3f σ2(σ ∗
1 − σ2)

3σ2 + (1 − f )(σ ∗
1 − σ2)

, (7)

where the effective thermal conductivity of the radial
anisotropic core is expressed as [25]

σ ∗
1 = λr

2
[−1 +

√
1 + 8λt/λr ]. (8)

Then the transparency condition for the coated radial
anisotropic sphere can be deduced by setting σ∗ = σ0, which
can be expressed as

f = a3
1

a3
2

= (σ2 − σ0)(2σ2 + σ ∗
1 )

(2σ2 + σ0)(σ2 − σ ∗
1 )

. (9)

After the investigation of the thermal transparency for
the coated radial anisotropic sphere, one may be curious to
think about whether the sphere core (isotropic or anisotropic)
coated by an anisotropic coating can be transparent or not.
The answer is yes. Although the anisotropic coat means
more complications and difficulties for the real applications,
it should be considered for the completeness of the concept of
the neutral inclusion, and its advantage cannot be neglected.

The related model is shown in Fig. 3 where the thermal
conductivities of the core 1 and the coating 2 are defined as σ1

and σ2 = (λr , λt , λt ) (λr and λt are the radial and tangential
thermal conductivities, respectively), respectively. With the
help of Milton’s work [25], the effective thermal conductivity
of such a model can be obtained easily by

σ∗ = αλr + 3f KKλr (σ1 − αλr )

3Kλr + (1 − f K )(σ1 − αλr )
, (10)

where α = 1
2 [−1 + √

1 + 8λt/λr ], and K = 1
3

√
1 + 8λt/λr .

Then the transparency condition for the coated sphere can be
deduced by setting σ∗ = σ0, which can be expressed as

f K =
(

a3
1

a3
2

)K

= (σ0 − αλr )[σ1 + (3K − α)λr ]

(σ1 − αλr )[σ0 + (3K − α)λr ]
. (11)

The transparent condition for the coated sphere composed with
a radial anisotropic core and a radial anisotropic coating can
be achieved by a similar way.

Since the radial anisotropic coating is homogeneous, it
can be effectively replaced by two isotropic natural thermal
materials layered periodically (denoted by A and B) as
recommended in Ref. [8]. The conductivities and thicknesses
of materials A and B are (σA, dA) and (σB, dB), respectively.
The corresponding thermal conductivities of the two materials
are deduced as Eq. (12) based on the effective medium theory:

λr = 1

1 + f

(
1

σA
+ f

σB

)
,

(12)

λt = σA + f σB

1 + f
,

where f = dA/dB.
There is perhaps no better method to release the anisotropy

than decomposing the cloak into a multilayer one given above,
but the transparency condition of the coated sphere with a
radial anisotropic coating is more flexible and varying because
Eq. (11) includes more variables (not only a constant C in

FIG. 4. (Color online) Snapshots of the temperature field in the xy plane for a spherical core without a coating (a) and a spherical core with
a coating (b). The arrow lines represent the temperature gradient.

033201-3



XIAO HE AND LINZHI WU PHYSICAL REVIEW E 88, 033201 (2013)

FIG. 5. (Color online) Snapshots of the temperature field in the yz plane at x = −R for a spherical core without a coating (a) and a spherical
core with a coating (b).

Ref. [8]), which will be helpful to enlarge and simplify the
practical applications of the transparent inclusions.

It is worthwhile to say that all of the thermal transparency
conditions deduced above are available to the thermal insulated
particle with a thermal insulated coating or core. This property
can be used to protect the inclusion thermally without
disturbing the temperature field of the matrix, which also can
be named a “thermal cloak”.

III. SIMULATIONS AND DISCUSSIONS

FEM simulations of neutral inclusions discussed above and
the composite composed of neutral inclusions are conducted
by the commercial software COMSOL Multiphysics [27]. The
transparent properties of the neutral inclusions designed above
can be verified clearly by the simulated results. In what follows,
the variable R is the outer radius of the coated inclusion, and
the heat flow transports from the +x direction to −x direction,
where temperatures are 600 and 293.15 K in the yz planes

located at the +x and the −x boundaries of the computational
region, respectively. The unit of the thermal conductivity is
W/(m K).

A neutral inclusion composed of an isotropic spherical core
with the thermal conductivities σ1 = 27 (alumina) and an
isotropic spherical shell with σ2 = 0.04 (thermal insulator)
will be considered first. The neutral inclusion is located in
a surrounding matrix with a thermal conductivity σ0 = 2,
and the transparency condition can be deduced by Eq. (2).
Figures 4(a) and 4(b) show the contours of the temperature field
in the xy plane for the spherical core and the neutral inclusion,
respectively, where the thermal flow transports from the right
to the left, and the arrow lines represent the temperature
gradient. It is clearly shown that the temperature gradient
varies seriously near the spherical inclusion without a coating
shown in Fig. 4(a), and it will fit the original direction perfectly
near the inclusion by coating a spherical shell as shown in
Fig. 4(b). This phenomenon indicates that the temperature
field of the matrix will not be disturbed when a coated spherical

FIG. 6. (Color online) Snapshots of the temperature field in the zx plane for a spheroid core without a coating (a) and a spheroid core with
a coating (b). The arrow lines represent the temperature gradient.
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FIG. 7. (Color online) Snapshots of the temperature field in the zy plane located at x = −R for a spheroid core without a coating (a) and a
spheroid core with a coating (b).

inclusion is located in it; that is to say, the neutral inclusion
designed based on Eq. (2) is thermal transparent and the
transparency property is perfect. It is worth noting that the
coating can be extremely thin as long as the coating has
a large or small thermal conductivity to compensate for its
thinness.

Actually, planes perpendicular to the x axis are isothermal
surfaces of the matrix without any inclusion. However, the
temperature field in the yz plane at x = −R will be disturbed
seriously due to the existence of the inclusion as shown
in Fig. 5(a), where the temperature difference is as high
as 42 K. Therefore, the thermal stress in this plane will
be inhomogeneous which is extremely unexpected for the
strength of the composite. Fortunately, the temperature field in
the yz plane at the interface between the coated inclusion and
the matrix (x = −R) will be restored to uniform as shown in
Fig. 5(b), so the thermal stress concentration can be canceled.

In a similar way, a spheroid neutral inclusion composed of
an anisotropic spheroid core with an aspect ratio ρ = 2 and
a conformal isotropic spheroid shell is investigated. The long
axis is along the z direction. The neutral inclusion is located

in an isotropic matrix. The thermal conductivities of the shell,
core, and matrix are σ̄1 = (400,400,η400), σ2 = 1, and σ0 =
27, respectively. According to Eqs. (6a) and (6b), the values of
P , η, and f can be obtained easily to satisfy the transparency
condition for such a spheroid neutral inclusion. Figures 6(a)
and 6(b) are the snapshots of the temperature field in the zx

plane for the spheroid core and the spheroid neutral inclusion,
respectively, where the thermal flow transports from the up
to the bottom, and the arrow lines represent the temperature
gradient. Comparing Fig. 6(a) with Fig. 6(b), the disturbed
temperature near the spheroid inclusion shown in Fig. 6(a) is
adjusted to that of the matrix shown in Fig. 6(b), which will
cancel the heat disturbance of the surrounding temperature
field. In this way, the composite with coated inclusion can be
thermal transparent.

The temperature contours in the zy plane located at x = −R

of the composites shown in Figs. 6(a) and 6(b) are displayed
in Figs. 7(a) and 7(b), respectively. It is clearly shown that
although the temperature field of the matrix with the coated
inclusion is inhomogeneous too, the temperature difference
has dropped sharply from about 47 to 5 K, which will be very

FIG. 8. (Color online) Snapshots of the temperature field in the xy plane for a radial anisotropic spherical core without a coating (a) and a
radial anisotropic spherical core with a coating (b). The arrow lines represent the temperature gradient.
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FIG. 9. (Color online) Snapshots of the temperature field in the yz plane located at x = −R for a radial anisotropic spherical core without
a coating (a) and a radial anisotropic spherical core with a coating (b).

beneficial to release the thermal stress concentration around
the center of the zy plane located at x = −R.

Next, the thermal transparency of a radial anisotropic
spherical core with a thermal conductivity tensor σ̄1 =
(400,200,200) will be investigated. The temperature field of
the matrix (σ0 = 27) will be disturbed seriously due to the
existence of the spherical core as shown in Fig. 8(a), but the
situation will be modified perfectly by covering an isotropic
coat with a thermal conductivity σ2 = 2 and a radius derived by
Eq. (9) over the core as shown in Fig. 8(b). It can be seen from
Fig. 8(a) that the disturbed temperature field passes through a
region whose size is about 3 m × 3 m, and it is nearly 75%
of the whole simulated region. However, the temperature field
in the matrix shown in Fig. 8(b) can be restored to the original
one as if there is no inclusion. Thus, the coating designed by
Eq. (9) can make the inclusion transparent perfectly. Moreover,
the temperature contours in the yz plane located at x = −R

are shown in Figs. 9(a) and 9(b) for the composites with
inclusion and coated inclusion, respectively. Obviously, the
inhomogeneous temperature field resulted from the existence
of the inclusion can be restored ito a uniform one perfectly
by covering a coating over the inclusion. The temperature
difference drops sharply from about 43 K in Fig. 9(a) to
about 0 K in Fig. 9(b). In other words, the thermal stress
concentration around the center of the yz plane located at x =
−R has been released effectively by the coating.

According to the theoretical analysis given in Sec. II, the
transparency condition of the corresponding neutral inclu-
sion expressed by Eq. (11) is more flexible and varying.
Figures 10(a) and 10(b) indicate the contour plots of the
temperature fields for an isotropic and a radial anisotropic
spherical core with a radial anisotropic coat, respectively.
The conductivities of the matrix, isotropic core, anisotropic
core, and anisotropic coat are σ0 = 27, σ1 = 400, σ̄1 =

FIG. 10. (Color online) Snapshots of the temperature field in the xy plane for an isotropic spherical core with a radial anisotropic coating
(a) and a radial anisotropic spherical core with a radial anisotropic coating (b). The arrow lines represent the temperature gradient.
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FIG. 11. (Color online) Snapshots of the temperature field in the xy plane for an isotropic spherical core with a multilayered coating (a)
and a radial anisotropic spherical core with a multilayered coating (b). The arrow lines represent the temperature gradient.

(400,200,200), and σ2 = (2, 50, 50), respectively. The perfect
transparent phenomenon is achieved again for both models.
Although the inside temperature fields are different from each
other due to the different parameters of the inclusions in
Figs. 10(a) and 10(b), the outside fields in the matrix are
definitely the same as that of the matrix without any inclusion
in it. The simultaneous perfect transparent phenomenon of the
coated inclusions with radial anisotropic coatings shows that
the neutral inclusion designed by Eq. (11) is valid and perfect.

The same phenomenon can be achieved by decomposing the
anisotropic coat into periodically layered structure composed
of two natural isotropic thermal materials. Without loss of
generality, the thicknesses of the two materials are set to be
equal to each other, that is, dA = dB, and there are 10 and
8 layers for the configurations in Fig. 10(a) and Fig. 10(b),
respectively. The conductivities of the two materials can be

x

z
y

FIG. 12. Configuration of the composite composed of neutral
inclusions with different geometries, locations, and material param-
eters. The simulated region is 3 m × 3 m, and the locations of the
four spheres center are (0, 0, 0), ( − 0.8, 0.7, 0), (0.8, − 0.6, 0), and
(1, 0.6, 0).

deduced as σA = 98 and σB = 1 by Eq. (12). The corresponding
snapshots of the temperature are shown in Fig. 11, from which
the validation of Eq. (12) can be verified perfectly because
the distributions of the temperature fields shown in Fig. 11 are
definitely the same as that shown in Fig. 10.

Since the transparent property of one neutral inclusion
has been verified and displayed above, it is necessary and
interesting to investigate the transparent efficiency of the com-
posite composed of several neutral inclusions. Consequently,
the simulation of a composite composed of neutral inclusions
with different geometries, locations, and material parameters
is carried out. The simulation configuration is shown in Fig. 12.
From the comparison of those two figures shown in Fig. 13, it
can be seen clearly that the temperature flow can transport
through the inclusions without any disturbance no matter
where the inclusion is located and what the parameter is.
That is to say that the coated inclusions will not disturb the
temperature field of the particle-reinforced composite and the
thermal stress concentrations around the inclusions will be
released by the smoothed temperature field.

Contours shown in Figs. 14(a) and 14(b) are the temperature
fields in the yz plane located at x = −R1 (where R1 is the
outer radius of the central neutral inclusion) of the composites
composed of inclusions and neutral inclusions, respectively.
Because the legend of Fig. 14(b) is distributed by a step equal
to 0.1 K, the contour of temperature field seems to be extremely
inhomogeneous. In fact, since the temperature difference is
just 0.5 K, the temperature field shown in Fig. 14(b) is
almost uniform. In contrast, although the contour in Fig. 14(a)
seems to be more homogeneous, the temperature difference
is about 42 K, which will result in serious thermal stress
concentration.

IV. CONCLUSIONS

According to the interesting property of the neutral in-
clusion, it has been used to design the EM wave and the
elastic wave transparency. Considering the strong analogy

033201-7



XIAO HE AND LINZHI WU PHYSICAL REVIEW E 88, 033201 (2013)

FIG. 13. (Color online) Snapshots of the temperature field in the xy plane for the composites composed of inclusions with different
geometry and material parameters (a) and neutral inclusions with different geometry and material parameters (b).The arrow lines represent the
temperature gradient.

between the steady-state thermal conductivity equation and
the DC conductivity equation, the concept of the EM wave
transparency based on neutral inclusions has been introduced
into the thermal field. According to the EM wave transparency
conditions given by Hu [11], the thermal transparency condi-
tions for a multilayered sphere and a coated spheroid have been
given using the concept of neutral inclusions. Moreover, for
a variety of the practical applications and the completeness
of this research, the thermal transparent conditions of a
coated sphere with a radial anisotropic core or a radial
anisotropic coat are deduced as well. All the analytical results
are verified by corresponding simulations which indicate the
perfect transparent property of the thermal neutral inclusions
more clearly and directly. Because the coating of the neutral
inclusion is homogeneous and isotropic, it will be more flexible
and feasible for the thermal transparency to be realized, and

the thermal stress concentration resulting from the disturbed
temperature near the inclusion can be canceled perfectly. From
the simulation of the composite with neutral inclusions, we
can expect that there will be many interesting and possible
potential applications for the thermal transparency. Although
the investigation of the thermal transparency is limited to
the theoretical analysis now, it can be easily verified by
experiments and has many potential applications, such as
protecting the inclusion from the surrounding temperature and
from the thermal sensor.
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FIG. 14. (Color online) Snapshots of the temperature field in the yz plane located at x = −R1 for the composites composed of inclusions
with different geometry and material parameters (a) and neutral inclusions with different geometry and material parameters (b).

033201-8



THERMAL TRANSPARENCY WITH THE CONCEPT OF . . . PHYSICAL REVIEW E 88, 033201 (2013)

[1] C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett. 92, 251907
(2008).

[2] T. Y. Chen, C. N. Weng, and J. S. Chen, Appl. Phys. Lett. 93,
114103 (2008).

[3] J. Y. Li, Y. Gao, and J. P. Huang, J. Appl. Phys. 108, 074504
(2010).

[4] G. X. Yu, Y. F. Lin, G. Q. Zhang, Z. Yu, L. L. YU, and J. Su,
Front. Phys. 6, 70 (2011).

[5] S. Guenneau, C. Amra, and D. Veynante, Opt. Express 20, 8207
(2012).

[6] C. W. Qiu, L. Hu, and B. L. Zhang, Opt. Express 17, 13467
(2009).

[7] S. Narayana and Y. Sato, Phys. Rev. Lett. 108, 214303 (2012).
[8] T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, Sci. Rep. 3, 1593

(2013).
[9] X. He and L. Z. Wu, Appl. Phys. Lett. 102, 211912 (2013).
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