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Sum rules for electron-hole bilayer and two-dimensional point dipole systems
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We formulate and analyze the third-frequency-moment sum rules for the two-dimensional (point) dipole system
(2DDS) and the mass-symmetric electron-hole bilayer (EHB) in their strongly coupled liquid phases. The former,
characterized by the repulsive interaction potential ϕD(r) = μ2/r3 (μ is the electric dipole moment), reasonably
well approximates the latter in the d → 0 limit (d is the interlayer spacing), a conjecture that is further supported
by the findings of the present work. We explore the extent to which the in-phase sum rule for the closely spaced
EHB may or may not reconcile with its 2DDS sum-rule counterpart. This is the main emphasis of the present work.
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I. INTRODUCTION

Satisfaction of the third-frequency-moment sum rule serves
as an important gauge of the accuracy of model dynamical
theories of many-body systems, particularly in the strongly
correlated liquid phase. To date, third-frequency-moment sum
rules have been established and extensively analyzed for a
variety of charge-neutral and Coulomb fluids, most notably
(i) low-temperature interacting Bose liquids (e.g., liquid 4He)
[1–3], (ii) dense Lennard-Jones fluids [4], (iii) three- and
two-dimensional one-component plasmas in the classical and
quantum domains [5–12], (iv) binary ionic mixtures in a
neutralizing uniform background of rigid degenerate electrons
[13], and (v) layered electron liquids [14–16].

Third-frequency-moment sum rules have not been formu-
lated, however, for two companion systems that have attracted
a great deal of attention in recent years: (i) the closely spaced
electron-hole bilayer (EHB) and (ii) the two-dimensional
dipole system (2DDS) characterized by a repulsive 1/r3

interaction potential. The derivation and analysis of these sum
rules are the main goals of the present work.

In the EHB, the charges in the two layers have opposite po-
larities (±e) and, for sufficiently small layer separation d, the
positive and negative charges bind to each other in dipolelike
excitonic formations. Quantum [17] and classical [18] Monte
Carlo (MC) simulations and molecular dynamics (MD) [19]
simulations have independently confirmed the existence of
the excitonic phase in the EHB in both the zero-temperature
quantum and high-temperature classical domains. The
Ref. [18] classical simulations have revealed the existence of
four phases in the strong-coupling regime: Coulomb liquid and
solid phases and dipole liquid and solid phases. The Ref. [17]
quantum MC simulations distinguish three: the excitonic
phase, Coulomb plasma phase, and the Wigner crystal
phase.

Based on the phase diagrams [17,18], the closely spaced
EHB in its dipolelike excitonic phase can be, in a fairly good
approximation, modeled as a two-dimensional (2D) monolayer
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of interacting point dipoles, each of mass m = me + mh. The
model 2DDS is described as a collection of N -point dipoles
occupying the large but bounded area A; n = N/A is the
average density in the infinitely thin layer. The dipoles are
free to move in the xy plane with dipolar moment oriented in
the z direction. Accordingly, the repulsive interaction potential
is given by ϕD(r) = μ2/r3, with μ being the electric dipole
strength. In recent years, the 2DDS model has been considered
by a number of investigators [20–26]. While such an idealized
system has yet to be realized in the laboratory, the concept of it
does open up new lines of theoretical and computer simulation
explorations pertaining to the dynamics of Bose systems. The
third-frequency-moment sum rule could play a pivotal role in
such explorations.

The plan of the paper is as follows. In Sec. II we derive
the third-frequency-moment sum rule for the 2DDS, valid for
arbitrary degeneracy. At long wavelengths, a dipole interaction
integral that embodies the static correlation effects via the
radial distribution function g(r) emerges as the dominant
contribution to the sum rule in strong-coupling regimes,
the regimes of interest in the present work. In Sec. III we
first formulate the in-phase and out-of-phase third-frequency-
moment sum rules for the symmetric EHB when the layer
spacing d lies in the domain of the Coulomb liquid phase.
We then initiate a procedure for accessing the d � a domain
(a = 1/

√
πn) of the dipole (bound electron-hole pairs) liquid

phase. In this latter domain, we compare the resulting in-phase
sum rule with its 2DDS counterpart sum rule of Sec. II. As to
the EHB out-of-phase sum rule, a preliminary study, presented
at the end of this paper, is expected to provide information
about the internal degrees of freedom of the dipoles.

There is an intimate connection between the sum-rule
coefficients of a system and its mode dispersions in the strong-
coupling domain. A technique based on this relationship has
been elevated to an approximation scheme for strong coupling
by Iwamoto et al. [10] and Tkachenko and co-workers [12].
By the same token, there is a relationship between the sum-rule
coefficients and the results of the quasilocalized approximation
scheme [22,25,27,28], even though this latter relies on its own
physical foundations. These connections will be pointed out
in more detail in Sec. IV.
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II. TWO-DIMENSIONAL DIPOLE SYSTEM

In this section we establish the third-frequency-moment
sum rule for the 2DDS characterized by the repulsive
interaction potential ϕD(r) = μ2/r3. Following the standard
procedure dictated by the Kubo sum-rule theorem [10,29], we
calculate the � = 1,3 frequency moments

〈ω�〉(q) =
∫ ∞

−∞

dω

π
ω�Imχ (q,ω) (1)

in the high-frequency expansion

Reχ (q,ω → ∞) = − 1

ω2
〈ω〉(q) − 1

ω4
〈ω3〉(q) − · · · (2)

resulting from the Kramers-Kronig formula linking the real
and imaginary parts of the external density response function
χ (q,ω):

〈n(q,ω)〉 = χ (q,ω)U ext(q,ω) . (3)

Here 〈n(q,ω)〉 is the Fourier transform of the average density
response 〈n(r,t)〉 to a weak external potential energy pertur-
bation U ext(r,t).

In the low-temperature quantum domain, the 2DDS is
characterized by the Hamiltonian

H = − h̄2

2m

∑
i

∇2
i + 1

2

∑
i

∑
j 	=i

μ2

|xi − xj |3 . (4)

The basic ingredient in the derivation of the sum rule
coefficients (1) is the fluctuation-dissipation theorem

χ (q,ω) = − i

h̄A

∫ ∞

0
dt exp(iωt)〈[nq(t),n−q(0)]〉, (5a)

Imχ (q,ω) = − 1

2h̄A

∫ ∞

−∞
dt exp(iωt)〈[nq(t),n−q(0)]〉. (5b)

Equation (5b), when substituted into Eq. (1), results in the first
two frequency moments

〈ω〉(q) = 1

ih̄A
〈[ṅq,n−q]〉 , (6)

〈ω3〉(q) = 1

ih̄A
〈[n̈q,ṅ−q]〉 . (7)

The angular brackets denote averaging over the equilibrium
ensemble; the binary products are equal-time (t = 0) prod-
ucts; nq = ∑

i exp(−iq · xi) is the Fourier transform of the
local density operator in the Heisenberg representation. The
textbook � = 1 f sum rule

〈ω〉(q) = −nq2

m
(8)

readily results from performing the routine commutator
algebra for the Hamiltonian and local density operators.

Addressing next the evaluation of moment (7), the
calculations of ṅq and n̈q from their Heisenberg equations
readily yield

ṅq = ih̄q2

2m
nq − i

m

∑
i

[exp(−iq · xi)](q · pi), (9)

n̈q = −h̄2q4

4m2
nq + h̄q2

m2

∑
i

[exp(−iq · xi)](q · pi)

− 1

m2

∑
i

[exp(−iq · xi)](q · pi)
2

− 3iμ2

2m

∑
i

∑
j 	=i

q · (xi − xJ )

|xi − xj |5
× [exp(−iq · xi) − exp(−iq · xj )] . (10)

Here pi = −ih̄∇i is the momentum operator. Assigning the
labels 1, 2, 3, and 4, respectively, to the four right-hand-side
members of (10), one can write the commutator in Eq. (7) in
the form

[n̈q,ṅ−q] =
4∑

�=1

[�,ṅ−q] , (11)

where

[1,ṅ−q] = −i
Nh̄3q6

4m3
, (12)

[2,ṅ−q] = iNh̄3q6

2m3
+ 2ih̄2q4

m3

∑
i
(q · pi) , (13)

[3,ṅ−q] = − iNh̄3q6

2m3
− 2ih̄2q4

m3

∑
i
(q · pi)

− 3ih̄q2

m3

∑
i
(q · pi)

2, (14)

[4,ṅ−q] = −3
ih̄q2μ2

m2

∑
i

∑
j 	=i

1 − 5 cos2 φ

|xi − xj |5
×{exp[iq · (xi − xj )] − 1}

+ 3
h̄q2μ2

m2

∑
i

∑
j 	=i

q · (xi − xj )

|xi − xj |5 . (15)

Here cos φ = q · (xi − xj )/q|xi − xj |. Consolidating
Eqs. (11)–(15) and ensemble averaging, one then obtains

〈[n̈q,ṅ−q]〉 = − iNh̄3q6

4m3
− 3

ih̄q2

m3

∑
i

〈(q · pi)
2〉

− ih̄

m2
qμqν

∑
i

∑
j 	=i

〈
{exp[iq · (xi − xj )] − 1}

× ∂2

∂xiμ∂xjν

μ2

|xi − xj |3
〉
. (16)

The angular brackets denote an ensemble average. The 2DDS
third-frequency-moment sum-rule coefficient follows from
Eqs. (7) and (16):

〈ω3〉(q) = −nq2

m

[
h̄2q4

4m2
+ 3

q2

m
〈Ekin〉 + C(q)

]
, (17)

C(q) = 1

2
ω2

D

∫ ∞

0
drrg(r)K(r,q), (18a)

K(r̄ ,q) = −a2

π

∫ 2π

0
dφ[exp(iq · r) − 1]

(q · ∇)2

q2

1

r̄3

= 3

r̄5
[3 − 3J0(qr) + 5J2(qr)], (18b)
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where r̄ = r/a, q̄ = qa, J0(qr) and J2(qr) are ordinary
Bessel functions, ωD =

√
2πnμ2/ma3 is a nominal 2D

dipole frequency, a = 1/
√

πn is the 2D Wigner-Seitz radius,
and g(r) is the statistics- and coupling-dependent pair
distribution function. (To avoid confusion about the mass
notation used for the EHB in the next section, this is a good
place to remind the reader that in this section, m = me + mh.)
Equations (17) and (18) are valid for arbitrary degeneracy. The
second right-hand-side member of sum rule (17), proportional
to the average kinetic energy per particle for the interacting
2D system 〈Ekin〉 = 〈p2 /2m〉, is a well-known feature of
third-frequency-moment sum rules (note that 〈Ekin〉 = 1/β

when the particles obey classical statistics). At long
wavelengths (q̄ < 1) and in high-coupling regimes, however,
the dominant contribution by far is the third right-hand-side
member of (17) portraying the dipole-dipole interactions (18a)
and (18b).

To see that the dipole g(r → 0) tends to zero sufficiently
fast to guarantee convergence of the C(q) integral (18) in
the zero-temperature quantum domain, we observe that when
two point dipoles are in close proximity to each other, the
ground-state pair wave function ψ(r) and consequently the
pair distribution function g(r) ∝ |ψ(r)|2 are determined by
the solution of the two-particle Schrödinger equation in
the r → 0 limit. Paralleling Kimball’s electron-gas calcu-
lation [30], one readily finds that the dipole g(r → 0) ∝
K2

0 (2
√

r0/r) ≈ (π/4)
√

r/r0 exp(−4
√

r0/r), where K0 is the
modified Bessel function of the second kind and r0 = mμ2/h̄2

is the dipole equivalent of the Bohr radius [20(a)]. This small-r
behavior has also been pointed out in Ref. [20(a)]. In the
high-temperature classical domain, convergence is guaranteed
as long as g(r → 0) ∝ exp[−βμ2/r3], as expected. The
structure of C(q) for arbitrary coupling, and consequently of
the third-frequency-moment sum rule itself, implies that the
2DDS does not have a random-phase-approximation (RPA)
limit, i.e., g(r) = 1 is ruled out. This crucial point has already
been emphasized in Refs. [22,25]. The long-wavelength limit
of sum rule (17) can be expressed in terms of the average
dipole-dipole interaction energy per particle

〈Eint〉 = n

2

∫
d2rϕD(r)g(r) (19)

as

〈ω3〉(q → 0) = −nq2

m

[
3
q2

m
〈Ekin〉 + 33

8

q2

m
〈Eint〉

]
. (20)

It is instructive to compare the dipole sum rules (17) and (20)
with their 2DOCP counterparts [10(b)]:

〈ω3〉(q) = −nq2

me

[
h̄2q4

4m2
e

+ 3
q2

me

〈Ekin〉 + CCoul(q)

]
, (21)

CCoul(q) = 1

2
ω2

0

∫ ∞

0
drrg(r)KCoul(r̄ ,q) , (22a)

KCoul(r̄ ,q) = −a2

π

∫ 2π

0
dφ[exp(iq · r) − 1]

(q · ∇)2

q2

1

r̄

= 1

r̄3
[1 − J0(qr) + 3J2(qr)], (22b)

where ω0 =
√

2πne2/mea is a nominal 2D plasma frequency.
The appealing structural likeness of (17) and (21) notwith-
standing, we nevertheless note the marked difference between
the potential-dependent kernel functions (18b) and (22b).
In attempting to generate a small-q expansion from (22a)
and (22b), one encounters a divergent integral. This mandates
writing (22a) in the form where the contribution to the
integral that exhibits the large-r divergence for q → 0 can
be separated:

CCoul(q) = 1

2
ω2

0

∫ ∞

0
drr[1 + h(r)]KCoul(r̄ ,q) . (23)

Here h(r) is the equilibrium pair correlation function. It is then
the 1 contribution to the integral that can be identified as the
offending term. However, this integral can be exactly evaluated
for arbitrary q̄:∫ ∞

0

dr̄

r̄2
[1 − J0(qr) + 3J2(qr)] = 2q̄. (24)

The correct procedure is then to substitute Eq. (23) with (24)
into sum rule (21). This results in

〈ω3〉(q) = −nq2

me

[
h̄2q4

4m2
e

+ 3
q2

me

〈Ekin〉 + ω2
0q̄ + D(q)

]
,

(25a)

D(q) = 1

2
ω2

0

∫ ∞

0
drrh(r)KCoul(r̄ ,q) . (25b)

This procedure is tantamount to separating out the ω0
√

q̄ RPA
plasmon frequency and D(q) non-RPA exchange-correlation
contributions. At long wavelengths,

〈ω3〉(q → 0) = −nq2

me

[
3

q2

me

〈Ekin〉 + ω2
0q̄ + 5q2

8me

〈ECoul〉
]

,

(26a)

where

〈ECoul〉 = n

2

∫
d2rϕCoul(r)h(r) (26b)

is the average Coulomb potential energy, with ϕCoul(r) = e2/r .
Comparing now the behavior of the 2DDS governed by
the 1/r3 short-range interaction and the 2D Coulomb layer
governed by the 1/r long-range interaction, we see why the
separation of the leading RPA plasmon frequency from the
exchange-correlation contribution is necessary. Such a sepa-
ration does not exist for the dipole short-range interactions.

III. ELECTRON-HOLE BILAYER LIQUID

In this section we establish the third-frequency-moment
sum rules for the closely spaced EHB liquid, with the goal
of showing how the in-phase sum rule relates to its 2DDS
counterpart (17). Here it suffices to confine our study to the
mathematically more tractable mass-symmetric EHB (me =
mh = m̄) [17,18,27,28]. This idealized model consists of two
large but bounded infinitely thin layers, each of area A, spaced
a distance d apart; layer 2 is populated by nA electrons, each
endowed with charge −|e|; layer 1 is populated by nA holes,
each endowed with charge +|e|. The interaction potentials are
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given as

ϕ11(r) = ϕ22(r) = e2

r
, ϕ12(r) = − e2

√
r2 + d2

;

(27)

ϕ11(q) = ϕ22(q) = 2πe2

q
, ϕ12(q) = −2πe2

q
exp(−qd).

As we have emphasized in the Introduction, the 2DDS
model is expected to be a good description for the closely
spaced EHB liquid in the d → 0 limit. For finite-d values, the
situation is more complicated. Although both classical [18] and
quantum [17] simulations seem to establish a critical coupling-
dependent d∗ value below which the system is in the dipole
state, the physical meaning of d∗ is unclear. The exact phase
diagram (in the d − � or d − rs parameter space) of the EHB
is not known; it is not even established whether the transition
from the Coulomb liquid state to the dipole liquid state is a
phase transition or a gradual crossover. Should the latter be the
case, one would have to deal with a three-component mixture
of concentrations determined by equilibrium requirements.
In the following, we will work by assuming that we can
choose a domain d � d∗ such that the system is entirely (i.e.,
overwhelmingly) in the dipole state, while for the domain
d 
 d∗ it is entirely in the (spin-unpolarized) Coulomb state.

The derivation of the sum rules is to be carried out in two
stages. In the first stage, we infer from an earlier work [15] the
in-phase and out-of-phase third-frequency-moment sum rules
for the EHB in its Coulomb liquid phase. This phase now is
characterized by an interlayer spacing d 
 d∗. In the second
stage, we concentrate on the d � d∗ domain characterizing the
excitonic liquid phase. We adapt the first-stage EHB sum rules
to this domain by carrying out what amounts to an expansion
in powers of d/a after we have modeled the interlayer pair
distribution function g12(r,d) to take account of its evolution
as d → 0 [17,18,31].

Proceeding with the first-stage formulation, one custom-
arily defines the (external) density response matrix χAB(q,ω)
through the constitutive relation [32]

〈nA(q,ω)〉 =
∑
B

χAB(q,ω)ÛB(q,ω)

=
∑
B

χAB(q,ω)eB
̂B(q,ω) (28)

linking the Fourier transform of the average density response
〈nA(r,t)〉 of layer A field particles to an external potential
energy perturbation ÛB(r,t); its companion external scalar
potential 
̂B(r,t), which acts on the layer B field particles
[each endowed with charge label eB ; ÛB(r,t) = eB
̂(r,t)],
can originate from an external charge source Q placed in either
layer. Thus, if the charge density Q(t) is placed in layer 1 at
r = 0, then


̂1(q,ω) = 2πQ(ω)

q
, Û 1(q,ω) = +|e|
̂1(q,ω);


̂2(q,ω) = 2πQ(ω)

q
exp(−qd), (29)

Û 2(q,ω) = −|e|
̂2(q,ω).

The first- and third-frequency-moment sum-rule coefficients,
defined by

〈ω〉AB(q) =
∫ ∞

−∞

dω

π
ω ImχAB(q,ω)

= 1

ih̄A
〈[ṅA,q,nB,−q]〉, (30a)

〈ω3〉AB(q) =
∫ ∞

−∞

dω

π
ω3ImχAB(q,ω)

= 1

ih̄A
〈[n̈A,q,ṅB,−q]〉 , (30b)

can be readily formulated by adapting electron multilayer
equations (8) and (9) of Ref. [15] to the EHB characterized
by interaction potentials (27). One obtains the sum-rule
coefficients

〈ω〉AB(q) = −nq2

m̄
δAB , (31)

〈ω3〉AB(q) = −nq2

m̄

{[
h̄q2

2m̄

]2

δAB + 3
q2

m̄
〈Ekin〉δAB

+ nq2

m̄
ϕAB(q) + DAB(q)

}
, (32a)

where

DAB(q) = − n

m̄

∫
d2rhAB(r)[exp(−iq · r) − δAB]

× (q · ∇)2

q2
ϕAB(r) + n

m̄
δAB

×
∑
C 	=A

∫
d2rhAC(r)

(q · ∇)2

q2
ϕAC(r) (32b)

is the longitudinal exchange-correlation matrix. Its elements
can be expressed in terms of the computationally tractable
configuration space integrals:

D11(q) = ω2
0

2

{ ∫ ∞

0
dr̄

1

r̄2
h11(r)[1 − J0(qr) + 3J2(qr)]

−
∫ ∞

0

drr

ρ̄3
h12(ρ)

[
1 − 3

d2

ρ2

]}
, (33)

D12(q) = ω2
0

2

{∫ ∞

0

drr

ρ̄3
h12(ρ)

[
1 − 3

d2

ρ2

]

−
∫ ∞

0

drr

ρ̄3
h12(ρ)[1 − J0(qr) + 3J2(qr)]

}

+ 3d̄2ω2
0

2

∫ ∞

0

drr

ρ̄5
h12(ρ)[1 − J0(qr) + J2(qr)] ,

(34)

D22(q) = D11(q) , (35)

where ρ = √
r2 + d2, ρ̄ = ρ/a, r̄ = r/a, and ω2

0 =
2πne2/m̄a. We note the recovery of the exchange-correlation
integral (25b) in the d → ∞ isolated 2D layer limit. Equa-
tions (32a) and (32b) can be rewritten as in-phase (+) and
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out-of phase (−) sum rules:

〈ω3〉±(q) = −nq2

m̄

{[
h̄q2

2m̄

]2

+ 3
q2

m̄
〈Ekin〉

+ω2
0q̄[1 ∓ exp(−qd)] + D11(q) ± D12(q)

}
.

(36)

As expected, the Coulomb liquid phase sum rules (32)
and (36) exhibit the separate RPA plasmon frequency and
exchange-correlation matrix DAB(q) contributions, with the
latter expressed in terms of the equilibrium pair correlation
function hAB(r). As we have pointed out in the previous
section, this is in sharp contrast to the 2DDS sum rule (17),
which of course can have no RPA contribution and features
not h(r) in the dipole-dipole interaction integral, but rather the
pair distribution function g(r) = 1 + h(r). We proceed now to
reformulate the sum rules in the d → 0 limit following a rather
intricate procedure detailed in the stage-two derivation below.

Taking our cue from the discussion in the paragraph below
Eq. (36), one can mask the RPA contribution to (32a) by
introducing the CAB dynamical matrix elements:

C11(q) = ω2
0q̄ + D11(q) , (37)

C12(q) = −ω2
0q̄e−qd + D12(q) . (38)

The third-frequency-moment sum rules (36) now assume the
more compact form

〈ω3〉±(q)

= −nq2

m̄

{[
h̄q2

2m̄

]2

+ 3
q2

m̄
〈Ekin〉 + C11(q) ± C12(q)

}
.

(39)

Then, from Eqs. (33), (34), (37), and (38) and the integral
formulas ∫ ∞

0

drr

ρ̄3

[
1 − 3

d2

ρ2

]
= 0, (40)

1

2

∫ ∞

0

drr

ρ̄3
[1 − J0(qr) + 3J2(qr)]

−3

2
d̄2

∫ ∞

0

drr

ρ̄5
[1 − J0(qr) + J2(qr)] = q̄e−qd , (41)

one readily obtains the CAB(q) matrix elements by trading h(r)
for g(r) in (33) and (34). The stage is now properly set for the
derivation of the CAB(q) matrix elements and subsequent (±)
third-frequency-moment sum-rule coefficients in the d � d∗
domain of bound electron-hole pairs

First, we observe that in this d � d∗ domain, classical
simulations [18] indicate the existence of permanently bound
electron-hole pairs through the correlated motion of the two
terminal particles. Based on this observation, one expects that
it is the combined mass m = 2m̄ that should be featured in
the (+) f sum rule and in the prefactor and kinetic energy
contributions to the (+) third-frequency-moment sum rule
(39). Replacement of m̄ with m in (39) goes hand-in-hand
with the g12(ρ) conjecture (42) below. We will see that this
replacement is consonant with the natural emergence of m,

not m̄, in the C+(q) dipole-dipole interaction contribution to

the closely spaced EHB sum-rule counterpart of Eq. (17). It
should be noted, however, that this replacement of m̄ with m

is a reasonable correction to the sum-rule derivation with a
preset goal in mind, but by no means is on the same exact
footing as the establishment of the parent equation (39). As
mentioned before, a rigorous derivation of the result would
require recognizing that, in the d � d∗ domain, we are no
longer dealing with a two-layer architecture but rather with
a ternary mixture of bound electron-hole pairs, along with
free electrons and free holes; the derivation would then be
reformulated to accommodate this latter architecture.

Next we need to take account of the rather dramatic
evolution of g12(ρ) as d → 0. Zero-temperature quantum and
classical MC simulations of the symmetric EHB [17,18,31]
reveal that in the excitonic liquid phase, g12(ρ) for both the
spin-unpolarized and classical Coulomb liquids develops a
steep Gaussian-like central peak �(r̄,d) for low-r̄ values
around r̄ = 0. For quantum systems this is understandable
because it follows from the assumption that g12(r → 0) �
|ψ12(r → 0)ψ∗

12(r → 0)|, where ψ12(r) is the ground-state
wave function for the 12 pair. For the classical system, the
reason for the deviation from the expected (on thermodynamic
grounds) exp[−βϕ12(ρ)] is discussed in Ref. [18]. Moreover,
classical MC and MD simulations [18,27] indicate that,
sufficiently well below the Coulomb liquid–dipole liquid
phase boundary, g12(ρ̄) ≈ g11(r̄) + �(r̄,d), with the Gaussian-
like steepening markedly increasing with decreasing d. This
suggests that, in the d → 0 limit, it is reasonable to conjecture
that

g12(ρ̄) = g̃11(r̄) + 1

n
δ(r) = g̃11(r̄) + πδ(r̄), (42)

where g̃11(r̄) is practically the same as g11(r̄); indeed, since the
Gaussian-like central peak of g12(ρ) contains but one particle
out of N particles [18], we can take g̃11(r̄) = g11(r̄), accurate
to order 1/N . Thus the CAB(q) matrix elements become

C11(q) = ω2
0

2

{∫ ∞

0
dr̄

1

r̄2
g11(r)[1 − J0(qr) + 3J2(qr)]

−
∫ ∞

0

drr

ρ̄3
g11(r)

[
1 − 3

d2

ρ2

]
+ 1

d̄3

}
, (43)

C12(q) = ω2
0

2

{
− 1

d̄3
+

∫ ∞

0

drr

ρ̄3
g11(r)

[
1 − 3

d2

ρ2

]

−
∫ ∞

0

drr

ρ̄3
g11(r)[1 − J0(qr) + 3J2(qr)]

}

+ 3d̄2ω2
0

2

∫ ∞

0

drr

ρ̄5
g11(r)[1 − J0(qr) + J2(qr)] .

(44)

Then applying the denominator expansion

1

ρ̄3
≈ 1

r̄3

[
1 − 3

2

d̄2

r̄2

]
to Eqs. (43) and (44) provides

C11(q) = −ω2
0

2

∫ ∞

0

dr̄

r̄2
g11(r)[J0(qr) − 3J2(qr)]

+ 9

4
ω2

0d̄
2
∫ ∞

0

dr̄

r̄4
g11(r) + e2

m̄d3
, (45)
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C12(q) = ω2
0

2

∫ ∞

0

dr̄

r̄2
g11(r)[J0(qr) − 3J2(qr)] − 3

4
ω2

0d̄
2

×
∫ ∞

0

dr̄

r̄4
g11(r)[3J0(qr) − 5J2(qr)] − e2

m̄d3
.

(46)

Convergence of the second right-hand-side integrals of
(45) and (46) is guaranteed in virtue of the discussion above
Eq. (19). The (+) third-frequency-moment sum rule for
the EHB in the d � d∗ domain now readily follow from
Eqs. (39), (45), and (46), with the stipulation that the combined
dipole mass m replaces m̄ in the prefactor and kinetic energy
contributions per the discussion in the paragraph following
Eq. (27)

〈ω3〉+(q) = −nq2

m

{[
h̄q2

2m

]2

+ 3
q2

m
〈Ekin〉 + C+(q)

}
, (47)

C+(q) = 1

2
ω2

D

∫ ∞

0
drrg11(r)K(r̄,q), (48)

where K(r̄ ,q) is defined by Eq. (18b). Here we note that
ω2

D = 2πnμ2/(2m̄)a3 is identical to the 2DDS characteristic
frequency defined below Eq. (17) for me = mh. At long
wavelengths, (47a) simplifies to

〈ω3〉+(q → 0) = −nq2

m

[
3
q2

m
〈Ekin〉 + 33

8

q2

m
〈Eint〉

]
, (49)

where

〈Eint〉 = (n/2)
∫

d2rϕD(r)g11(r) .

Clearly, the C(q) and C+(q) dipole-dipole interaction terms in
sum rules (17) and (47) reconcile, as do the sum rules (17) and
(47) subject to the mass replacement proviso.

In this section we have followed an approach that, in effect,
shows how the (+) sum rule (39) for the Coulomb liquid
evolves with decreasing d into the (+) sum rule (47) in the
d � d∗ bound-state domain. This replication of the 2DDS
sum rule (17) notwithstanding, the approach has its limitations
when it comes to formulating the (−) sum-rule companion to
(47). For one thing, there is the question of which mass to
assign to the prefactor and kinetic energy contributions to the
third-frequency-moment sum rule [and to the (−) f sum rule
as well]. While we do not yet have clear guidelines for selecting
the appropriate mass, the assumption that we are dealing with
a bound state suggests the reduced mass m̃ = m̄/2 to be the
appropriate choice; this is further corroborated by Eq. (53)
below and by the natural emergence of m̃ in Eq. (52) for
C−(q = 0).

We proceed now with the calculation of C−(q) = C11(q) −
C12(q) from Eqs. (45) and (46). One readily obtains

C−(q) = ω2
K − ω2

0

∫ ∞

0

dr̄

r̄2
g11(r)[J0(qr) − 3J2(qr)]

+ 3

2
ω2

D

∫ ∞

0

dr̄

r̄4
g11(r)[3 + 3J0(qr) − 5J2(qr)] ,

(50)

where ωK =
√

e2/m̃d3 is the Kepler frequency, apparently
representing the intrinsic excitation of the bound electron-hole

pair. We gain further insights into the expected ω(q) dispersion
that combines effects originating from the intrinsic excitations
of the dipole and from the genuine out-of-phase propagating
mode by evaluating the sum-rule ratio 〈ω3〉−(q)/〈ω〉−(q):

〈ω3〉−(q)

〈ω〉−(q)
=

[
h̄q2

2m̃

]2

+ 3
q2

m̃
〈Ekin〉 + C−(q) ; (51)

the reduced mass replacements in the kinetic energy contri-
butions go hand-in-hand with the natural emergence of the
reduced mass in C−(q). From Eqs. (50) and (51)

〈ω3〉−(q)

〈ω〉−(q)

∣∣∣∣
q=0

= C−(0)

= ω2
K − 1

m̃d2
〈Eint〉 + 9ω2

D

∫ ∞

0

dr̄

r̄4
g11(r).

(52)

Equation (52) also follows directly from the application of the
g12(ρ) conjecture (42) to

C−(0) = n

m̃

∫
d2rg12(r)

(q · ∇)2

q2
ϕ12(r)

= −ω2
0

∫ ∞

0

drr

ρ̄3
g12(ρ)

[
1 − 3

d2

ρ2

]
> 0. (53)

Clearly, the statistics-independent Kepler frequency plays the
dominant role in (52). It also plays the dominant role in the
description of the collective in-layer shear mode oscillations
of two indirect excitons in a harmonic trap [33].

IV. CONCLUSION

We have derived and analyzed the third-frequency-moment
sum rules for the mass-symmetric electron-hole bilayer and
for the two-dimensional (point) dipole system characterized
by the repulsive interaction potential ϕD(r) = μ2/r3, where μ

is the electric dipole moment. Our principal results are given
by Eqs. (17), (20), (36), (47), (49), (51), and (52).

In the strong-coupling regimes of interest in the present
study, we have supposed that Bose-Einstein condensation can
be ignored since strong particle interactions destroy coherence,
thereby suppressing the condensate fraction. This is borne
out by quantum MC [17,20] and path-integral Monte Carlo
simulations [34].

Our analysis shows the extent to which the 2DDS sum
rule (17) may or may not reconcile with its companion EHB
(+) sum rule (47). Our overall observation reinforces the
justification of using the 2DDS as an approximation for the
closely spaced EHB. The (−) EHB sum rule ratios (51) and
(52), which relate to the excitations of the internal degrees
of freedom of the bound electron-hole pairs, merit further
exploration.

In order to find the connection between the sum-rule
relationships and the mode structure, one may generate the
〈ω3〉+(q)/〈ω〉+(q) ratios, as suggested by Refs. [10,12], from
the 2DDS sum rule (17) or its companion EHB in-phase (+)
sum rule (47a). Calculated in the high-coupling regimes and
at long wavelengths, they are dominated by the C(q) term.
This quantity can then be identified as the centerpiece of
the quasilocalized-charge-approximation (QLCA) description
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of the collective excitations for the respective systems. As
to the ratio 〈ω3〉−(q)/〈ω〉−(q) of the out-of-phase sum-rule
coefficients, we observe that the finite-frequency gap

〈ω3〉−(q)

〈ω〉−(q)

∣∣∣∣
q=0

= −ω2
0

∫ ∞

0

drr

ρ̄3
h12(ρ)

[
1 − 3

d2

ρ2

]
> 0,

(54)

the hallmark of the out-of-phase collective mode dispersion
in strongly coupled EHB Coulomb liquids [27,28] is the
survivor in the q = 0 limit. In the d → 0 limit, the resulting
equation (52) shows the dominance of the Kepler frequency
that can be identified with the internal excitation of the bound
electron-hole pair. This is also consistent with the prediction

of our recent QLCA studies of the classical bilayer [27,28]:
The Kepler frequency is also shown there to be the dominant
feature of the long-wavelength energy gap in the out-of-phase
collective excitation spectrum. However, the additional terms
appearing in Eq. (52) have not been explored in the analysis
of the EHB mode dispersion; their presence here indicates
how at finite-d values, a correlation-induced energy gap would
interfere with the Kepler frequency.
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