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Collisionless energy-independent kinetic equilibria in axisymmetric magnetized plasmas
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The proof of existence of Vlasov-Maxwell equilibria which do not exhibit a functional dependence in terms of
the single-particle energy is established. The theory deals with the kinetic treatment of multispecies axisymmetric
magnetized plasmas, with particular reference to plasma systems which are slowly time varying. Aside from
collisionless laboratory plasmas, the theory concerns important aspects of astrophysical scenarios, such as
accretion-disk and coronal plasmas arising in the gravitational field of compact objects. Qualitative properties
of the solution are investigated by making use of a perturbative kinetic theory. These concern the realization of
the equilibrium kinetic distribution functions in terms of generalized Gaussian distributions and the constraints
imposed by the Maxwell equations. These equilibria are shown to be generally non-neutral and characterized by
the absence of the Debye screening effect. As a further application, the stability properties of these equilibria
with respect to axisymmetric electromagnetic perturbations are addressed. This permits us to establish absolute
stability criteria holding in such a case.
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I. INTRODUCTION

Recently, significant theoretical progress has been achieved
concerning the kinetic theory of equilibria occurring in
collisionless magnetized plasmas. This type of description,
based on the Vlasov-Maxwell kinetic treatment, concerns the
investigation of quasistationary plasmas subject to the action
of both gravitational and electromagnetic (EM) fields [1–7].
It is important to stress that kinetic equilibria of this type
necessarily correspond also to fluid magnetohydrodynamic
(MHD) equilibria (kinetic-MHD equilibria). However, as a
notable feature, in the framework of the Vlasov-Maxwell
theory, such a MHD description is not arbitrary or subject
to the “ad hoc” prescription of appropriate closure conditions
for the fluid equations, but rather the latter are identified with
moments of the Vlasov kinetic equation which follow uniquely
in a consistent way in terms of the kinetic equilibrium. In this
work, a new class of collisionless kinetic equilibria is pointed
out which concerns to nonrelativistic axisymmetric plasmas,
which is applicable in principle both to astrophysical and
laboratory systems. In particular, the conditions of existence of
kinetic equilibria which do not exhibit functional dependencies
in terms of single-particle energy are investigated, showing that
these equilibria can be characterized by generalized Gaussian
kinetic distribution functions (KDFs). As a remarkable feature,
it is found that, independent of the particular realization of the
energy-independent KDF, these equilibria are absolutely stable
with respect to axisymmetric EM perturbations. Such a result
extends the conclusions pointed out in Ref. [8].

In detail, we consider here multispecies collisionless plas-
mas for which binary Coulomb interactions and EM radiation
effects are negligible as far as the microscopic single-particle
dynamics is concerned (see Refs. [9,10] and the references
reported therein). For collisionless plasmas, the appropriate
statistical description is provided by the kinetic treatment,
which allows for both phase-space single-particle dynamics
as well as phase-space plasma collective phenomena to be

properly taken into account. Applications of the theory are
wide ranging. In astrophysical context, they include the kinetic
treatment of plasmas arising in the solar environment or
in accretion-disk systems around compact objects, like the
so-called radiatively inefficient accretion flows (RIAFs) [11]
and active galactic nuclei [12], low-density hot magnetized
coronas [13–15], funnel-flow plasmas [16], and current-
carrying string-loop plasmas [6,17,18]. In the case of labo-
ratory context, they pertain in principle both to axisymmetric
devices, such as tokamaks [3,19], and the nonaxisymmetric
systems, such as Stellarators and quasisymmetric confinement
machines [20,21].

The background to this study is provided by the kinetic
theory recently established in Refs. [1–7] for the treatment
of collisionless plasmas in quasistationary configurations. In
these works, the development of a solution method based on
the use of particle invariants (“method of invariants”) has
been obtained, which allows one to determine equilibrium
solutions consistent with microscopic conservation laws and
to uniquely prescribe the functional dependencies of the
species distribution functions and the related fluid fields.
Several physical configurations have been identified which
allow us to represent these solutions in terms of generalized
Gaussian kinetic distribution functions (KDFs) and to cast
them, by means of suitable perturbative expansions, in terms
of analytical tractable forms. In the case of axisymmetric
systems, solutions have been obtained which apply to accretion
disks and tokamak devices [1–4,6,7]. As a main outcome, it
has been shown that according to the kind of invariants used
when representing the species distributions, different plasma
phenomenologies can be treated and retained consistently in
the description. More precisely, inclusion of energy introduces
an isotropic dependence on particle velocity and permits
us to have KDFs which can be of Maxwellian type [1–4].
The conservation of the canonical momentum following from
the axisymmetry assumption allows for the existence of
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equilibrium azimuthal flow velocities [1,7], while the use of its
guiding-center representation is associated with the existence
of equilibrium poloidal flows [2,3]. Remarkably, the adiabatic
conservation of the particle magnetic moment as predicted
by gyrokinetic theory contributes as a source of temperature
anisotropy and determines the bi-Maxwellian character of the
equilibrium solutions [1–3]. Finally, action variables make
possible the description of non-Maxwellian features that affect
the statistical dynamics of plasmas in epicyclic motion [6].

Other notable effects have been identified which are
expected to characterize the phenomenology of collisionless
magnetized plasmas. The first one is the kinetic dynamo, a
mechanism responsible for the self-generation of quasistation-
ary poloidal and toroidal magnetic fields by the charge currents
arising in quasineutral plasmas [1–3,6]. In axisymmetric
configurations, the azimuthal currents are associated with
the conservation of the canonical momentum. Instead, in
the case of toroidal field components, the corresponding
currents are driven by temperature anisotropy. Intrinsically
kinetic effects have also been pointed out which contribute
to the occurrence of such a mechanism and which have
been identified with energy-correction, diamagnetic, and finite
Larmor radius (FLR) effects (see, in particular, Refs. [2,3,6]).

The second relevant feature is the occurrence of temperature
anisotropy in quasistationary collisionless plasmas [1–3,6,7].
It has been shown that the latter phenomenon is associated
with phase-space or velocity-space anisotropies carried by the
equilibrium KDFs. These arise in generalized bi-Maxwellian
distributions [1–3] and in the case of axisymmetric plasmas
characterized either by epicyclic motion [6] or by strong
rotation phenomena such as supersonic flows and/or strong
velocity shear [7].

As a relevant development, the extension of these re-
sults to the treatment of spatially nonsymmetric systems in
astrophysical and laboratory contexts has been achieved [5].
The corresponding kinetic-MHD equilibria have been shown
to recover the relevant phenomenology pointed out for ax-
isymmetric systems, and in particular to exhibit nonvanishing
species flow velocities, temperature and pressure anisotropies,
as well as a kinetic dynamo mechanism.

Among the variety of physical conditions considered so
far, a common feature of all the treatments mentioned above
is the ubiquitous dependence of the species equilibrium KDFs
on the single-particle energy. However, the question arises
as to whether possible kinetic equilibria may exist also in
configurations for which the KDF does not contain any kind of
functional dependencies (both explicit or implicit via possible
other invariants or the imposition of suitable kinetic constraints
on the same KDFs) in terms of the single-particle energy.
In fact, physical situations might occur in which plasmas
undergo transient, energy nonconserving processes (such as
radiation phenomena) giving rise to the relaxation of the phase-
space probability distributions to energy-independent states.
In such a case, the KDF should depend exclusively on the set
of remaining particle phase-space invariants to be suitably
identified. In magnetized plasmas, these should include at
least the particle magnetic moment [5]. In the following,
such a type of equilibrium KDFs that is energy independent
will be referred to in short as “no-energy kinetic equilibria.”

Solutions of this type, if they exist at all, are expected to
require suitable physical conditions and to exhibit peculiar
non-Maxwellian features. The problem posed is novel and its
treatment in principle is nontrivial. In fact, one must assure that
even in the absence of single-particle energy dependencies,
the equilibrium KDF remains defined, summable, and smooth
in the whole phase space when it is expressed in terms of the
remaining invariants. In addition, a basic requirement concerns
the simultaneous possibility of recovering the phenomenology
found for the previous kinetic solutions and ascribed to the
conservation of adiabatic invariants other than the energy.
The issue is also closely connected with the investigation
of corresponding fluid equilibria. Notice again that here the
approach relies, rather than on a self-standing fluid theory,
on the analysis of the fluid fields derived directly from the
equilibrium KDFs which are obtained in the framework of
the Vlasov-Maxwell description. This technique is expected
to lead to a better understanding of the physical systems to
which they actually apply, e.g., astrophysical and laboratory
plasmas, sonic and supersonic flows, neutral and non-neutral
environments, etc.

In connection with the discussion introduced above, a
related basic issue is represented by the kinetic stability
properties of the no-energy equilibria. A reference work for
this problem is given by Ref. [8], where a kinetic description
of low-frequency and long-wavelength (with respect to the
Larmor time and length scales) axisymmetric EM perturba-
tions was addressed. Such a theory applies to nonrelativistic,
collisionless, and axisymmetric accretion-disk plasmas be-
longing to the strongly magnetized and gravitationally bound
regime and occurring in quasineutral subsonic kinetic regimes
(for a discussion on the issue see also Refs. [2,4]). The
kinetic stability analysis carried out there takes into account
consistently the existence of phase-space single-particle in-
variants on which the equilibrium KDF necessarily must
depend. As a major result, it was proved that for the regimes
considered, these kinetic equilibria are actually stable against
axisymmetric kinetic perturbations. In this paper, the problem
is posed of extending these conclusions to arbitrary kinetic
regimes possibly characterized by the simultaneous presence
of sonic or supersonic flow velocities and local violation
of quasineutrality. The goal is reached here by investigating
the axisymmetric linear stability properties of the no-energy
equilibria and by extending to such a case the theory developed
in Ref. [8]. In particular, this concerns the search of stability
criteria for no-energy KDFs which are absolute, i.e., they apply
for arbitrary equilibrium KDFs in a suitable functional class,
and hold for arbitrary axisymmetric EM perturbations with
prescribed range of frequencies and wavelengths.

Aside from its conceptual importance for theoretical
plasma physics and mathematical physics, the answer to
these questions can be relevant for a better understanding
of collisionless plasma dynamics in both astrophysical and
laboratory scenarios. The possible explicit realization of
no-energy kinetic equilibria and the establishment of their
stability with respect to axisymmetric perturbations could
in fact provide a result of reference for the interpreta-
tion of the complex phenomenology that characterize these
systems.
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II. GOALS AND SCHEME OF THE PAPER

Putting all these issues in perspective, the goals of this
study are as follows: (1) To identify the set of integrals of
motion and adiabatic invariants that characterize quasistation-
ary axisymmetric collisionless plasmas and are appropriate
for the study of no-energy equilibria. (2) By implementing
the method of invariants [1–7], to prove the existence of
no-energy kinetic equilibria and to determine the functional
form of the corresponding KDFs for a multispecies plasma.
(3) To construct an explicit representation for these solutions
and to show that no-energy equilibria admit a representation
in terms of generalized Gaussian distributions, while allowing
for the treatment of nonuniform fluid fields and temperature
anisotropies. (4) To point out that a necessary condition for
the validity of such KDFs is the presence of a nonvanishing
azimuthal component of the equilibrium magnetic field. (5) To
develop a suitable perturbative theory for the representation
of the equilibrium KDFs in terms of Chapman-Enskog series
that can allow for the analytical treatment of the implicit phase-
space dependencies contained in the same distributions. (6) To
estimate the leading-order constitutive equations of the fluid
fields corresponding to the kinetic equilibrium determined
here and to prove that such a configuration admits generally
nonuniform differential flow velocity as well as temperature
anisotropy. (7) To investigate the constraints imposed on the
kinetic equilibria by the Maxwell equations. In particular, this
concerns first the investigation of the conditions of validity
of the quasineutrality condition as implied by the Poisson
equation. This allows one to show that no-energy kinetic
equilibria are generally non-neutral and do not exhibit any
Debye screening effect. Second, this requires analysis of
the Ampere equation and its implications for the possible
occurrence of dynamo mechanisms. (8) To address the issue
of the stability for the no-energy equilibria with respect to
axisymmetric EM perturbations. In this reference, the main
achievement is the proof of stability criteria which hold
independently of the plasma regime being realized and of the
relative strength of azimuthal and poloidal magnetic fields.
This outcome makes also possible a comparison with the
results obtained in Ref. [8] as far as the physical relevance
of the conclusions is concerned for theoretical plasma physics
and astrophysics.

In detail, the scheme of the paper is as follows. In Sec. III,
the basic assumptions and definitions underlying the construc-
tion of no-energy equilibria are introduced. Section IV deals
with the specification of the plasma orderings and the definition
of the plasma collisionless regime considered in this study.
In Sec. V, the fundamentals of the solution method adopted
here are recalled and the relevant adiabatic invariants for the
problem of interest are determined. In Sec. VI, the proof of
existence of no-energy equilibria is provided together with the
general functional dependencies carried by the corresponding
KDFs. An explicit realization of the equilibrium distributions
in terms of generalized Gaussian functions is also determined.
Section VII presents the development of the perturbative
theory appropriate for the Chapman-Enskog representation
of the no-energy KDFs and their analytical treatment. As an
application, in Sec. VIII, the fluid constitutive equations for the
species number density, flow velocity, and pressure tensor are

evaluated to the leading order and the characteristic physical
properties of the corresponding fluid solution are pointed out.
In Sec. IX, the implications on the kinetic solution determined
by the Maxwell equations are investigated, while in Sec. X the
issue of the linear stability properties of the no-energy kinetic
equilibria with respect to axisymmetric EM perturbations is
addressed and a stability property is pointed out. Finally,
Sec. XI contains a summary of the results and the concluding
remarks.

III. ASSUMPTIONS AND DEFINITIONS

Ignoring possible weakly dissipative effects (Coulomb
collisions and turbulence) and EM radiation effects [9,10],
it is assumed that the KDF and the EM fields associated with
the plasma obey the system of Vlasov-Maxwell equations. For
definiteness, we shall consider here a plasma consisting of s

species of charged particles which are characterized by proper
mass Ms and total charge Zse.

We consider here a collisionless plasma, which means that
the mean free path of the plasma particles is much longer
than the largest characteristic scale length associated with the
plasma fluid fields or with the gravitational and EM fields.
Within the kinetic description of collisionless plasmas, the
fundamental dynamical variable is represented by the KDF
fs = fs(r,v,t), which is defined in the phase space � = �r ×
�v, with �r ⊂ R3 and �v ≡ R3 denoting the configuration and
velocity space, respectively. The phase-space evolution of fs

is then determined by the Vlasov equation

d

dt
fs(r,v,t) = 0. (1)

In addition, in this treatment the plasma is taken to be
as follows: (a) subject to both gravitational and EM fields;
(b) nonrelativistic, in the sense that it has nonrelativistic
particles and species flow velocities, that the gravitational
field can be treated within the classical Newtonian theory,
and that the nonrelativistic Vlasov kinetic equation is used
as the dynamical equation for the KDF; (c) axisymmetric, so
that the relevant dynamical variables characterizing the plasma
(e.g., the fluid fields) are independent of the azimuthal angle ϕ,
when referred for example to a set of cylindrical coordinates
(R,ϕ,z). From this assumption, as a shortcut in the following
we shall denote with x = (R,z) the configuration state vector.

We are concerned here with quasistationary configurations,
namely, solutions which are slowly varying in time. This
condition is also referred to as equilibrium configuration. It
must be stressed that this kind of slow-time dependence is
allowed in the present treatment of kinetic equilibria and
is consistent with the assumptions introduced above. From
the physical point of view, the slow dynamics can be a
consequence of the assigned externally produced EM fields
acting on the plasma, which may exhibit such a feature, or can
be an intrinsic property of the same equilibrium KDF, when
the latter is expressed in terms of single-particle adiabatic
invariants. A detailed discussion of this issue and the related
mathematical treatment will be addressed in Sec. V [see in
particular Eqs. (10)–(12)]. For a generic physical quantity
G which depends on spatial coordinates x and time t , the
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quasistationarity is expressed by letting in the following G =
G(x,ξ kt), with ξ � 1 being a small dimensionless parameter
to be suitably defined (see below) and k � 1 being an integer.
Similar considerations apply for the equilibrium KDF fs,
which is denoted in the following as fs = fs(x,v,ξ kt).

We focus on solutions for the equilibrium magnetic field B
which admit, at least locally, a family of nested axisymmetric
toroidal magnetic surfaces {ψ(x,ξ kt)} ≡ {ψ(x,ξ kt) = const},
where ψ denotes the poloidal magnetic flux of B. The magnetic
surfaces can be either locally closed [1] or locally open [2] in
the configuration domain occupied by the plasma. In both
cases, a set of magnetic coordinates (ψ,ϕ,ϑ) can be defined
locally, where ϑ is a curvilinear anglelike coordinate on the
magnetic surfaces ψ(x,ξ kt) = const. Each relevant physical
quantity G(x,ξ kt) can then be conveniently expressed either
in terms of the cylindrical coordinates or as a function of the
magnetic coordinates, i.e., G(x,ξ kt) = G(ψ,ϑ,ξkt).

Consistent with these assumptions, we assume the magnetic
field to be represented as

B ≡ ∇ × A = Bself(x,ξ kt) + Bext(x,ξ kt), (2)

where Bself and Bext denote the self-generated magnetic field
produced by the plasma and a finite external axisymmetric
magnetic field (vacuum field). For definiteness, both contribu-
tions are assumed to exhibit generally nonvanishing azimuthal
and poloidal components. Hence, they are represented as

Bext = Iext(x,ξ kt)∇ϕ + ∇ψext(x,ξ kt) × ∇ϕ, (3)

Bself = Iself(x,ξ kt)∇ϕ + ∇ψself(x,ξ kt) × ∇ϕ, (4)

so that the total magnetic field takes the form

B = I (x,ξ kt)∇ϕ + ∇ψ(x,ξ kt) × ∇ϕ, (5)

where BT ≡ I (x,ξ kt)∇ϕ and BP ≡ ∇ψ(x,ξ kt) × ∇ϕ are the
corresponding toroidal (i.e., azimuthal) and poloidal compo-
nents, respectively, with I ≡ Iext + Iself and ψ ≡ ψext + ψself.
For greater generality, at this point no ordering assumptions
are introduced between Bext and Bself, nor between BT and BP.

Charged particles are also generally subject to both elec-
trostatic (ES) and gravitational fields. In the present theory,
the latter can be dealt with in terms of the effective potential
�eff

s (x,ξ kt) defined as

�eff
s (x,ξ kt) ≡ �(x,ξ kt) + Ms

Zse
�G(x,ξ kt), (6)

with �(x,ξ kt) and �G(x,ξ kt) denoting the ES and gravitational
potentials, which are in principle generated both by the
plasma charge and mass density and by external sources. In
particular, in the external domain to the configuration space
�r occupied by the plasma, all the external sources of the
external EM and gravitational fields, in particular the external
charge and current densities ρext(x,ξ kt) and Jext(x,ξ kt), are
assumed to be prescribed deterministically and independent
of �, and to be slowly time dependent in the sense indicated
above. The origin of external charge and current densities
can be explained, for example, as being due to possible
additional equilibrium plasma in the configuration domain
which can belong to a different plasma regime and exists
independently of the no-energy equilibria. For the simplicity
of the treatment, but without loss of generality, in the following

the contribution of the plasma to �G will be neglected.
For an axisymmetric accretion-disk plasma, the gravitational
potential can be conveniently assumed to coincide with the
potential associated with the central compact object. In this
regard, and consistent with the present assumptions, relevant
relativistic effects due to the curvature of space-time can be
retained consistently by use of pseudo-Newtonian or effective
potentials, such as the Paczýnski-Wiita potential [22,23].
We also notice that, in the case of laboratory plasmas in
axisymmetric devices, the contribution of the gravitational
potential becomes negligible, so that one has from Eq. (6) that
in this context �eff

s (x,ξ kt) ≡ �(x,ξ kt), namely, the effective
potential can be taken to coincide identically with the ES
potential. Consistent with the Vlasov-Maxwell description,
the ES potential generated by the nonvanishing plasma charge
density is uniquely determined by the Poisson equation, with
the corresponding source being consistently prescribed as a
velocity moment of the equilibrium KDF solution of the
Vlasov equation. This issue will be investigated in greater
detail in Sec. IX.

IV. PLASMA ORDERINGS AND REGIMES

In this section, we introduce the fundamental orderings
which are needed for the construction of no-energy equilibria.
These follow from the treatment of single-particle dynamics in
magnetized plasmas and are expressed through the definition
of the dimensionless species parameters εM,s and εs. Following
the treatment in Refs. [3,4,6,7], these parameters are prescribed
in such a way to be all independent of single-particle velocity
and at the same time to be related to the characteristic species
thermal velocities. It is important to remark that the latter
requirement is meaningful when the equilibrium KDF is
of Gaussian type, as it is the case here (see Sec. VI). In
such a configuration, both perpendicular and parallel thermal
velocities (defined with respect to the local magnetic field
direction) can be consistently introduced. They are defined,
respectively, by v⊥ ths = (T⊥s/Ms)1/2 and v‖ths = (T‖s/Ms)1/2,
with T⊥s and T‖s denoting here the species perpendicular and
parallel temperatures. For definiteness, in the following we
shall regard T⊥s and T‖s to be of the same order of magnitude.

In detail, the parameter εM,s is defined as εM,s ≡ rLs
L

, where
rLs ≡ v⊥ths/
cs is the species average Larmor radius, with
L being the minimum scale length characterizing the spatial
variations of the fluid fields associated with the KDF and of the
EM fields and 
cs ≡ ZseB

Msc
being the Larmor frequency for the

species s. The parameter εs is related to the particle canonical
momentum pϕs conjugate to the azimuthal angle ϕ:

pϕs = MsRvϕ + Zse

c
ψ(x,ξ kt) ≡ Zse

c
ψ∗s, (7)

where vϕ = v · eϕ . Denoting by vths ≡ sup{v‖ths,v⊥ths}, εs is
identified with εs ≡ |MsRvths

Z se
c

ψ
|. Hence, εs effectively measures

the ratio between the toroidal angular momentum Lϕs ≡
MsRvϕ and the magnetic contribution to the toroidal canonical
momentum, for all particles in which vϕ is such that vϕ ∼ vths

while ψ is assumed as being nonvanishing.
Depending on the magnitude of these parameters, several

different plasma regimes can be identified, as described in
Ref. [4]. Following the classification scheme proposed therein,
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in this work the equilibrium plasma is assumed to belong to the
strongly magnetized regime for which the asymptotic orderings

0 < εM,s ∼ εs � 1 (8)

apply. At this point, we notice that one can consistently identify
the small parameter ξ introduced above with εM,s. From the
validity of Eq. (8), the following asymptotic expansion for ψ∗s

is implied:

ψ∗s = ψ[1 + O(εs)]. (9)

Before concluding, it is necessary to comment on the
physical realization of the strongly magnetized regime in
real systems, and in particular in astrophysical ones. We
notice that the magnetic field enters the two parameters in
a different way. In fact, εs contains the poloidal flux ψ which
contributes to the toroidal canonical momentum pϕs, while εM,s

depends on the magnitude of the total magnetic field. Indeed,
the parameter εs determines the particle spatial excursion
from a magnetic flux surface ψ(x,ξ kt) = const, while εM,s

measures the amplitude of the Larmor radius with respect to
the inhomogeneities of the background fluid and EM fields.
These two effects correspond to different physical magnetic-
related processes, due respectively to the Larmor-radius and
magnetic-flux surface confinement mechanisms. As pointed
out in Ref. [4], the ordering conditions (8) are expected to
be easily verified in accretion-disk systems for a wide range
of magnetic-field magnitudes that can be present in these
scenarios. This supports the choice of the strongly magnetized
regime also in the present treatment.

V. SOLUTION METHOD

In this section, we recall the fundamentals of the solution
method implemented in this work for the construction of
no-energy equilibria, which is referred to here as the “method
of invariants.” More detailed discussions can be found in
Refs. [1–7]. The technique consists in the search of equilibrium
KDFs for collisionless plasma species such that, in a suitable
subset of phase space, each of them can be realized in terms
of appropriate generalized Gaussian distributions. Specifically,
the method of invariants permits the determination of particular
solutions of the Vlasov equation for the KDF of the form
fs = f∗s, where f∗s is prescribed as a function of particle
invariant phase functions {Kj,j = 1,n} . This target is reached
by making explicit use of the characteristic system invariants
in combination with the introduction of suitable kinetic
constraints (see definition in Sec. VI). Here, we follow the
definitions given in Ref. [5]. Thus, Kj is regarded as a first
integral if it does not depend explicitly on time and satisfies
the equation

d

dt
Kj (z) = 0 (10)

for a properly defined state z. Instead, Kj represents an
adiabatic invariant of order k � 1 when it depends at most
slowly on time, in the sense Kj = Kj (z,ξ kt), and satisfies the
asymptotic equation

d

dt
Kj (z,ξ kt) = 0 + O(ξk), (11)

where the dynamical variable Kj is considered of O(ξ 0) and
k � 1. Hence, f∗s is a first integral, and therefore a stationary
KDF, when it is expressed as a function of first integrals
only. Instead, more generally f∗s can be regarded itself as
an adiabatic invariant which depends explicitly on a given set
of adiabatic invariants {Kj,j = 1,n} and moreover is allowed
to depend slowly on time (through the same invariants), or in
other words it is quasistationary, namely, it is of the form

f∗s = f∗s({Kj,j = 1,n},ξ kt). (12)

In the following, we shall denote f∗s as equilibrium KDF.
It is important to stress that a basic requirement of the

method of invariants is the possibility of determining “a
posteriori” a perturbative representation of the KDF in terms
of a Chapman-Enskog series expansion. In reference with this,
it is worth recalling that the use of phase-space perturbative
techniques in plasma physics is well known. Typical examples
of this type are represented by nonrelativistic and relativistic
gyrokinetic theories [5,24,25]. In the present case, the use of a
perturbative method of the Chapman-Enskog type is motivated
by the existence of Gaussian-type equilibrium KDFs and the
possibility of introducing appropriate expansion parameters.
It will be proved below that this method can be realized also
in the present case, determining an asymptotic expression for
the equilibrium species KDF which permits also an analytical
estimation of the corresponding fluid fields.

Several advantages characterize the technique based on
the method of invariants. In particular, note the following:
(1) The solution can be written in closed form and can be
dealt with analytically, by performing “a posteriori” a series
expansion on f∗s according to the perturbative theory. (2) It
permits us to obtain an equilibrium solution which includes
consistently the constraints arising from single-particle phase-
space conservation laws. (3) It determines the functional form
of the equilibrium fluid fields carried by the species KDFs.
(4) It also uniquely prescribes the leading-order distribution
in the corresponding Chapman-Enskog representation. Re-
markably, for collisionless plasmas, the latter was proved
to be represented by a bi-Maxwellian KDF [1–3], while it
remains generally non-Maxwellian in the absence of spatial
symmetries [5], in the presence of epicyclic motion [6], or in
the presence of strong rotation phenomena [7]. This feature
represents an aspect of critical importance for the physical
properties of equilibrium collisionless plasmas and a point
of major difference with the customary Chapman-Enskog
solution method, where the leading-order KDF is usually
identified with an isotropic Maxwellian distribution.

We conclude this section by identifying the relevant
invariant phase functions which characterize single-particle
dynamics and which are required here to determine the
no-energy equilibria. Because of axisymmetry, the toroidal
canonical momentum pϕs defined by Eq. (7) is a first integral
of motion. Then, from the quasistationarity condition one has
that the single-particle energy Es expressed as

Es = Ms

2
v2 + Zse�

eff
s (x,ξ kt) (13)

defines an adiabatic invariant of prescribed order. However, in
the context of no-energy equilibria, by definition the energy Es

will not contribute to the functional dependence of the KDFs.
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Then, given validity of the condition (8), additional adiabatic
invariants can be determined for magnetized plasmas by using
gyrokinetic (GK) theory. A variational nonperturbative formu-
lation of GK theory can be found in Ref. [5] for nonrelativistic
charged particles in the presence of both EM and gravitational
fields. It is proved that, when EM radiation-reaction effects are
neglected [9,10], the particle magnetic moment m′

s associated
with the Larmor rotation of charges around magnetic field
lines is an adiabatic invariant. According to standard notation,
here and in the rest of the paper, quantities labeled with a prime
refer to dynamical variables which are evaluated at the particle
guiding-center position. We notice that, in the framework of an
asymptotic formulation of GK theory carried out by means of
a Larmor-radius expansion in terms of the parameter εM,s (see
details in Ref. [5]), the magnetic moment can be in principle
determined with arbitrary accuracy. In particular, to the leading
order m′

s can be represented as

m′
s = μ′

s[1 + O(εM,s)], (14)

where μ′
s ≡ Msw

′2
2B ′ , with w′ denoting the magnitude of the

component of the guiding-center particle velocity orthogonal
to the magnetic field direction.

VI. NO-ENERGY EQUILIBRIA

In this section, we proceed with the proof of existence
of no-energy equilibria and the explicit determination of the
corresponding KDFs, to be represented in terms of general-
ized Gaussian distributions. Consistent with the assumptions
underlying the method of invariants outlined in Sec. V, the
general functional form of the species equilibrium KDF is
assumed of the type

f∗s = f∗s

[(
pϕs − Zse

c
ψ0

)2

,pϕs,m
′
s ,�∗s,ξ

kt

]
, (15)

which by construction depends on the guiding-center mag-
netic moment m′

s and where, for greater generality, explicit
functional dependencies on both (pϕs − Zse

c
ψ0)2 and pϕs are

considered, with ψ0 denoting a suitable constant having the
dimension of a poloidal magnetic flux. The physical motivation
behind the inclusion of such a dependence on ψ0 will be
discussed in Sec. VIII when the fluid constitutive equations
are calculated. In Eq. (15), �∗s denotes the so-called structure
functions [1–3,5–7], i.e., functions which depend implicitly
on the particle state (x,v) and which are suitably related to a
finite set of observable variables, namely, fluid fields carried
by f∗s. For definiteness, both f∗s and �∗s are assumed to be
analytic functions. In order for f∗s to be an adiabatic invariant,
�∗s must also be a function of the adiabatic invariants. This
restriction is referred to as a kinetic constraint, and its precise
choice is imposed according to the specific form of the solution
and its conditions of existence, including the possibility of an
analytical treatment of f∗s and the calculation of the corre-
sponding fluid fields. In particular, depending on the physical
properties of the system to be studied, such a constraint
must be consistent with the implementation of a perturbative
theory for the equilibrium KDF and the determination of its
Chapman-Enskog representation. Following the treatment in
Refs. [1–3,5–7] and in agreement with the strongly magnetized

regime considered here, the kinetic constraints are expressed
as follows:

�∗s = �∗s(ψ∗s). (16)

It must be noticed though that Eq. (16) does not represent
the most general form of kinetic constraint. As shown
in Refs. [5,7], additional functional dependencies on the
remaining invariants may also be included, provided they are
suitably ordered, e.g., in terms of the parameter ξ , so that their
contribution can be treated perturbatively.

By construction, f∗s given in Eq. (15) and subject to
the constraint (16) does not contain any implicit or explicit
dependence on the particle energy. As a result, the following
constraint equation remains always identically satisfied in this
case:

∂f∗s

∂Es
= 0. (17)

On the other hand, manifestly the same f∗s is an acceptable
equilibrium kinetic solution of the Vlasov equation for
collisionless plasmas in axisymmetric configurations since it
depends uniquely on particle invariants. In addition, it will
be shown below that the velocity dependencies contained in
Eq. (15) are sufficient to warrant that f∗s remains defined and
summable on the whole velocity space �v.

Let us now proceed with the construction of explicit
representations for f∗s according to Eq. (15). To this aim,
we introduce the following additional requirements: (1) The
species KDF f∗s must be characterized by nonuniform fluid
fields, including in particular nonuniform number density, flow
velocity, and nonisotropic temperature. (2) The equilibrium
KDF f∗s must be expressed in terms of generalized Gaussian
distributions, which can be generally different from isotropic
Maxwellian functions. (3) The solution is required to admit an
asymptotic representation of the Chapman-Enskog type for the
treatment of implicit phase-space dependencies contained in
the structure functions due to Eq. (16). (4) The KDF f∗s must
be a strictly positive real function and it must be summable, in
the sense that the velocity moments of the form

s(x,ξ kt) =
∫

�v

dv Ks(x,v,ξ kt)f∗s (18)

must exist for a suitable ensemble of weight functions
{Ks(x,v,ξ kt)}, to be prescribed in terms of polynomials of
arbitrary degree defined with respect to components of the
velocity vector field v.

In line with the previous requirements and following the
approach of Refs. [1–3,5–7], an explicit solution for the species
KDF f∗s is realized by the species distribution

f∗s = β∗se
−(pϕs− Zse

c
ψ0)2γ∗s−δ∗spϕs−m′

sα∗s , (19)

which we refer to as the no-energy generalized Gaussian KDF.
In Eq. (19), the structure functions are identified with the set
of dimensional functions

{�∗s} ≡ {β∗s,γ∗s,δ∗s,α∗s}, (20)

which are subject to the constraint (16). Here, α∗s ≡ B
T⊥∗s

, with
T⊥∗s being referred to as the generalized perpendicular
temperature, while β∗s, γ∗s, and δ∗s are related, respectively, to
the definition of species number density, parallel temperature,
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and flow velocity. The connection between the structure
functions {�∗s} and the corresponding fluid fields will be
established through the perturbative theory developed in
Sec. VII. Here, we remark that because of the functional form
of the structure functions in Eq. (16), which are defined in
phase space, at this stage the set {�∗s} can not be directly
identified with particular fluid fields. The latter in fact must be
necessarily computed in a consistent way as velocity moments
of the KDF from Eq. (18).

The representation (19) allows one to point out the
following features: (i) Apart from the behavior of the structure
functions, the species KDFs (19) contain both linear and
quadratic explicit dependencies in terms of the canonical
momentum pϕs. (ii) The missing energy contribution together
with the quadratic dependence on pϕs are the major departures
from the solutions earlier considered in Refs. [1–7]. (iii) The
absence of energy dependence in the functional form (15)
implies that generally the same KDF is nonisotropic in velocity
space. (iv) The condition of existence of an equilibrium
KDF of the type (15), which can be normalized in the
three-dimensional Euclidean velocity space, requires that there
must exist a strictly nonvanishing component of the azimuthal
magnetic field. This condition applies independent of the
specific form of the equilibrium KDF (15).

VII. PERTURBATIVE THEORY

In this section, a perturbative kinetic theory is developed,
which is appropriate for the treatment of implicit phase-space
dependencies contained in the equilibrium KDF by means of
the structure functions {�∗s}. We stress that such a perturbative
theory is permitted specifically thanks to the assumption of
generalized Gaussian distribution introduced above. In fact,
as a consequence, it follows that the behavior of the KDF
can be evaluated asymptotically in suitable subsets of the
velocity space. The perturbative theory follows by invoking
Eq. (8) and the related expansion (9) for the canonical
momentum.

In detail, thanks to the choice (16) of the kinetic constraints,
the structure functions {�∗s} can be Taylor expanded in terms
of the dimensionless parameter εs to give

�∗s = �s(ψ)[1 + O(εs)]. (21)

The perturbative theory is therefore obtained by performing on
f∗s a Taylor expansion for {�∗s}, which correct to first order
in the expansion parameter is of the form

�∗s = �s(ψ) + (ψ∗s − ψ)

[
∂�∗s

∂ψ∗s

]
ψ∗s=ψ

. (22)

Hence, neglecting corrections of O(εk
s ), with k � 2, one

obtains the Chapman-Enskog representation of f∗s in the form

f∗s = f ′
0s[1 + εshDs], (23)

where f ′
0s denotes the leading-order KDF

f ′
0s = f ′

0s

[(
pϕs − Zse

c
ψ0

)2

,pϕs,m
′
s,�s,ξ

kt

]
, (24)

which generally depends on the guiding-center invariant m′
s.

This is found to be

f ′
0s = βse

−γs(pϕs− Zse
c

ψ0)2−δspϕs−m′
sαs , (25)

which is referred to as the no-energy Gaussian KDF. In
the previous equation, the leading-order structure functions
are identified with the set {�s} ≡ {βs,γs,δs,αs} which are
by construction flux functions of ψ . Here, αs ≡ B

T⊥s
, with

T⊥s representing now the leading-order species perpendicular
temperature, while βs, γs, and δs are related to the definition of
the leading-order species number density, parallel temperature,
and flow velocity, respectively.

In addition, hDs results from the perturbative treatment of
the structure functions in terms of ψ∗s and is referred to as the
diamagnetic correction. This is given by

hDs = cMsR

Zse

[
A1s −

(
pϕs − Zse

c
ψ0

)2

γsA2s

]
vϕ

− cMsR

Zse
[pϕsδsA3s + m′

sαsA4s]vϕ, (26)

where the following definitions have been introduced:

A1s ≡ ∂ ln βs

∂ψ
, A2s ≡ ∂ ln γs

∂ψ
,

(27)
A3s ≡ ∂ ln δs

∂ψ
, A4s ≡ ∂ ln αs

∂ψ
.

The quantities Ais, i = 1−4, represent the gradients of the
structure functions �s across ψ surfaces and are referred to as
generalized thermodynamic forces (see also Refs. [2,4]). Since
�s are uniquely associated with physically observable fluid
fields (see Sec. VIII), the inclusion of the first-order term hDs

in the equilibrium solution permits the consistent treatment of
collisionless plasmas characterized by nonuniform fluid fields.

VIII. CONSTITUTIVE EQUATIONS FOR THE
FLUID FIELDS

In this section, we estimate the constitutive equations
for the species fluid fields associated with the equilibrium
KDFs determined above and which are generally expressed
by velocity integrals of the form given by Eq. (18). In
particular, we focus here on the physical observables identified
with the plasma species number density, flow velocity, and
pressure tensor. While exact calculations of the fluid fields
can be carried out (e.g., numerically) once the KDFs f∗s

and their structure functions are assigned, here we proceed
with an asymptotic analytical estimation by adopting the
perturbative theory for f∗s outlined in the previous section.
As a consequence, the conclusions of this section apply in the
subset of phase space where the perturbative theory holds.

Since the species equilibrium KDF f∗s depends on the
guiding-center magnetic moment m′

s, before calculating the
fluid fields it is necessary to express the same invariant at the
actual particle position. This can be done by implementing an
inverse guiding-center transformation, according to the theory
developed in Ref. [5]. Accordingly, one can adopt a general
representation for the particle velocity as

v = ub + w + VDs, (28)
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where VDs ≡ c
B

Eeff
s × b is the effective drift velocity, with

Eeff
s ≡ −∇�eff

s (x,ξ kt). In addition, u is the magnitude of the
component of the particle velocity along b ≡ B/B in the
frame moving with velocity VDs. Finally, w = w cos φe1 +
w sin φe2, with φ denoting the gyrophase angle, w being the
magnitude of the velocity perpendicular to the magnetic field
as measured in the same frame, and (e1,e2,e3 ≡ b) forming a
set of orthogonal axis. The procedure introduces corrections of
O(εM,s) in the corresponding KDFs that identify the so-called
finite Larmor-radius (FLR) contributions. In the following, we
assume the inverse transformation to be applied on f∗s when
the latter is treated perturbatively according to Eq. (23). As
a consequence, given validity of the ordering assumption (8),
one obtains FLR corrections which are comparable with the
diamagnetic terms. Hence, in this case Eq. (23) yields the
perturbative representation

f∗s = f0s[1 + εshDs + εM,shFLRs], (29)

where hFLRs denotes the FLR contribution of O(εM,s), while
all quantities on the right-hand side in the previous equation
are now expressed at the actual particle position. In detail, the
leading-order term f0s is given by

f0s = βse
−γs(pϕ s− Zse

c
ψ0)2−δspϕs−msαs , (30)

which does not depend on guiding-center variables since
the magnetic moment is calculated at the effective particle
position. Here, we omit to report the expression of hFLRs

as it is beyond the scope of this section. In fact, for the
purpose of this work, we restrict the calculation of the fluid
fields only to the leading order with respect to both the
expansion parameters εs and εM,s. As discussed below, this
is sufficient to reveal the relevant physical properties of the
fluid system corresponding to the no-energy kinetic equilibria
determined here. In particular, this allows one to understand
which features characterize the plasma flow velocity and
pressure tensor, in connection with the possible occurrence
of sonic and supersonic flows as well as of temperature and
pressure anisotropies. Finally, the calculation is also a basic
prerequisite for the subsequent study of the consistency of the
kinetic solution with the constraints posed by the Maxwell
equations and the existence of a dynamo mechanism for the
self-generation of equilibrium EM fields.

In view of these considerations, in the subset of phase space
where the perturbative theory holds, for no-energy equilibria
the leading-order fluid fields can be evaluated in terms of f0s,
which can be conveniently expressed as

f0s = βse
− (u−u0s)2

u2‖ths
− (w−w0seϕ )2

u2⊥ths . (31)

Equation (31) follows from Eq. (25) invoking the representa-
tion (28) and after substituting the explicit expression of pϕs

given by Eq. (7) and the definition of the structure function
αs, while the magnetic moment has been approximated with
μs ≡ Msw

2

2B
. In addition, the following definitions have been

introduced:

βs ≡ βse
δ2
s

4γs
+δs(MsRVDs·eϕ− Zse

c
ψ0)

, (32)

u0s ≡ −RB

I
(w + VDs)·eϕ − 
cs

I
(ψ − ψ0) − δsB

2γsMsI
, (33)

u2
‖ths ≡ 1

γs
(
Ms

I
B

)2 , (34)

u2
⊥ths ≡ 2T⊥s

Ms
, (35)

w0s ≡ δsRT⊥s, (36)

where 
cs is the cyclotron frequency. We then start with the
calculation of the leading-order species number density n0s,
which is defined as the velocity integral

n0s(x,ξ kt) =
∫

�v

dv f0s. (37)

An explicit calculation gives

n0s(x,ξ kt) = βsπ
3/2u‖thsu

2
⊥ths = 2π3/2 T⊥s

M2
s

B

I

βs√
γs

. (38)

We then consider the leading-order flow velocity V0s

defined as

V0s(x,ξ kt) = 1

n0s

∫
�v

dv vf0s. (39)

Adopting the representation (28), a straightforward calculation
yields

V0s(x,ξ kt) = V‖sb + w0seϕ + VDs, (40)

where V‖s is defined as

V‖s ≡ −RB

I
VDs · eϕ − 
cs

I
(ψ − ψ 0) − δsB

2γsMsI
. (41)

Equation (40) displays the dependence of the flow velocity in
terms of the structure function δs = δs(ψ), which in turn is
associated with the linearly dependent term (occurring in the
KDF) with respect to pϕs. Since the value of δs at this stage is
arbitrary, it follows that generally V‖s and w0s (and therefore
V0s) are species dependent. In addition, we notice here that
Eq. (40) determines the contribution of the gravitational field
in the no-energy equilibria and its interplay with the magnetic
and ES fields. This is uniquely associated with the species-
dependent drift velocity VDs entering the flow velocity V0s.

It can be instructive to estimate the order of magnitude of
the contribution 
cs

I
ψ which appears in V0s with respect to the

corresponding species thermal velocity vths. To this aim, we
introduce the following estimations:

∇ψ ∼ ψ

L
, (42)

ψ ∼ BPRL, (43)

I ∼ BTR, (44)

so that here L is a measure of the characteristic length
of variation of the poloidal flux ψ , while BP and BT are
the magnitudes of the poloidal and toroidal magnetic fields,
respectively. Concerning the estimation of the thermal velocity,
consistent with the assumption introduced in Sec. IV, we take
vths ∼ Zse

MsRc
ψεs, where vths is defined above after Eq. (7).

Then, it is possible to show that the following ordering applies:∣∣
cs
I

ψ
∣∣

vths
∼ 1

O(εs)


cs


T
cs

, (45)
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where 
T
cs ≡ ZseBT

Msc
is the contribution to the cyclotron fre-

quency determined by the toroidal magnetic field only. From
this analysis one can conclude that in the particular case in
which ψ0 = 0 and the contributions proportional to δs are
negligible in Eq. (40), the equilibrium KDF is characterized by
a supersonic species-dependent flow velocity. More generally,
it follows that for suitable choices of the initial constant ψ0

and the structure functions δs, the species flow velocities
remain sonic or subsonic with respect to the thermal velocity
vths. It follows that the equilibrium KDF (15) describes in
principle kinetic equilibria with flow velocities of arbitrary
magnitudes.

Finally, we consider the leading-order species pressure
tensor �

0s
defined as

�
0s

(x,ξ kt) = Ms

∫
�v

dv(v − V 0s)(v − V0s)f0s. (46)

In this approximation, one finds that �
0s

is diagonal but
nonisotropic, so that it can be written as

�
0s

(x,ξ kt) = P‖sbb + P⊥s(I − bb), (47)

where P‖s and P⊥s denote, respectively, the parallel and
perpendicular pressures. Explicit calculation gives

P‖s = n0s
1

γs

B2

2MsI 2
, (48)

P⊥s = n0sT⊥s. (49)

From this result, we can conclude the following notable
features: (1) The no-energy equilibria are characterized by
a nonisotropic pressure tensor. The sources of such anisotropy
are the simultaneous conservations of the particle magnetic
moment and the canonical momentum, in agreement with
the results pointed out, respectively, in Refs. [1–3,5,6] and
in Ref. [7] for plasmas characterized by strong rotation
phenomena, such as supersonic flows. (2) Equation (49) shows
that T⊥s represents the leading-order species perpendicular
temperature, which is included in the equilibrium KDF through
the structure function αs. (3) From Eq. (48), one can similarly
infer the expression of the corresponding leading-order species
parallel temperature. This is given by

T‖s = 1

γs

B2

2MsI 2
. (50)

This result uniquely relates the observable parallel temper-
ature T‖s with the leading-order species structure function
γs = γs(ψ) carried by the no-energy equilibrium KDF, thus
assigning a consistent physical meaning to γs. (4) The
definition of the parallel temperature in Eq. (50) in turn allows
one to write the leading-order species number density in
Eq. (38) as

n0s(x,ξ kt) =
(

2π

Ms

)3/2

T⊥sT
1/2
‖s β s, (51)

which represents the physical relationship between the struc-
ture function βs = βs(ψ) and the observable n0s.

IX. MAXWELL’S EQUATIONS

In this section, we consider the relationship between the
no-energy kinetic equilibria and the validity of the Maxwell
equations. The latter uniquely solve for the EM fields once the
charge and current densities are consistently assigned in terms
of velocity moments of the equilibrium KDF. It is important
to remark that the Vlasov-Maxwell equations represent a
closed set of equations, so that within such a description, the
Maxwell equations represent the only possible constraints to
be imposed on the kinetic solution, while no other equations
can eventually determine the EM fields. Hence, no additional
solubility conditions can possibly arise, in particular from the
fluid moment equations, since the latter are identically satisfied
once the kinetic equilibrium solution f∗s is prescribed. We refer
to Refs. [2,3] for a proof of this statement.

We start by analyzing the Poisson equation, which uniquely
prescribes the ES potential (and, consequently, the ES field)
generated by the charge distribution. In the configuration
domain �r occupied by the collisionless plasma, this is written
as

∇2�(x,ξ kt) = −4πρself(x,ξ kt), (52)

where ρself(x,ξ kt) ≡ ∑
s Zsens(x,ξ kt) denotes the plasma

charge density, while ns(x,ξ kt) is the species number density
that is defined in terms of f∗s by Eq. (18) for Ks(x,ξ kt) = 1,
namely,

ns(x,ξ kt) =
∫

�v

dv f∗s. (53)

The general solution for the ES potential �(x,ξ kt), holding in
all the axisymmetric configuration domain S which contains
both the plasma described by the no-energy KDF and external
sources, is then given by

�(x,ξ kt) =
∫

S

ρ tot(x′,ξ kt)G(x,x′)dx′, (54)

where here G(x,x′) ≡ 1
|x−x′| is the Green’s function of the

boundary-value problem associated with Eq. (52), with
Dirichlet boundary conditions set at infinity. In addition,
ρ tot(x,ξ kt) = ρext(x,ξ kt) + ρ self(x,ξ kt) is the total charge
density, with ρext possibly arising from external sources.
According to the assumptions introduced in Sec. III, when
ρext is nonvanishing it is assumed to be known and pre-
scribed pointwise. It must be stressed that Eq. (54) for-
mally represents an exact and unique solution of the ES
potential �.

In the general case, from Eq. (54) it is not possible to
exclude a dependence of the source term ρ tot on the potential
� itself. In fact, this enters through the charge density ρself

and is carried by the drift velocity VDs when the inverse
guiding-center transformation is performed on the KDF f∗s for
the calculation of the species number density [see Eq. (28)].
In addition, the same contribution on VDs also determines
the way in which the ES potential � is affected by the
gravitational potential �G, proving the consistency behind
the occurrence of a self-generated ES field by the collision-
less plasma in the presence of a nonvanishing background
gravitational field. On the other hand, when the perturbative
representation (29) for the KDF applies to the leading order
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with respect to all the expansion parameters, the potential �

can be calculated explicitly in terms of the leading-order charge
density ρself

0 (x,ξ kt) ≡ ∑
s Zsen0s(x,ξ kt) which is independent

of �eff
s , with n0s being given by Eq. (38). In fact, in this

limit, by construction the leading-order no-energy equilibrium
KDF f0s does not contain any explicit or implicit functional
dependencies on the single-particle energy, and therefore on
both � and �G [see Eq. (31) in Sec. VIII]. This feature is
characteristic of the no-energy equilibria. For comparison,
we notice that this condition is never realized (even in an
asymptotic way) for the kinetic equilibria treated previously
in Refs. [1–7], where the equilibrium KDF always depends
on the conserved particle energy, as in the case of generalized
bi-Maxwellian distributions.

As a further development, we then consider the problem
associated with the possible realization of the quasineutrality
condition for the equilibria treated here. To this aim, the
asymptotic form of the constitutive equations determined
in Sec. VIII is adopted, thus restricting the treatment to
the leading-order solution according to Eq. (29). In this
approximation, the quasineutrality condition requires

ρself
0 (x,ξ kt) = 0, (55)

which yields

∑
s

Zse

M2
s

βs

αs
√

γs
= 0, (56)

where βs is given by Eq. (32). Since βs is a function of
the type βs = βs(ψ,ϑ), it follows that Eq. (56) can not be
generally satisfied pointwise. In other words, no-energy kinetic
equilibria are in such conditions necessarily non-neutral. We
remark that in the literature Eq. (55) is assumed to hold
on a suitable spatial scale length, typically identified with
the Debye length [26], and usually displays a constraint
solution for the potential �. However, as detailed above, in
the present case, Eq. (56) does not exhibit any dependence
on the ES potential �. This implies in turn that kinetic
equilibria of this type actually can not exhibit the customary
Debye screening effect. As a consequence, the equilibrium
ES potential must be necessarily determined from Eq. (54),
where for non-neutral systems the plasma itself contributes
by means of a nonvanishing equilibrium charge density. This
conclusion also necessarily applies at all orders of accuracy in
the expression of the total charge density ρself(x,ξ kt).

It is nevertheless important to investigate whether, under
suitable particular conditions, the quasineutrality condition can
still be recovered. By inspection of Eq. (32), two different
possibilities can be considered in this regard. The first one
corresponds to the case of weak drift velocity, in the sense
of the ordering δsMsRVDs·eϕ ∼ O(εs). In such a case, the
leading-order number density becomes a function of ψ-flux
functions only, a feature which allows charge neutrality to be
fulfilled pointwise. The second case occurs when δs vanishes
identically at this order for all species. In fact, in this limit the
constraint (56) reduces to

∑
s

Zse

M2
s

βs

αs
√

γs
= 0, (57)

in which the left-hand side is a ψ-flux function only. Therefore,
Eq. (57) can be satisfied identically pointwise by appropriate
choice of the structure functions. Under this condition, the
general solution of the ES potential is again provided by
Eq. (54), where now the source ρself(x,ξ kt) takes into account
deviations from the quasineutrality (57) due to the higher-order
nonvanishing plasma charge density arising from diamagnetic
and FLR contributions. As a result, invoking Eqs. (29) and (55),
correct to first order in the expansion parameters, one has

ρself(x,ξ kt) =
∑

s

Zse

∫
�v

dv f0s[εshDs + εM,shFLRs]. (58)

However, it must be remarked that, for arbitrary initial
conditions on (αs,βs,γs), the quasineutrality condition is
generally not fulfilled, so that the equilibrium remains non-
neutral. This result follows consistently with the microscopic
particle dynamics and conservation laws and with the validity
of Vlasov-Maxwell equations, while the contribution of the
gravitational field appears as already built in consistently
through the equilibrium KDF. Notably, these conclusions
regarding violation of local quasineutrality depart significantly
from those obtained in Refs. [1–3,7].

We next consider the Ampere equation for the quasistation-
ary self-generated magnetic field:

∇ × Bself(x,ξ kt) = 4π

c
Jself(x,ξ kt), (59)

where the source from the collisionless plasma is given by the
current density Jself(x,ξ kt) which is computed self-consistently
in terms of the equilibrium KDF. Precisely, this is defined as

Jself(x,ξ kt) ≡
∑

s

Z sens(x,ξ kt)Vs(x,ξ kt), (60)

where here

ns(x,ξ kt)Vs(x,ξ kt) =
∫

�v

dvv f∗s. (61)

Following the calculation of the previous section, we can write
Jself = Jself

0 + �J self, where J0 represents the leading-order
contribution, which is given by

J0(x,ξ kt) ≡
∑

s

Zsen0s(x,ξ kt)V0s(x,ξ kt), (62)

with V0s being expressed by Eq. (40). Instead, correct to first
order, �Jself is defined as

�Jself(x,ξ kt) =
∑

s

Zse

∫
�v

dvv f0s[εshDs + εM,shFLRs]. (63)

The validity of Eq. (59) necessarily requires the constraint
of solenoid current to be imposed on Jself, namely,

∇ · Jself(x,ξ kt) = 0. (64)

This represents the only solubility condition which is implied
by the Ampere equation, together with possible additional
periodicity conditions to be imposed in the case of locally
closed and nested magnetic surfaces (see for example Ref. [5]).
However, we notice that in the present description, Eq. (64)
is necessarily identically satisfied, neglecting corrections of
O(ξk), with k � 1. In fact, recalling the discussion given at
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the beginning of this section and invoking Eq. (11), from the
validity of the Vlasov equation resolved in terms of the KDF
f∗s, it follows that for quasistationary systems for each species
the continuity equation

∇ · [ns(x,ξ kt)Vs(x,ξ kt)] = 0 + O(ξk) (65)

holds identically. After multiplication by the charge Zse and
summation over species, Eq. (65) recovers Eq. (64), which
proves the statement. Hence, in such a case the Ampere
equation does not provide any additional constraint on the
solution, so that the charge current is only subject to the kinetic
constraints (16) introduced in Sec. VI.

Inspection of Eq. (60) shows that the current Jself is
generally nonvanishing, independent of the validity or the
violation of the quasineutrality condition. This feature arises
as a characteristic property of collisionless plasmas. In fact,
as discussed above, the flow velocity Vs is species dependent
and, in the absence of collisions, it is generally different for
each species. In particular, this implies that even at leading
order, the current density J0 is generally nonvanishing since
the flow velocity V0s given by Eq. (40) is mass dependent
through the drift velocity VDs, while the structure functions
in the same expression are still arbitrary according to the
constraint (21). In addition, it follows that in general the
current Jself has nonvanishing components along all spatial
directions. This feature arises also in combination with the
inclusion of diamagnetic and FLR correction terms (see
detailed discussions in Refs. [2,3,5,6] concerning this point).
These conclusions allow us to state that no-energy equilibria
are able to sustain a kinetic dynamo mechanism for the self-
generation of quasistationary EM fields of the type similarly
pointed out in Refs. [1–7], to which specifically kinetic effects
contribute.

We conclude by stressing once again that the two main
results of this section, concerning the charge non-neutral
feature of no-energy equilibria and the kinetic dynamo,
have been obtained consistently with the requirement of
validity of the Vlasov-Maxwell equations. These conclusions
apply to collisionless plasmas even in the presence of a
background gravitational field, and can therefore be relevant
also for astrophysical problems. In particular, we stress that
the so-called condition of strict ambipolarity requiring the
simultaneous validity of the neutrality condition ρself = 0
and the vanishing of the plasma current Jself = 0 does not
hold in the present case. In fact, in this formulation the
no-energy collisionless plasma is generally non-neutral, i.e.,
ρself �= 0. Nevertheless, the divergence-free condition (64)
(weak ambipolarity condition) is found to be satisfied, which
still admits Jself �= 0. We stress that this property should be
viewed, in a sense, as a characteristic signature of collisionless
plasmas. The same feature, in fact, appears in a variety of
energy-dependent collisionless kinetic equilibria investigated
previously in Refs. [1–7]. A further characteristic property
of the no-energy kinetic equilibrium is that the KDF is
characterized by nonuniform species fluid fields together
with nonisotropic species pressure tensors. These remarks are
characteristic of collisionless plasmas, and more specifically
of no-energy equilibria described by phase-space nonisotropic
KDFs of the type (15). As a consequence, the present theory
departs significantly from treatments based on the adoption of

local isotropic Maxwellian or energy-dependent distributions
for the plasma species, as for the customary Pannekoek-
Rosseland model of ambipolar electric field holding for ideal,
isothermal, and electroneutral plasmas in stellar systems and
based on fluid equations [27,28].

X. ABSOLUTE STABILITY OF NO-ENERGY EQUILIBRIA

In this section, we address the issue of the linear stability of
the no-energy kinetic equilibria with respect to axisymmetric
EM perturbations. In particular, the target here is to prove that
absolute stability criteria apply for these configurations. As
discussed in the following, this conclusion generalizes to the
new family of no-energy kinetic solutions the analogous result
established for the kinetic equilibria considered in Ref. [8].

The stability of equilibrium collisionless plasmas is a
basic subject of theoretical research, which is particularly
relevant for the astrophysics of accretion-disk plasmas. The
transport phenomena responsible for the accretion flows in
these systems are usually ascribed to the occurrence of fluid
and/or kinetic instabilities. In particular, candidates for fluid
instabilities driving the angular momentum transport include
the magnetorotational instability and the thermal instability,
caused by unfavorable gradients of rotation and shear and
temperature, respectively (see related discussion in Ref. [8]).
However, in the case of collisionless plasmas, the specific form
of the equilibrium KDF must be taken into account in order to
develop a consistent (kinetic) stability analysis.

The starting point concerns the prescription of the spe-
cific form of the perturbations and the appropriate ordering
assumptions. We follow here the notation adopted in Ref. [8].
Then, given the validity of Eq. (11), for greater generality f∗s

is allowed to exhibit slow-time variation on the equilibrium
slow-time scale (�t) eq, i.e.,

d

dt
ln f∗s ∼ 1

(�t)eq
, (66)

with f∗s to be identified with the quasistationary no-energy
KDF expressed by Eq. (15). Consistent with the assumption
of having a collisionless plasma, this implies the validity
of the inequality (�t)eq

τcol,s
� 1, where τcol,s denotes the Spitzer

collision time for the species s. The problem of the linear
stability of Vlasov-Maxwell equilibria of this type is addressed
by considering perturbations of both the EM field and the
equilibrium KDF which exhibit appropriate variation time
and space scales {(�t)osc,(�L)osc}. These perturbations are
prescribed to have fast time and fast space dependencies with
respect to those of the equilibrium quantities, in the sense that

(�t)osc

(�t)eq
∼ (�L)osc

(�L)eq
∼ O(λ), (67)

with λ being a suitable infinitesimal parameter. It is also
assumed that these perturbations are nongyrokinetic, i.e., they
are characterized by typical wave frequencies and wavelengths
which are much larger than the Larmor gyration frequency 
cs

and radius rLs. This implies that the following inequalities must
hold:

τLs

(�t)osc
∼ rLs

(�L)osc
� 1, (68)
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with τLs = 1/
cs, while λ must be such that λ  εs,εM,s,ε,
where ε ≡ max{ε M,s}. These are referred to as low-frequency
and long-wavelength perturbations with respect to the corre-
sponding Larmor scales. Notice that Eqs. (67) and (68) are
independent and complementary, establishing the upper and
lower limits for the range of magnitudes of both (�t)osc and
(�L)osc.

Given the validity of the previous assumptions, it is required
that the EM field is subject to axisymmetric EM perturbations
of the form

δB = ∇ × δA, (69)

δE = −∇δφ − 1

c

∂δA
∂t

, (70)

with {δφ( x
λ
, t
λ

),δA( x
λ
, t
λ

)} being assumed to be analytic (with
respect to x and t), infinitesimal, i.e., such that δE

|E| ,
δB
|B| ∼ O(ε),

and energy eigenfunctions, namely of the form

δφ

(
x
λ

,
t

λ

)
= δφ̂

(
x
λ

)
eiωt , (71)

δA
(

x
λ

,
t

λ

)
= δÂ

(
x
λ

)
eiωt , (72)

where ω is the complex time frequency which, according
to Eq. (67), is ordered as ω(�t)eq ∼ 1/O(λ). This implies
that the corresponding perturbations for the EM potentials
must scale as δφ

|�| ,
δA
|A| ∼ O(ε)O(λ), with A denoting the

equilibrium vector potential [see Eq. (2)]. As a consequence,
one obtains that, subject to such EM perturbations, the particle
energy Es defined by Eq. (13) varies as

d

dt
Es = Zse

[
∂δφ

∂t
− 1

c
v · ∂δA

∂t

]
= iωZse

[
δφ̂ − 1

c
v · δÂ

]
.

(73)

Instead, the canonical momentum pϕs and the magnetic
moment m′

s remain invariants by construction, although their
definition must be modified in accordance with the EM
perturbations (for the appropriate definition of m′

s in such
a case, see for example Refs. [29,30]). We next consider a
perturbed KDF of the form

fs = f∗s + δfs. (74)

Here, f∗s is identified with the no-energy KDF defined by
Eq. (15), to be expressed in terms of the modified invariants.
Instead, δfs is the infinitesimal perturbation of the equilibrium
KDF. For definiteness, δfs ≡ δfs(t) is taken of the general form

δfs ≡ δfs

(
X∗s,

x
λ

,
t

λ

)
= δf̂s

(
X∗s,

x
λ

)
eiωt , (75)

with δfs

f∗s
∼ O(ε)O(λ) and where X∗s ≡ (Es,pϕs,m

′
s) identifies

now the set of the dynamical variables which are modified
by the EM perturbations. In particular, in Eq. (75) no fast
dependence is allowed with respect to the dynamical variables
X∗s. Indeed, such an assumption is required for the consistency
of the same representation (75).

As a consequence, the perturbation δfs satisfies the equation

d

dt
δfs = − d

dt
f∗s, (76)

where the right-hand side is simply

d

dt
f∗s ≡ d

dt
Es

∂f∗s

∂Es
, (77)

with the time derivative of the energy being provided by
Eq. (73). For no-energy equilibria KDFs, the constraint (17) is
identically satisfied by construction, so that Eq. (76) reduces
to

d

dt
δfs = 0. (78)

Let us now consider two cases. The first one corresponds to
assume that the perturbation is produced externally at the initial
time t = t0, which requires that δfs(t0) = 0, while at the same
time t0 the EM perturbations {δφ,δA} are nonvanishing and
of the types (71) and (72). In this case, Eq. (78) requires
manifestly that δfs(t) = 0 identically, so that stability of the
kinetic equilibrium is warranted. The second case is obtained
by assuming that δfs(t0) �= 0 and of the form given by Eq. (75).
Then, due to the ordering assumptions in terms of the variables
(x,t), it follows that to the leading order in λ Eq. (78) implies
that

iω + v · ∇ ln δf̂s = 0. (79)

Equations (78) and (79) therefore yield

ω = 0, (80)

δf̂s = δf̂s(pϕs,m
′
s), (81)

where possible additional slow-time dependencies contained
in δf̂s must be ignored in view of Eq. (75). This means that δfs

is an equilibrium KDF of the same type as f∗s and, therefore, it
can be absorbed in the very definition of the equilibrium KDF
f∗s given by Eq. (15). These conclusions provide absolute
stability criteria for no-energy kinetic equilibria, which hold
in the two cases indicated above. As a consequence, no analytic
unstable perturbations can exist in axisymmetric collisionless
plasmas characterized by no-energy kinetic equilibria.

To conclude this section, let us briefly comment on these
results and present a comparison with Ref. [8]. The following
remarks are in order:

(i) The present stability analysis and the one presented
in Ref. [8] share a number of important features, namely,
(a) the specific form of the equilibrium KDF remains in
both cases largely arbitrary since only generic forms of the
functional dependencies need to be imposed. In particular,
in the present case it is sufficient to require that f∗s is of
the generic form given by Eq. (15). (b) The specific analytic
form of the equilibrium EM fields is not needed. Nevertheless,
for the existence of the no-energy equilibria, the existence of
nonvanishing azimuthal and poloidal magnetic fields must be
assured.

(ii) In Ref. [8], kinetic equilibria were considered in which
the corresponding KDFs exhibit a functional dependence on
the particle energy, both of explicit and implicit type. As a
notable departure, in the present case such a dependence is
instead excluded by construction as an a priori condition.

(iii) The stability criterion established in Ref. [8] applies in
configurations characterized by weak toroidal magnetic field
(with respect to the poloidal component), the presence of a
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small fluid accretion velocity compared with the azimuthal
one, and sonic or subsonic flows. These constraints are not
invoked or do not apply for no-energy equilibria. In fact, in the
present case no ordering assumptions on the magnitude of the
magnetic fields and/or the components of the flow velocity are
needed to reach the stability criteria.

(iv) The analysis in Ref. [8] applies to collisionless plasmas
belonging to the strongly magnetized and gravitationally
bound regime. In difference with this, in this study the
gravitationally bound condition is never invoked while the
assumption of strongly magnetized ordering is not needed
for the stability analysis. Therefore, in this sense the present
analysis extends significantly the results of Ref. [8] since it
avoids imposing the asymptotic conditions earlier invoked for
stability.

XI. CONCLUDING REMARKS

In this paper, a kinetic treatment of collisionless
multispecies axisymmetric magnetized plasmas has
been presented, in the framework of the nonrelativistic
Vlasov-Maxwell treatment. It has been proved that systems of
this type admit the existence of kinetic equilibria which do not
exhibit any kind of implicit or explicit functional dependence
on the single-particle energy. These solutions have been
referred to here as no-energy equilibria. Applications have
been pointed out which concern both laboratory devices as
well as collisionless plasmas in astrophysical scenarios, such
as those arising in the environment of accretion-disk systems
around compact objects.

The general functional form of the equilibrium kinetic
distribution functions (KDFs) has been determined and shown
to depend on a finite set of appropriate particle integrals of
motion and adiabatic invariants. The condition of existence
of this type of solution is represented by the simultaneous
occurrence of nonvanishing azimuthal and poloidal magnetic
fields. It has been proved that the same KDFs admit an explicit
representation in terms of generalized Gaussian distributions
which are subject to prescribed kinetic constraints and have
a phase-space nonisotropic character. By implementing a
perturbative theory holding in a proper subset of phase space, a
Chapman-Enskog series representation has been obtained for
the no-energy KDFs. This provides the basis for the analytical
calculation of the constitutive equations for the fluid fields and
the treatment of nonuniform collisionless plasmas of this type.

A number of significant features have been discussed,
which show that no-energy kinetic equilibria are indeed
of different character with respect to the quasistationary
kinetic solutions considered in previous works which were
expressed in terms of generalized bi-Maxwellian distributions.
In particular, it has been proved that no-energy kinetic
equilibria allow for the description of fluid systems possibly
characterized by either supersonic or sonic and subsonic

species-dependent flow velocities together with the occurrence
of temperature and pressure anisotropies. Both these features
have been shown to arise as a consequence of the simultaneous
adiabatic conservation of the particle canonical momentum
and guiding-center magnetic moment.

As shown here, analysis of the Maxwell equations, and
in particular of the quasineutrality condition, proves that the
no-energy kinetic equilibria are generally non-neutral and are
characterized by the absence of the Debye screening effect.
Nevertheless, these equilibria can still sustain self-generated
electric currents, thus giving rise to an equilibrium kinetic
dynamo mechanism.

As a final result, the absolute stability of the no-energy
equilibria with respect to axisymmetric electromagnetic per-
turbations has been established. The proof concerns analytic
axisymmetric perturbations characterized by low frequency
and long wavelength with respect to the Larmor scales. It has
been concluded that for these systems unstable perturbations of
this type remain necessarily excluded. This follows uniquely
from the specific functional form of the equilibrium KDFs
which do not contain any kind of dependence on single-
particle energy. Hence, the stationary configurations consid-
ered here have been shown to be absolutely stable against
axisymmetric kinetic instabilities of this type. Remarkably,
the stability criteria hold independently both of the strength
of the azimuthal and poloidal magnetic fields to which the
plasma is subject and of the magnetic regime to which the
plasma belongs, provided the existence of guiding-center
adiabatic invariants remains warranted. As a fundamental
consequence, since fluid descriptions of these plasmas can only
be based on the present Vlasov-Maxwell statistical theory, also
axisymmetric MHD instabilities, such as the axisymmetric
magnetorotational instability or thermal instabilities remain
forbidden for collisionless plasmas described by no-energy
equilibria.

The theoretical study presented in this work extends the
kinetic treatment of collisionless plasmas recently developed
in Refs. [1–8] to a new class of equilibrium solutions
with distinctive novel features and characterized by absolute
stability properties. The outcomes of this research can provide
the framework for further theoretical and experimental inves-
tigations of the dynamics of these systems in both laboratory
and astrophysical scenarios.
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