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Evaluation of slowing down of proton and deuteron beams in CH2, LiH, and Al partially
ionized plasmas
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In this work, proton and deuteron stopping due to free and bound electrons in partially ionized plasma targets
is evaluated. The stopping of target free electrons is calculated using the dielectric formalism, well described in
our previous works. In the case of target bound electrons, a short expression to calculate their contribution to the
stopping is used, where mean excitation energies are obtained by means of the Hartree-Fock method. Experiments
with different kinds of plasmas are analyzed. For LiH plasma, estimated plasma stopping fits experimental data
very well, within the error bars, recognizing the well-known enhanced plasma stopping. In the case of CH2

plasma, we obtain, from estimated ionization, that total stopping power increases when target electron density
does. Our estimations are very similar to experimental data which show the same behavior with target free
and bound electron density. Finally, in Al plasma, we compare directly our calculations with experimental data
finding a very close agreement, where both stoppings have the same dependence on target ionicity. All these
comparisons verify our theoretical model which estimates the proton or deuteron energy loss in partially ionized
plasmas.
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I. INTRODUCTION

The stopping power of a free electron media, like plasmas,
can be studied using dielectric formalism. In this theoretical
frame, a classical or a quantum-mechanical linear response
function known as the random phase approximation (RPA) is
used [1,2]. This leads to considering the effect of the incident
charged particle as a perturbation that loses energy on target
proportionally to the square of its charge. The linear response
theory is usually applicable for high-velocity projectiles and
in the weak coupling of an electron gas. Then slowing down is
simplified to a treatment of the properties of the medium only,
and a linear description of these properties may then be applied.

In partially ionized plasmas, we must take into account the
stopping power due to electrons bound to the target plasma
atoms. This study can be performed using the mean excitation
energy I that appears in the renowned expression of the Bethe
logarithm

−dE

dx
= 4πZ2

pe4Zanat

mev2
ln

2mev
2

I
, (1)

where Zp and v are the projectile atomic number and
velocity; Za and nat are the target atomic number and density,
respectively. This magnitude quantifies the energy exchanged
in excitation and/or ionization processes of the electron shells.
Mean excitation energy I can be determined through several
methods such as the Hartree-Fock method (HF), oscillator
strength (OS), or local plasma approximation (LPA).

In the literature, I has been calculated for every subshell
of noble gases [3,4] and for all the elements from Za = 1
to Za = 36 [5]. Proton stopping in aluminum, nickel, argon,
krypton, and xenon has been studied by means of generalized
oscillator strength [6–8]. In general, these studies found values
of I close to the ones obtained with available experiments or
other theoretical calculations.

Mean excitation energy could be also estimated using
LPA [9]. The LPA consists of averaging over density of the

inhomogeneous fluid of bound electrons around a target ion.
Then I could be determined using [10]

ln I = Z−1
a

∫
ln[γh̄ωp(r)]ρb(r)d�r (2)

with ω2
p(r) = 4πρb(r)e2/me and γ = √

2, where ρb(r) is the
bound electron radial density. A simple analytic formula for I

was proposed through a variational method, I =
√

2K/〈r2〉.
The aim of this work is to analyze the slowing down of

projectiles with Zp = 1 (protons and deuterons) in different
partially ionized plasmas. The existence of free and bound
electrons in plasma implies that both must be considered for
calculation of stopping. For this, the paper is divided into
three main sections. In Sec. II, it is shown how the electronic
stopping is calculated. First, the calculation of stopping power
of target free electrons is estimated using the RPA dielectric
function. Later it is shown how to estimate the stopping power
of target bound electrons by means of mean excitation energy
I , and how this I is obtained. Then in Sec. III, it is explained
how the Hartree-Fock method works in order to obtain the
mean excitation energy for any atom or ion of plasma target.
Finally in Sec. IV, we analyze three different experiments of
slowing down of ions in plasmas using the electronic stopping
methods shown in Sec. II. We will use atomic units (a.u.),
e = h̄ = me = 1, to simplify formulas.

II. ELECTRONIC STOPPING

A. Electronic stopping due to free electrons

The RPA dielectric function (DF) is developed in terms
of the wave number k and of the frequency ω provided by
a consistent quantum mechanical analysis. The RPA analysis
yields the expression [11]

εRPA(k,ω) = 1 + 1

π2k2

∫
d3k′ f (�k + �k′) − f (�k′)

ω + iv − (E�k+�k′ − E�k′)
, (3)
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where E�k = k2/2. The temperature dependence is included
through the Fermi-Dirac function

f (�k′) = 1

1 + exp[β(Ek − μ)]
, (4)

with β = 1/kBT and μ the chemical potential of the plasma
with electron density ne and temperature T . In this part of
the analysis we assume the absence of collisions so that the
collision frequency tends to zero, v → 0.

The analytic RPA DF for plasmas at any degeneracy can be
obtained directly from Eq. (3) [12,13]:

εRPA(k,ω) = 1 + 1

4z3πkF

[g(u + z) − g(u − z)], (5)

where g(x) corresponds to

g(x) =
∫ ∞

0

ydy

exp(Dy2 − βμ) + 1
ln

(
x + y

x − y

)
;

u = ω/kvF and z = k/2kF are the common dimensionless
variables [11]. D = EF β is the degeneracy and vF = kF =√

2EF is Fermi velocity in a.u.
Finally, electronic stopping of free plasma electrons will be

calculated in the dielectric formalism as

Sf (v) = 2Z2
p

πv2

∫ ∞

0

dk

k

∫ kv

0
dωω Im

[ −1

εRPA(k,ω)

]
(a.u.),

where Zp is the charge, v is the velocity of the projectile, and
the equation is in atomic units.

B. Electronic stopping due to bound electrons

In order to determine electronic stopping due to bound
electrons we use analytical formulas in the limit of low and
high projectile velocities, and an interpolating expression
is derived for intermediate velocities. For a plasma target
with atomic density nat , the bound electron density for each
populated atomic shell is ni = Pinat , where Pi is the average
electron population in the shell of a target atom [14]. We can
estimate electronic stopping for a proton beam in the form

Sb = 4πnat

v2
(Lb + LK ), (6)

where LK is the Barkas stopping number defined in [15],

LK = Zp

1.7λeff

v2
ln

2v

λeff
,

and λeff = 0.72Z
1/3
a . On the other hand,

Lb =
∑

i

PiLi, (7)

where Lb is the stopping number for whole bound electrons of
atom or ion and Li is the stopping number for bound electrons
of each shell.

We reckoned Lb by interpolating between the asymptotic
formulas valid either for low or for high projectile

velocities [16],

Lb(v) =
⎧⎨
⎩

LH (v) = ln 2v2

I
− 2K

v2 for v > vint,

LB(v) = αv3

1+Gv2 for v � vint,
(8)

vint = √
3K + 1.5I , (9)

where G is given by LH (vint) = LB(vint), K is the electron
kinetic energy, I is the mean excitation energy, and α is the
friction coefficient for low velocities. The mean excitation
energy of each shell is determined using

I =
√

2K

〈r2〉 , (10)

where 〈r2〉 is the average of the square of the radius,
for the electron in the i shell. Within the hydrogenic
approximation, the friction coefficient of each shell is given
by α = 1.067

√
K/I [10].

Equation (10) is obtained within the framework of oscillator
strength. It is defined by

f0n = 2E0n

N
〈n|

N∑
i=1

zi |0〉, (11)

where the excitation energy is E0n, calculated for transitions
0 → n in a given atom or ion with N bound electrons, and the
nuclear charge is Za .

The momenta S(μ) and L(μ) are calculated using the
oscillator strength sum rules [17]

S(μ) =
∑

n

f0nE
μ

0n, (12)

L(μ) =
∑

n

f0nE
μ

0n ln |E0n|. (13)

When μ = −1

S(−1) = 2me

3h̄2 a2
0

〈(
r

a0

)2〉
, (14)

then S(−1) is proportional to square radius. If atomic units are
used it is reduced to the expression

〈r2〉 = 3
2S(−1). (15)

Substituting μ = 1 in Eq. (12), an expression proportional
to the kinetic energy is obtained,

S(1) = 4

3
〈0| p2

2me

|0〉, (16)

using atomic units

2K = 3
2S(1). (17)

The quantity L(0) is related with the mean excitation energy
I ,

ln I = L(0)

S(0)
= L(0)

N
; (18)

moreover, ln I , S(0), S(1), and S(−1) are related by [10]

ln I = 1

2
ln

[
S(1)

S(−1)

]
. (19)
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Substituting Eqs. (15) and (17) in Eq. (19) the expression (10)
is achieved.

Using Eq. (10) we can easily estimate I from the atomic
parameters K and 〈r2〉. In the next section we will explain how
to obtain these quantities from Hartree-Fock calculations [18].

III. HARTREE-FOCK METHOD

To obtain the atomic parameters K and 〈r2〉 we need to
solve the Schrödinger equation for the bound electrons of
the atom. But only for the hydrogen atom or hydrogen-like
atoms are there analytical solutions of this equation. However,
there are no exact solutions for atoms with more than one
electron; for this reason we must use other approximating
methods to estimate the atomic properties of many-electron
atoms. The well-know Hartree-Fock method simplifies the
many-electron problem to a one-electron problem, where each
electron moves in an effective potential which takes into
account the attraction of the nucleus and the average effect
of the repulsive interactions due to the other electrons. This
method also obeys the Pauli exclusion principle due to the
fermionic nature of electron.

The Hartree-Fock equations for an electron i with coordi-
nate Ri is[

−1

2
∇2

i − Z

ri

+ Vi(ri)

]

Qi

(Ri)

−
∑

j

j 
= i

∫

∗

Qj
(Rj )
Qi

(Rj )

|ri − rj | dτj · 
Qi
(Ri) = E
Qi

(Ri),

(20)

where the first term in the bracket is the kinetic energy, the
second the potential energy due to the nucleus, the third the
Coulomb interaction energy with all the other electrons, and
the last term of the first member is called the exchange term,
which includes the antisymmetry of the wave function [19,20].

Furthermore the wave function of the one electron could be
expressed with all its quantum numbers, including spin [21],


Qj
(Rj ) = Rnl(rj )Ylml

(θ,φ)Xms
(σj ). (21)

From Eq. (21) are obtained kinetic energy and mean square
radius in order to solve the expression I =

√
2K/〈r2〉. We

estimate K and 〈r2〉 through the integration of the following
radial functions:

Knl = −1

2

∫ ∞

0
Pnl(r)

[
d2

dr2
− l(l + 1)

r2

]
Pnl(r)dr, (22)

where

Rnl(r) = 1

r
Pnl(r), (23)

satisfying normalization condition [21],∫ ∞

0
P 2

nl(r)dr = 1. (24)

The general formula to obtain mean powers of radius is [19]

〈rp〉nml =
∫ ∞

0
|Rnl(r)|2rp+2dr, (25)

TABLE I. Atomic quantities in a.u. for neon.

Neon Hartree-Fock Oscillator Strength

Shell K 〈r2〉 I K 〈r2〉 I

1s 46.269 0.033 52.954 42.837 0.013 81.621
2s 5.214 0.967 3.284 4.901 0.076 11.363
2p 4.264 1.228 2.635 3.151 1.428 2.101

substituting 2 instead of p in this particular case. These
equations are solved for any atom using a FORTRAN 95 code
[22] including K and 〈r2〉.

In Table I we can see the different atomic quantities cal-
culated for neon using Hartree-Fock and oscillator strengths.
For all subshells, when the principal quantum number n rises,
the mean excitation energy and electron kinetic energy of each
subshell decreases while mean quadratic radius increases. The
values corresponding to the oscillator strength calculations are
obtained from Eqs. (10), (15), and (17). The quantities related
to S(1) and S(−1) are tabulated in [4].

IV. RESULTS

In this section we will evaluate the stopping power of three
different types of plasmas: LiH, CH2, and Al. The electron
kinetic energy, mean quadratic radius, and mean excitation
energy of atomic subshells are shown in Table II for each
plasma target. K and 〈r2〉 are calculated by mean of the
Hartree-Fock method and I using Eq. (10). These quantities
vary in the same way as those in Table I.

A. LiH plasma

There are only a few experiments on beam plasma interac-
tion in low beam energies, below 0.5 MeV. In this experiment,
a proton beam interacts with lithium hydride plasma. This was
produced by irradiating a small pellet (diameter ≈ 60 μm) of
LiH with a Q-switched Nd-glass laser (λ = 1054 nm). The
energy loss by a proton beam, with initial energy of 350 keV
(v ≈ 3.7 a.u.), was measured after passing through the
plasma. By spectroscopic analysis, temperature and electron
density were measured at 60 ns after the laser was fired
and these were 20 eV and 1018 e−/cm3, respectively. The

TABLE II. Atomic quantities in a.u. for each subshell of plasma
elements.

Element Subshell K 〈r2〉 I

H 1s 0.500 3.000 0.577
Li 1s 3.612 0.447 4.021

2s 0.209 17.738 0.153
C 1s 16.053 0.097 18.176

2s 1.546 3.038 1.009
2p 1.230 3.890 0.795

Al 1s 79.264 0.019 90.257
2s 10.884 0.459 6.887
2p 9.856 0.455 6.579
3s 0.936 7.891 0.487
3p 0.571 14.006 0.286
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FIG. 1. (Color online) Proton stopping in a LiH plasma as a
function of beam energy. Shibata et al.: Squares, experiments in
plasma; dashed curve, calculations in cold gas. Our work: Solid curve,
calculations in plasma.

mass thickness (�ρx) was 1.3 μg/cm3 [23] so it is possible
to determine plasma density with the plasma length, �x =
0.1 cm, measured previously [24]. Then, we find the plasma
density, ρplasma = 1.3 μg/cm2/0.1 cm = 1.3 × 10−5 g/cm3

and the same atomic density for lithium and hydrogen is
obtained, nat = 9.88 × 1017 at./cm3. The ionization is also
the same for both, qLi = qH = +1.0, and it was calculated
by those authors using the Saha equation for this kind of
plasma [25–28].

Figure 1 shows the experimental stopping of the cold
equivalent and plasma, and our calculations. Our estimation
for the plasma case is very close to the experimental datum
point. At low beam energies, the stopping is much higher for
plasma than for cold gas while for high beam energies, the
difference is negligible. This behavior is known as enhanced
plasma stopping and is due to the influence on stopping of the
higher free electron density in plasmas.

B. CH2 plasma

The plasma was created from a polyethylene plastic,
[CH2]n, using an electric discharge. The energy loss of a
3 MeV proton beam (v ≈ 11 a.u.) was measured after passing
through a plasma column 50 mm long [29]. With the energy
loss �E and the plasma length �x, it is possible to estimate
the experimental stopping power, Sp = �E/�x.

In this experiment the free electron density nf was
measured, but not the ionic density or the ionization degree.
We have calculated the ionization for hydrogen using the Saha
equation. In the case of carbon, the authors estimated that

S
p

FIG. 2. (Color online) Proton stopping as a function of CH2

plasma electron density. Experimental: Diamonds. Calculated: Cir-
cles, free electrons; crosses, total.

there are five bound electrons for the plasma target [30]. The
temperature, energy loss, and ionization are placed in Table III.

Figure 2 compares calculated stopping of free and total
electrons with the same experimental data with error bars. The
difference between both is caused by the stopping of bound
electrons. In addition, we include the total stopping (bound
and free) using the ionization for carbon and hydrogen shown
in Table III. Stopping rises when the electron density rises
because the ionization is approximately the same and rest of
the variables remain constant. Our calculations are very close
to the experimental results.

C. Aluminum plasma

In this section, we compare our methods with experimental
data of aluminum plasmas [31]. In this experiment, the energy
loss of deuterons in plasmas is measured. A pinch-reflex diode
produces the deuteron beam. The plasma target is placed at
the center of cathode and is enclosed between two deuterated
polyethylene (CD2) foils. Aluminum is used to produce the
plasma target.

The anode has a CD2 foil that provides the deuteron beam.
This beam reaches 1 MeV in 4 cm (the distance between anode
and cathode). A spherical anode is used for the experiments.
In Table IV, we can see the conditions of the plasma target for
each case.

Time of flight (ToF) of neutrons with multilayered targets
is used to determine deuteron energy loss. Neutrons come
from the foils that enclosed the plasma target. Using neutron
incident energy, deuteron energy loss in the plasma target is
calculated.

TABLE III. Energy loss and plasma parameters.

Case i �E (keV) Te (eV) nf (1019 e−/cm3) H ionization C ionization

1 170 ± 79 3.3 ± 0.3 2.5 ± 1.1 +0.92 +1.0
2 490 ± 75 3.3 ± 0.3 6.4 ± 1.1 +0.82 +1.0
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TABLE IV. Experimental conditions of aluminum plasma [31].

T (eV) ne (1021 e−/cm3) Q

13–17 1.50 3.37
13–17 1.56 3.49
13–17 1.91 4.27

In this experiment, it was proposed that stopping power
with target ionization can be formulated as [31]

Sp = B

[
1 − Q

Za

Lb + Q

Za

Lf

]
, (26)

where Q is the mean ionization and Za is the atomic number
of the target,

B = 4πZanat

v2
, (27)

where v is the projectile velocity. The parameters Lb and Lf

are, respectively,

Lb = ln
2v2

Ib

, (28)

Lf = ln
2v2

If

, (29)

where

Ib  ĪI (Q) =
(

Za

Za − Q

)2

ĪN (Za − Q) (30)

and

If = ωp. (31)

In Eq. (30) the term ĪI (Q) is the average of the mean
excitation energy of the target ion, while ĪN (Za − Q) is the
average of the mean excitation energy of the neutral atom with
atomic number Za − Q [32]. In Eq. (31) ωp is the plasma
frequency.

We compare our calculations with the measurements in
Fig. 3. We show three experiments with their temperature,
electron density, and ionicity. Experimental data have high
uncertainty because deuterons impact on the target with a large
range of angles [31]. Their estimations are based on hydrocode
calculations, while ours are based on Hartree-Fock method. In
all cases, our results are within experimental data error bars,
having more accuracy for the highest ionization case. The
three theoretical curves show a dependence with ionicity and
incident deuteron energy. When the ionicity rises the energy
loss also does, but when the incident deuteron energy rises
the energy loss decreases. This behavior is also observed in
the experimental points. The difference in energy loss for
the two cases with similar incident energy, near 0.5 MeV/u,
is due mainly to the difference in plasma ionization. The
case with the highest ionization, 3.49, shows a higher energy
loss than the case with ionization 3.37, due to the higher
free electron density of the former. The third case shows
a lower energy loss compared with the two first ones,
although its ionicity is higher, 4.27, because the incident
energy is higher, by 0.6 MeV/u. In conclusion, our theoretical
estimations show the same relationship between energy loss,
ionicity, and incident deuteron energy as the experimental

FIG. 3. (Color online) Energy loss of deuterons in aluminum
plasma for different target ionizations. Experimental data (exp.
made with spherical anode), calculations (Calc) from [31]; and our
estimation (HF). Free and bound target electrons are considered.

data. Furthermore, the stopping power calculated is within
the experimental data error bars. Finally for the highest
ionization, there is a good agreement between our calculation,
the experimental data point, and the theoretical estimation
from [31].

V. CONCLUSIONS

In this work, the energy loss of proton and deuteron beams
in plasmas caused by the stopping power of free and bound
electrons was analyzed by means of the RPA dielectric function
and Hartree-Fock method, respectively. We have compared our
calculations with experimental data obtained from different
partially ionized plasma targets.

For LiH plasma we have obtained the plasma density. Using
the ionization of Li and H, given by the authors, we were able
to obtain the stopping of bound and free electrons. With this
ionization, our estimation fell within the experimental error
bars. The enhanced plasma stopping comparing cold matter to
the plasma state was also shown.

Proton stopping was measured in CH2 plasmas with
the result that free electrons caused a considerable part of
stopping power and the remaining part was due to bound
electrons. Because hydrogen was highly ionized and carbon
lost one electron only, the main contribution to stopping
of bound electrons was due to the latter one. Using both
ionizations, we have estimated total stopping and we have
found that it increases when the electron density rises. Our
calculated slowing down was very close to experimental
measures that showed the same dependence with electron
density.

Finally, the total stopping power of the deuteron beam in
aluminum plasma was calculated for different ionizations and
beam energies. Our calculations show the same dependence
of energy loss with ionicity and incident energy as the
experimental cases. In addition, the estimated energy loss
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was within the experimental data error bars with the best
adjustment for the highest ionization.

These good results verify our theoretical model that
estimates the proton or deuteron energy loss in partially ionized
plasmas.
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