
PHYSICAL REVIEW E 88, 033024 (2013)
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Ferromagnetic microparticles suspended at the interface between immiscible liquids and energized by an
external alternating magnetic field show a rich variety of self-assembled structures, from linear snakes to radial
asters. In order to obtain insight into the fundamental physical mechanisms and the overall balance of forces
governing self-assembly, we develop a modeling approach based on analytical solutions of the time-averaged
Navier-Stokes equations. These analytical expressions for the self-consistent hydrodynamic flows are then
employed to modify effective interactions between the particles, which in turn are formulated in terms of
the time-averaged quantities. Our method allows effective computational verification of the mechanisms of
self-assembly and leads to a testable prediction, e.g., on the transitions between various patterns versus viscosity
of the solvent.
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I. INTRODUCTION

Dissipative systems exhibit a rich variety of self-organized
patterns when they are driven out of equilibrium [1,2].
Colloidal suspensions energized by either external electric
or magnetic fields are an important example of mesoscopic,
nonequilibrium, pattern-forming systems. Such systems have
important technological applications, from photonics to
medicine [3,4]. Cross-disciplinary studies on colloidal systems
are an ongoing, active area of current research [5–17]. Out-
of-equilibrium colloids exhibit a strong propensity towards
dynamic self-assembly, which can be defined as a natural
tendency of simple building blocks to organize into complex
functional architectures. Functionalized colloidal particles,
playing the role of these simple building blocks, constitute
the basis for new materials via controlled and flexible,
bottom-up assembly [18]. One of the most difficult issues
in the study of out-of-equilibrium colloids is how collective
behavior and ordered dynamic structures arise from discrete
particle interactions and what controls the triggering of specific
collective responses or desired functionality.

Despite the seeming simplicity, suspensions of ferro-
magnetic colloidal particles exhibit expansive diversity of
dynamic phenomena. Moreover, studies of these suspensions
provide insight into dynamic self-assembly of multiparticle
systems with strong, long-range anisotropic interactions. An
alternating magnetic field is often used to energize the system
and trigger the dynamic self-assembly process [19–21]. It
was recently demonstrated that a ferromagnetic colloidal
suspension confined at the liquid interface and energized by
a uniaxial alternating magnetic field applied perpendicular to
the interface exhibits nontrivially ordered dynamic structures.
These structures range from linear magnetic snakes [19,22,23]
observed at a liquid-air interface to radial asters [24] at
liquid-liquid interfaces (see Fig. 1). While magnetic snakes are
essentially linear structures and comprised of antiferromagnet-
ically ordered segments of ferromagnetically ordered chains of
microparticles [19] [Fig. 1(b)], asters exhibit radial structural
order with the ferromagnetically ordered chains emanating
from the center of each aster [24] [see Fig. 1(c)]. Seemingly

identical systems produce strikingly different self-assembled
structures.

To obtain insights into the mechanisms governing dynamic
self-assembly phenomena in ferromagnetic suspensions, the
shallow water approximation to the Navier-Stokes equations
was used in conjunction with Newton’s equations of motion
for individual particles [25]. The shallow water equations were
numerically solved along with Newton’s equations, which
resulted in the successful modeling of magnetic snakes. In
this paper, this approach is further refined by asymptotically
solving the shallow water equations in an analytic fashion in
lieu of a numerical one. A preliminary account of our work is
given in Ref. [26]. These expressions are then inputted directly
into Newton’s equations for numerical solution. This approach
offers several advantages to the one reported in [25], namely,
once found, the analytic expressions reveal the overall fluid
flow and decay length, giving insight into the forces that cause
the dynamic self-assembly. Additionally, bypassing the need
for numerical solutions to the shallow water equations greatly
reduces the computation time.

On the basis of controlled experiments carried out at the
liquid-air interface at different viscosities of the suspending
liquid, we have demonstrated that the viscosity defines the
intricate balance between magnetic and hydrodynamic forces
arising from the inertia of the particles and suspending liquid.
The magnitude of these forces is inversely proportional to the
viscosity, which can be independently controlled in both our
experiment and the theoretical model. We show that at a given
frequency and amplitude of the ac magnetic field, the viscosity
of the suspending liquid controls the transition between snakes
and asters; snakes emerge for smaller viscosities, while asters
are favored in more viscous liquids.

II. ANALYTIC MODEL

The analytic model here is the same as that reported briefly
in [26] and is comprised of two components, the shallow water
equations, which describe the fluid flows induced by particle
motion, and the equations governing the interparticle magnetic
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FIG. 1. (Color online) Dynamic self-assembly of ferromagnetic colloidal suspension at liquid interfaces. (a) Schematics of the experiment.
An alternating magnetic field is applied perpendicular to the liquid interface supporting the suspension. (b) Self-assembled magnetic snake.
Arrows show the direction of the magnetic moments in the segments of the snake. (c) Magnetic aster. The insets demonstrate two equivalent
magnetic orderings of asters (aster vs antiaster).

and steric interactions, which are then coupled into Newton’s
equations for the particle locations and orientations.

A. Governing equations

To model the behavior of the fluid, the shallow water
approximation to the Navier-Stokes equations is used, where
the fluid is assumed to be incompressible and is considered
in the infinite domain x,y ∈ (−∞,∞). The surface elevation
h(r,t) and the two-dimensional (2D) in-plane fluid velocity
v(r,t) = (u(r,t),v(r,t)) are described by the equations

∂h

∂t
+ ∇ · (hv) = 0, (1)

∂v
∂t

+ (v · ∇)v = ν0∇2v − α0v − g∇h + σ0

ρ
∇∇2h

+ a0 sin(2πf t)
∑

j

Pj s(r − rj ), (2)

where ∇ = ∂/∂r is the two-dimensional differential operator
of the position vector r = (x,y), ρ is the fluid density, ν0

is the kinematic viscosity, σ0 is the surface tension, g is the
gravitational acceleration, and α0 is the friction with the bottom
of the container. The last term in Eq. (2) describes the impact of
the particles on the fluid, in which a0 ∝ H0 is the amplitude
of the acceleration caused by the magnetic field.

The effective particle in our model has a magnetic moment
that always points along the interface of the liquid and as
a result represents a short chain (comprised of at least two
spherical particles) that produces rocking motion at the liquid
interface in the presence of an alternating magnetic field.
The response of the chains to the applied magnetic field
results in the deformation of the fluid surface (see Fig. 2 in
Ref. [25]). The initial formation of short chains of particles is
typically justified by the Stokes drag (see, e.g., Ref. [27]) and
local deformations of the liquid surface by single spherical
particles responding to external driving field [19]. The vectors
rj and Pj = (cos φj , sin φj ) stand for the instant position and
orientation of the j th particle, where φj is the angle of the j th
dipole moment. The function s(r − rj ) describes the shape of
the particles, in our case Dirac delta functions were used, i.e.,
s(r − rj ) = δ(r − rj ). To obtain analytical progress, in our
study we neglect the surface tension σ0 = 0.

To determine the position and orientation of the particles,
Newton’s equations of motion are used,

mr̈j + μt ṙj = Fj + μtv − β∇h, (3)

I φ̈j + μrφ̇j = Tj + κH0 sin(ωt)(∇h × Pj ) · êz, (4)

where m is the particle mass, μt is the translational friction,
I is the moment of inertia, μp is the rotational friction, and
Fj and Tj = Tj êz (êz is the unit vector along the z axis) are
the translational and rotational forces due to the interparticle
interactions, respectively. The term μtv is the Stokes drag and
−β∇h (β = mg) describes the movement along the surface
gradient from gravity. The last term in Eq. (4) is the torque
applied to the dipole moment resulting from the magnetic field.

The magnetic dipole-dipole Ud
ij and short-range hard-core

repulsive Uh
ij interactions are described by the following

potentials [28]:

Ud
ij = μ2

d

4πr3
ij

[Pi · Pj − 3(Pi · r̂ij )(Pj · r̂ij )], (5)

Uh
ij = μ2

d

16πd3

(
d

rij

)24

, (6)

where μd is the magnetic dipole of the particle, d is the
particle diameter, rij = |rij |, rij = |ri − rj |, and r̂ij = rij /rij .
The translational and rotational forces are evaluated as
Fj = −∂U/∂rj and the rotational are Tj = −Pj × ∂U/∂Pj ,
where U = (1/2)

∑
i,j �=i Uij and Uij = Ud

ij + Uh
ij .

B. Solution of shallow water equations

We now analyze the shallow water equations (1) and (2).
We represent the surface elevation as h(r,t) = h0 + ζ (r,t),
where ζ (r,t) describes the deviation of the surface from the
equilibrium value h0. To address this problem, we pass to
dimensionless variables by measuring the length, time, and
velocity in units of h0,

√
h0/g, and

√
gh0, respectively. Setting

the surface tension to zero σ0 = 0 as mentioned earlier, we
arrive at the dimensionless equations

∂ζ

∂t
= −∇ · (v + ζv), (7a)

∂v
∂t

+ (v · ∇)v = ν(∇2v − αv) − ∇ζ

+ ε sin ωt
∑

j

Pj δ(r − rj ), (7b)
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with the dimensionless frequency ω = 2πf
√

h0/g, viscosity
ν = ν0/h0

√
gh0, friction with the bottom of the container α =

α0h
2
0/ν0, and strength of external driving ε = a0(H0)/g, which

is the acceleration caused by the magnetic field measured
relative to g.

Note that in the case of no external driving, when ε = 0,
the liquid subsystem has no source of motion. In particular, in
Appendix A we show that the linearized system admits damped
surface gravity waves, as ensured by the viscous dissipation in
the bulk and additionally via the friction with the bottom of the
container. As a result, any initial perturbation decays and the
liquid system tends to the equilibrium state with v(r,t) → 0
and ζ (r,t) → 0 as t → ∞ for all r.

We now focus on the case of weak external driving ε 	 1,
which at the same time implies that the surface deformations
induced by the particles driven by the magnetic field are
small ζ 	 1 (or ζ 	 h0 in the units before rescaling). This
consideration suggests the perturbation ansatz

ζ (r,t) = εζ1(r,t) + ε2ζ2(r,t) + O(ε3), (8a)

v(r,t) = εv1(r,t) + ε2v2(r,t) + O(ε3). (8b)

Here the leading terms of O(ε) describe the linear response of
the system, which can be used to compute the mean flow by
performing the time averaging of equations in the next order
O(ε2), as described below.

1. First-order solution: Linear response

As shown in Appendix B 1, by applying the ansatz (8) to
Eqs. (7) at the leading order we arrive at the linear equations,
which can be solved in the far-field approximation for small
viscosity. The leading parts of the general solutions in terms
of complex amplitudes are given by Eqs. (B8)–(B11). For the
velocity fields and the surface deviation generated by a single
particle j , we have

u1(r,t) =
√

ωe−νγRj cos χj cos(ϕj − θj ) cos θj

2
√

2πRj

, (9)

v1(r,t) =
√

ωe−νγRj cos χj cos(ϕj − θj ) sin θj

2
√

2πRj

, (10)

ζ1(r,t) = e−νγRj cos(ϕj − θj )

4
√

2πωR
3/2
j

(2k0Rj cos χj + sin χj ).

(11)

Note that the fields are represented relative to the time-
averaged position qj of particle j such that Rj := r − qj =
Rj (cos θj , sin θj ) and χj = k0Rj + π/4 − ωt . Here θj is the
angle between the vector Rj and the reference axis, ϕj is
the angle that determines the time-averaged orientation of the
dipole moment, and the coefficients k0 and γ are determined
by the dispersion relation [see Eq. (A2)].

Also note that these expressions diverge as Rj → 0, which
is a direct result of using δ functions to model the spatial
extension of the particles [see Eq. (2)]. This singularity does
not present a problem since the hard-core magnetic repulsion
from Eq. (6) keeps the interparticle separation distances large
enough where this divergence is never felt. The first-order
velocity field v1 and surface deformation ζ1 produced by a
single particle, as given in Eqs. (9)–(11), are shown in Figs. 2(a)
and 2(b), respectively.

(a) (b)

FIG. 2. (Color online) (a) Instant first-order velocity field induced
by a single particle. The red (large center) arrow indicates the
location and direction of the dipole moment. (b) First-order surface
deformation where the color code (grayscale) denotes the surface
height. Note that both the velocities and the surface deformation
decay exponentially.

2. Second-order solution: Mean flow

In Appendix B 2 we apply the ansatz (8) to Eqs. (7)
to obtain the mean flow produced by a single particle.
The second-order equations are averaged over time and the
mean velocity uj produced by particle j is represented in
terms of the velocity potential �j (r) and stream function
�j (r), uj = ∇�j + (êz × ∇�j ). These functions are given by
Eqs. (B18) and (B19). Both the curl-free and divergence-free
counterparts of the mean flow determined by the potential �(r)
and stream function �(r), as in Eqs. (B18) and (B19), have
long-range quadrupolar structures that decay like 1/r3, shown
in Figs. 3(a) and 3(b), respectively. The combined net mean
flow is presented in Fig. 3(c). As was observed experimentally,
the long-range quadrupolar flow was an essential ingredient for
the formation of snakes and asters. Additionally, a comparison
of the decay length between first-order and time-averaged
(mean) second-order flows is shown in Fig. 3(d).

C. Time-averaged equations for the motion of particles

As shown in Appendix C 1, based on the analytic solutions
of the shallow water equations discussed in Sec. II B and in
Appendix B, we can formulate effective equations for the
time-averaged motion of particles, which can be formulated
in closed form and do not require solution of the Navier-
Stokes equations. Thus, instead of the initial model, given
by Eqs. (1) and (2) for the solvent and Eqs. (3) and (4) for
the particles, we describe the same system with only three
equations per particle, two for the 2D position qj (t) and
one for the orientation ϕj (t). All of the details about the
complex long-range hydrodynamic flows are cast in pairwise
interactions:

mq̈j + μt q̇j = Fj + μtu(qj ,t) + s(qj ), (12)

I ϕ̈j + μrϕ̇j = Tj + κH0[∇H (qj ) × Pj ] · êz. (13)

Here the forces Fj and torques Tj are to be evaluated based
on the time-averaged positions qj ; the mean flow field u(qj )
and the Stokes drift given by the superposition s(qj ) =
s(S)(qj ) + s(G)(qj ) are determined by Eqs. (C6) and (C10)
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(a) (b)

(c) (d)
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FIG. 3. (Color online) Mean flow field broken into its constituents
along with a comparison of the first-order velocity to the second-order
velocity: (a) the quadrupolar potential flow, (b) the quadrupolar
vorticity flow, and (c) the composite of potential and vorticity flow.
(d) Velocity profiles of the first-order and time-independent mean
flow as a function of distance from the particle. The first-order
solution oscillates and decays exponentially, whereas the mean flow
is monotonic and decays like 1/r3.

together with expressions (C7) and (C11). The time-averaged
quantity H (qj ) in Eq. (13) is given by formula (C13).

III. NUMERICAL SIMULATIONS

To model the experimentally observed self-assembly of
magnetic particles, we performed numerical simulations of
Eqs. (12) and (13), using a simple Verlet integration method.
The simulations were run on a high-performance NVIDIA
GPU cluster. By varying the frequency of the applied field
and the viscosity of the suspending fluid, both snakes and
asters were reproduced. Figures 4 and 5 show snake and
aster formations respectively, wherein 225 particles were
dispersed in a rectangular (snake) or square (aster) domain.
In this domain the dipole orientations were uniformly dis-
tributed and particles were placed on the square lattice with
small random displacements. After a short period, the self-
assembly process was complete and yielded one of the two
phases.

Moreover, this model successfully reproduced the phase
diagram between snakes and asters as a function of fluid
viscosity η and frequency f [26]. As shown in the top
panel of Fig. 3 of [26], the crossover in the self-assembly
behavior is illustrated, displaying a staggering similarity to the
experimental one in the top panel of Fig. 1 of [26]. Note that
here, α = ρ = 1. The dependence of a characteristic structure
formation time for the self-assembly process on η exhibits a
trend also similar to that in the experimental case [26]. Note

(a)

(b)

FIG. 4. (Color online) Snake formation. (a) Two hundred twenty-
five particles are initially dispersed in a rectangular domain.
(b) A snake is formed by the ferromagnetic chains aligned side by
side to make snake segments along the surface gradient that are
antiferromagnetically aligned with their neighboring segments.

that, in order to avoid depth dependence, the axes in the top
panel of Fig. 3 of [26] remain in dimensionless quantities.

As it was shown in [26], this approach made it possible
to recover the two primary experimental phases of snakes
and asters. Though it was unexpected for asters to appear
because of the 3D toroidal flows they induce, it was revealed
that formation of these structures is a product of surface
deformation rather than fluid flow. This conclusion would not
have been made had it not been for the alternative solution
methods performed here.

IV. CONCLUSION

Our previous experimental and theoretical studies revealed
that long-range (and highly nonlinear in nature) rectified
(mean) flow and inertia of the particles are crucial for the
formation of asters and snakes. Here we have demonstrated
that a relatively simple model for interacting particles can
successfully describe a variety of self-assembled structures
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(a)

(b)

FIG. 5. (Color online) Aster formation. (a) Two hundred twenty-
five particles are initially dispersed in a square domain. (b) An aster is
formed by an axisymmetric ordering of ferromagnetic chains aligned
along the induced surface gradient.

formed at the interface between immiscible liquids. A crucial
ingredient of our approach is that in order to reproduce
primary self-assembled patterns, such as snakes and asters,
standard interparticle interactions, e.g., steric repulsion and
dipolar, have to be supplemented by the self-consistent
hydrodynamic flows. Analytical solutions of the time-averaged
Navier-Stokes equations allow formulation of these flows in
an explicit form. In this regard our work exemplifies how
well-established discrete particle methods, e.g., Brownian
dynamics [4], can be extended in order to include nonlinear
fluid-mediated interactions between the particles. The success
of our modeling approach is further illustrated by a testable
prediction on the transition between asters and snakes as a
function of the viscosity of suspending liquid. Our modeling
framework can possibly be extended towards other out-
of-equilibrium self-assembled systems where self-induced
hydrodynamic flows play a critical role in the interparticle
interactions.
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APPENDIX A: CALCULATING THE
DISPERSION RELATION

Here we consider the dispersion relation, which can be
obtained from the (linear) first-order equations in the case of
no external driving [see Eqs. (B3) and (B4)]. Using Eq. (B3)
to eliminate ξ̂ in Eq. (B4), multiplying the result by −iω, and
setting Pj = 0 yields

ω2V̂ = −iνω(k2 + α)V̂ + k(k · V̂),

which presents a linear homogeneous system of a pair of
algebraic equations with respect to Û and V̂ . This system
admits a nontrivial solution only of its determinant turns to
zero. Building the corresponding characteristic equation gives
us the desired dispersion relation

D(ω,k,ν,α) = 0

with the function

D = [ω2 − k2 − iνω(k2 + α)][ω − iν(k2 + α)]. (A1)

In the limiting case of inviscid liquid ν = 0, the dispersion
relation reduces to the conventional result known for shallow
water ω = ±k or, equivalently, ω = ±√

gh0k in the original
units before rescaling. For arbitrary ν, no analytical solution
is available. We are, however, interested in the case of small
viscosity ν, in which we obtain an approximation

k ≈ k0 − iνγ, k0 = ω, γ = ω2 + α

2
. (A2)

Here k0 is the inviscid contribution describing the gravity
waves at the surface of shallow water and γ is a viscous
damping coefficient responsible for their damping.

APPENDIX B: CALCULATING THE ASYMPTOTIC
SOLUTIONS FOR THE SHALLOW WATER EQUATIONS

1. First-order solution: Linear response

Here we deal with the linear response of the system.
Applying the ansatz (8) to Eqs. (7) and retaining the leading
terms, we arrive at the first-order equations

∂ζ1

∂t
= −∇ · v1, (B1)

∂v1

∂t
= ν(∇2v1 − αv1) − ∇ζ1 + sin ωt

∑
j

Pj δ(r − qj ),

(B2)

with qj and Pj = (cos ϕj , sin ϕj ) being the time-averaged
position and orientation of particle j , respectively [see
also representation (C1)]. We now pass to complex ampli-
tudes ζ1(r,t) = ξ (r)eiωt + c.c. and v1(r,t) = V(r)eiωt + c.c.
in Eqs. (B1) and (B2), where V(r) = (U (r),V (r)) and c.c.
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denotes the complex conjugate. Then the amplitudes ξ (r) and
V(r) are transformed into Fourier space, using the convention

F(r) = 1

2π

∫
R2

F̂(k)eik·rdk, F̂(k) = 1

2π

∫
R2

F(r)e−ik·rdr,

to arrive at the algebraic equations

iωξ̂ = −i(k · V̂), (B3)

iωV̂ = −ν(k2 + α)V̂ − ikξ̂ + 1
4πi

∑
j Pj e

−ik·qj , (B4)

where k = (kx,ky) and k2 = k2
x + k2

y . Equations (B3) and (B4)

are then solved for the velocity field V̂(k) = (Û (k),V̂ (k)),
giving

Û (k) =
∑

j

[k2
y − ω2 + iνω(k2 + α)]P

x

j − kxkyP
y

j

4πD(ω,k,ν,α)
e−ik·qj ,

V̂ (k) =
∑

j

[k2
x − ω2 + iνω(k2 + α)]P

y

j − kxkyP
x

j

4πD(ω,k,ν,α)
e−ik·qj ,

where the function D(ω,k,ν,α) is determined by Eq. (A1).
To transform these solutions back to the real space we

stick to the polar representation of the wave vector k =
k(cos θk, sin θk) and the radius vector with the origin at the
position of j th particle, Rj := r − qj = Rj (cos θj , sin θj ).
Integrating over θk from 0 to 2π and over k from 0 to ∞,
we can represent the complex amplitudes in the real space as

U (r) = − 1

8π

∑
j

[I1(Rj ) cos ϕj + I2(Rj ) cos(2θj − ϕj )],

V (r) = − 1

8π

∑
j

[I1(Rj ) sin ϕj + I2(Rj ) sin(2θj − ϕj )],

where

I1(r) =
∫ ∞

0

2ω2 − k2 − 2iνω(k2 + α)

D(ω,k,ν,α)
kJ0(kr)dk, (B5)

I2(r) =
∫ ∞

0

−k3J2(kr)dk

D(ω,k,ν,α)
. (B6)

The critical component of finding the first-order solution to
this model is the computation of the integrals in Eqs. (B5) and
(B6), particularly at large arguments since these contributions
are responsible for the description of the large scale flows. The
integral in Eq. (B5) has the analytic solution

I1(r) = i

ν
K0(rz) + ω

1 + iν

iπ

2
H

(2)
0 (yrr)eyir ,

with z = √
α + iω/ν and y = √

ω(ω − iν)/(1 + iνω) =
yr + iyi . Note that at small viscosity ν, y ≈ k0 − iνγ with
k0 and γ following from the dispersion relation at small ν [see
Eq. (A2)]. Furthermore, considering large values of r , this
expression can be approximated as

I1(r) ≈ −
√

πω

2

1√
r
e−νγ re−i(k0r+π/4). (B7)

For Eq. (B6), no such closed form was found. Instead, the
first suitable approximation made is to consider the case for

small viscosities, which is in fact the case in experiment. Then

I2(r) ≈ − 1

ω

∫ ∞

0

k3J2(kr)dk

ω2 − k2 − iνω(k2 + α)

≈ −ω
iπ

2
H

(2)
2 (k0r)e−νγ r .

This result is then reduced by considering the asymptotic
approximation for large arguments, which yields the same
result as in Eq. (B7). Thus, for small ν in the far-field
approximation, I1(r) = I2(r) and we obtain the complex
amplitudes

U (r) =
∑

j

√
ωe−i(kRj +π/4) cos(ϕj − θj ) cos θj

4
√

2πRj

, (B8)

V (r) =
∑

j

√
ωe−i(kRj +π/4) cos(ϕj − θj ) sin θj

4
√

2πRj

, (B9)

in which k = k0 − iνγ .
The amplitude of the surface deviation can be evaluated

as ξ (r) = ω−1∇ · V(r) [see Eq. (B1)]. Further, we will also
need the first-order vorticity field �1 = �1êz = ∇ × v1 and
�1(r,t) = �(r)eiωt + c.c. with the complex amplitude �(r) =
êz · ∇ × V(r). Using Eqs. (B8) and (B9), we find for the
complex amplitudes

ξ (r) =
∑

j

e−i(kRj +π/4)(i + 2kRj ) cos(ϕj − θj )

8
√

2πωR
3/2
j

, (B10)

�(r) =
∑

j

√
ωe−i(kRj +π/4) sin(ϕj − θj )

4
√

2πR
3/2
j

. (B11)

2. Second-order solution: Time-averaged equations

In this section we consider the second-order equations.
By performing the averaging over time, we obtain the
equations that describe the long-range mean flow produced
by periodically driven particles. The first- and second-order
solutions for the motion of liquid are then used to obtain the
effective time-averaged equations for the particles.

Applying the ansatz (8) to Eqs. (7), to second order we
obtain

∂ζ2

∂t
= −∇ · (v2 + ζ1v1),

∂v2

∂t
+ (v1 · ∇)v1 = ν(∇2v2 − αv2) − ∇ζ2.

To calculate the mean flow, we perform the time averaging of
the above equations and look for the stationary solution, which
satisfies the equations

∇ · u = −∇ · (ζ1v1), (B12)

(v1 · ∇)v1 = ν(∇2u − αu) − ∇ζ2, (B13)

where the overline means the time averaging and the time-
averaged second-order velocity field is for simplicity denoted
by u := v2.

We make use of the Helmholtz decomposition of the mean
velocity u = ∇� + (êz × ∇�) to separate Eqs. (B12) and
(B13) into the curl-free and divergence-free contributions,
determined by the velocity potential � and the stream function
�, respectively. We rewrite the nonlinear term in Eq. (B13) as
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v1 · ∇v1 = ∇(v2
1/2) + �1 × v1. To eliminate gradient terms,

we apply the curl to Eq. (B13) and project the result onto the
z axis. Rewriting everything in terms of the scalar potentials
and vorticity, Eqs. (B12) and (B13) decouple and give

∇2� = −∇ · (ζ1v1), (B14)

ν(∇4� − α∇2�) = ∇ · (�1v1). (B15)

Next we assume that the contribution from the biharmonic
operator in Eq. (B15) is small and therefore dropped from
further calculations. Equations (B14) and (B15) are then solved
using the Green’s function approach, which leads us to formal
solutions

�(r) = − 1

2π

∫
R2

ln(
∣∣r − r′∣∣)∇′ · (ζ1v1)dr′,

�(r) = − 1

2πνα

∫
R2

ln(
∣∣r − r′∣∣)∇′ · (�1v1)dr′,

where ∇′ = ∂/∂r′.
Integrating by parts, we rewrite these expressions to obtain

�(r) = − 1

2π

∫
R2

(ζ1v1) · (r − r′)
(r − r′)2

dr′, (B16)

�(r) = − 1

2πνα

∫
R2

(�1v1) · (r − r′)
(r − r′)2

dr′. (B17)

The time-averaged quantities in the integrals are evaluated via
the complex amplitudes as ζ1(r,t)v1(r,t) = 2 Re[ξ (r)V∗(r)]
and �1(r,t)v1(r,t) = 2 Re[�(r)V∗(r)], where the complex
amplitudes U (r), V (r), ξ (r), and �(r) are given by Eqs. (B8)–
(B11) and the asterisk denotes the complex conjugate.

We are further interested in obtaining the mean flow
produced by a single particle, say, particle j . In this case,
the integrals in Eqs. (B16) and (B17) for �j (r) and �j (r), and
hence the mean velocity uj , can be evaluated explicitly. The
time-averaged quantities computed for particle j read

ζ1v1 = ω

16π

e−2νγRj

Rj

cos2(ϕj − θj )(cos θj , sin θj ),

�1v1 = − ω

32π

e−2νγRj

R2
j

sin(2ϕj − 2θj )(cos θj , sin θj ).

With these expressions, the evaluation of integrals (B16) and
(B17) results in

�j (r) = ω

256πγ 2ν2

F�(νγRj )

R2
j

cos(2ϕj − 2θj ), (B18)

�j (r) = ω

768παγ ν2

F�(νγRj )

R2
j

sin(2ϕj − 2θj ), (B19)

with F�(x) = −1 + (1 + 2x + 2x2 − 4x3)e−2x + 8x4E1(x),
F�(x) = −3 + (3 − 2x + 2x2 − 4x3)e−2x + 8x4E1(x), and
E1(x) = ∫ ∞

x
e−t t−1dt .

APPENDIX C: TIME-AVERAGED EQUATIONS
FOR THE MOTION OF PARTICLES

To obtain effective equations describing the motion of the
particles, we have to average Eqs. (3) and (4) over time. As in
the method of averaging [29] (see also Ref. [30]) we represent

the positions and orientations of the particles as

rj (t) = qj (t) + δqj (t), φj (t) = ϕj (t) + δϕ(t), (C1)

where the contributions qj (t) and ϕj (t) describe the time-
averaged or slow evolution of particles and δqj (t) = δrj e

iωt +
c.c. and δϕj (t) = �je

iωt + c.c. stand for the time-periodic
counterparts oscillating with the frequency ω, which are
further represented via the complex amplitudes δrj and �j .

Note that on the right-hand side of Eqs. (3) and (4), we have
such quantities as v(rj ,t) and ∇h(rj ,t) = ∇ζ (rj ,t), to be taken
at the instant position rj (t). Making use of representation (C1)
and the fact that the oscillating part δqj is small compared to
the mean part qj (t), we can approximately write

v(qj + δqj ,t) ≈ v(qj ,t) + δqj (t) · ∇v(qj ,t), (C2)

ζ (qj + δqj ,t) ≈ ζ (qj ,t) + δqj (t) · ∇ζ (qj ,t) (C3)

and proceed to the time averaging. We describe the minimal
model necessary to obtain the slow evolution of particle
positions and orientations.

1. Time-averaged equations for the positions of particles

To be able to obtain the time-averaged equation for the
positions of the particles, we first need to determine the
complex amplitude δrj , which determines the oscillating
contribution δqj (t). For simplicity, we do this independently
for the Stokes drag and for the gravitational term, as described
below. In both situations, we neglect the interactions with other
particles, which keeps our model simple and captures the basic
physics. After we have found the complex amplitudes δrj ,
we are able to perform the time averaging and to obtain the
corresponding contributions to the time-averaged equation for
the positions of the particles.

a. Stokes drag term

As mentioned above, to determine the complex amplitude
δr (S)

j caused by the Stokes drag, we retain this term and neglect
all other terms on the right-hand side of Eq. (3). Because δqj

is small, strictly speaking of order ε, we retain the leading term
for v in Eq. (C2) and taking into account Eq. (8b), we arrive at
the equation

mδq̈(S)
j + μtδq̇(S)

j = μtv1(qj ,t).

We recall that δq(S)
j (t) = δr (S)

j eiωt + c.c. and v1(qj ,t) =
V(qj )eiωt + c.c. to obtain

δr (S)
j = μtV(qj )

−mω2 + iω
. (C4)

With this result, we can evaluate the mean (time-averaged)
contribution made by the Stokes drag to the time-averaged
equation. Averaging Eq. (3) over time with all the terms on the
right-hand side neglected, except for the Stokes drag, we have

mq̈j + μt q̇j = μtu(qj ) + s(S)(qj ), (C5)

where the right-hand side is determined by the velocity field as
in Eq. (C2) averaged over time. Note that for a given particle j ,
we take into account the flow fields generated by all other
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particles,

u(qj ) =
∑
k �=j

uk(qj ), s(S)(qj ) =
∑
k �=j

s(S)
k (qj ). (C6)

Here uk is the mean flow field produced by particle k evaluated
via the potential �k(qj ) and the stream function �k(qj ),
as given by Eqs. (B18) and (B19), at the position qj of
particle j . Using Eq. (C4), the Stokes drift vector s(S)

k (qj ) =
μtδq(S)

k (t) · ∇v(k)
1 (qj ,t) = μt [δr (S)

k · ∇V∗
k(qj ) + c.c.] is evalu-

ated to yield

s(S)
k = − 2mμ2

t

m2ω2 + μ2
t

Re

{(
1 + i

mω

)
Vk · ∇V∗

k

}
, (C7)

where Vk(qj ) = (Uk,Vk) are the complex amplitudes of the
first-order velocity field v(k)

1 (qj ,t) given by expressions (B8)
and (B9) evaluated at qj . The subscript and superscript k

implies that only the term with j = k is retained in the sum.
Physically this means that we evaluate the fields produced by
particle k at the position of particle j .

b. Gravitational term

Similar to the consideration in Sec. IV, instead of the Stokes
drag we now consider the gravitational term on the right-hand
side of Eq. (3). The complex amplitude δr (G)

j caused by the
gravitational term can be determined from the equation

mδq̈(G)
j + μtδq̇(G)

j = −βζ1(qj ,t),

leading to

δr (G)
j = − β∇ξ (qj )

−mω2 + iω
(C8)

with ξ (qj ) being the complex amplitude of the field
ζ1(qj ,t).

The time averaging of the corresponding equation gives us

mq̈j + μt q̇j = −β∇ζ2(qj ) + s(G)(qj ) (C9)

with

ζ2(qj ) =
∑
k �=j

ζ
(k)
2 (qj ), s(G)(qj ) =

∑
k �=j

s(G)
k (qj ). (C10)

We note that the term proportional to ζ2 can be further
neglected. By means of Eq. (C8), the Stokes drift vector

caused by gravity s(G)
k (qj ) = −β∇[δq(G)

k (t) · ∇ζ
(k)
1 (qj ,t)] =

−β∇[δr (G)
k · ∇ξ ∗

k (qj ) + c.c.] is found to be

s(G)
k (qj ) = − 2mβ2

m2ω2 + μ2
t

∇|∇ξk(qj )|2. (C11)

Here ξk(qj ) is the complex amplitude of the first-order field

ζ
(k)
1 (qj ,t) given by expression (B10) evaluated at qj with a

single term j = k in the sum.

2. Time-averaged equation for the orientation of particles

The time averaging of Eq. (4) for the orientation of particles
is straightforward. Taking into account decomposition (C1),
for the time-averaged quantities we obtain

I ϕ̈j + μrϕ̇j = Tj + κH0[∇H (qj ) × Pj ] · êz, (C12)

with

H (qj ) =
∑
k �=j

sin(ωt)ζ (k)
1 (qj ) = −

∑
k �=j

Im{ξk(qj )}. (C13)

Here again ξk(qj ) is evaluated in the same way as in
Eq. (C7).

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[2] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99
(2002).

[3] A. Snezhko, J. Phys.: Condens. Matter 23, 153101 (2011).
[4] I. S. Aranson, Phys. Usp. 56, 79 (2013).
[5] G. Whitesides and B. Grzybowski, Science 295, 2418

(2002).
[6] J. E. Martin, Phys. Rev. E 79, 011503 (2009); K. J. Solis and

J. E. Martin, J. Appl. Phys. 111, 073507 (2012).
[7] S. C. Glotzer and M. J. Solomon, Nat. Mater. 6, 557

(2007).
[8] I. S. Aranson and L. S. Tsimring, Rev. Mod. Phys. 78, 641

(2006); Granular Patterns (Oxford University Press, Oxford,
2009).

[9] N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, and
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