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Interface dynamics of immiscible two-phase lattice-gas cellular automata: A model with random
dynamic scatterers and quenched disorder in two dimensions
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We use a lattice gas cellular automata model in the presence of random dynamic scattering sites and quenched
disorder in the two-phase immiscible model with the aim of producing an interface dynamics similar to that
observed in Hele-Shaw cells. The dynamics of the interface is studied as one fluid displaces the other in a clean
lattice and in a lattice with quenched disorder. For the clean system, if the fluid with a lower viscosity displaces
the other, we show that the model exhibits the Saffman-Taylor instability phenomenon, whose features are in
very good agreement with those observed in real (viscous) fluids. In the system with quenched disorder, we
obtain estimates for the growth and roughening exponents of the interface width in two cases: viscosity-matched
fluids and the case of unstable interface. The first case is shown to be in the same universality class of the random
deposition model with surface relaxation. Moreover, while the early-time dynamics of the interface behaves
similarly, viscous fingers develop in the second case with the subsequent production of bubbles in the context
of a complex dynamics. We also identify the Hurst exponent of the subdiffusive fractional Brownian motion
associated with the interface, from which we derive its fractal dimension and the universality classes related to a
percolation process.
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I. INTRODUCTION

The dynamics of Newtonian fluids is governed by the
Navier-Stokes equations [1]. In fact, a number of distinct flow
behaviors has been identified, such as laminar or turbulent,
depending on boundary conditions and the Reynolds number,
Re = V L/ν, where V (L) is some characteristic velocity
(length) and ν is the kinematic viscosity of the fluid. A special
case of wide interest is that of fluid dynamics in porous
media [2,3].

In a microscopically disordered media the flow is very
complex and its macroscopic behavior can be homogeneous
or heterogeneous [2]: in the former case, the system displays
size-independent transport properties, while in the latter the
system is better described by a position-dependent perme-
ability [4,5]. Further, at very low Reynolds number with the
characteristic length estimated from, e.g., the average size of
the solid obstacles, a proper volume average of the porous
media strongly indicates, in agreement with experimental
observation, that the single-phase flow is well described by
Darcy’s law [2,3]. In addition, if dispersion (diffusion) effects
are relevant, an advection-dispersion (convection-diffusion)
equation must be included in the description of a variety
of phenomena, such as fluid flow and solute transport [6],
and miscible viscous fingering [7–9]. On the other hand, as
Re increases, violations of Darcy’s law have been reported
due to inertial effects, described by the Forchheimer equation
[10,11], and very interesting non-Newtonian behavior, with
power-law permeability and data collapse in a broad range of
Reynolds conditions [12]. Very recently, the stability analysis
of two-phase buoyancy-driven flow, in the presence of a
capillary transition zone, was investigated in detail [13].

A large body of work on fluid dynamics in porous media
[2,14] clearly indicates that several powerful continuum and
discrete approaches have been put forward to treat many cases
of interest. In the continuum version both analytical and direct
numerical integration of the pertinent dynamic equations have

proved very efficient [3,5,6,8,11–14], while several concepts
from percolation, growth models, random walk, and fractal
geometry have been very useful in dealing with discrete models
[2,15,16], which are alternative approaches heavily based
on numerical simulations and supplemented by continuum
stochastic equations [16]. Among the discrete models widely
used in the literature, we shall emphasize the lattice gas cellular
automata.

Lattice gas cellular automata (LGCA) is a family of
computational models whose particles have velocities defined
by a discrete set and collide with each other on sites of a
hexagonal lattice; the resulting velocity configuration obeys
mass and momentum conservation [17–19]. Making use of the
Chapman-Enskog expansion, it was demonstrated that in two
[17–19] and three [20] dimensions the average values of the
pertinent variables in a macroscopic scale satisfies the incom-
pressible Navier-Stokes equations; the three-dimensional (3D)
case requires minor additional considerations. More recently,
2D-LGCA flows on curved surfaces with dynamical geometry
were also proposed [21], with motivation in describing a
variety of phenomena.

Challenging aspects in the description of flow in porous
media are associated with the complex geometry of the
pore space and the region near the fluid-fluid interface in
the multiphase case. The LGCA model handles the no-slip
boundary condition in the fluid-solid interface in a very
simple manner through the local bounce-back rule, which is
easily implemented even for the complex geometries arising
from the pore space [22]. In particular, the LGCA single
phase flow in 2D porous media satisfies Darcy’s [23] and
Forchheimer’s [10] laws, and the permeability of real systems
can be estimated [10,24] from images of their microgeometry.
We also remark that, in a clean channel, Poiseuille flow is
observed [23]. Two-phase flows in two dimensions are also
modeled through the LGCA by the use of colored particles
and an additional collision-color conservation law [25]. This
model leads to a well-defined interface between the two fluids,
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with a finite surface tension, thereby allowing the observation
of Laplace’s law and the phenomenon of phase separation [25].
Beyond that, it was shown [26] that this model captures the
expected interface hydrodynamic fluctuations associated with
capillary waves, and exhibits dynamic scaling exponents [16]
in agreement with those of the Kardar-Parisi-Zhang equation
[27,28], apart from logarithmic corrections for the largest
systems studied [26]. The macroscopic properties of two-phase
immiscible fluids in 3D porous media were described [29]
using lattices built from rock’s microgeometry. Further, the
flow of two-phase immiscible fluids in the presence of an
amphiphile species in 2D [30] and 3D [31] porous media were
also considered.

We also stress that much attention has been devoted to the
development of the lattice-Boltzmann method (LBM) [32,33].
This variant of the LGCA method [19] can be simplified
through a linearized collision operator [34,35], both in two
and three dimensions. The LBM was also used in the study of
single- [36,37] and two-phase [38–42] flows in artificial and
real 3D porous media, as well as in the study of single-phase
flow in multiscale porous media [4]. Further, the LBM was
adapted [43] to model single-phase flow in a 2D porous
medium, in which case the action of the solid space is
introduced as linear (Darcy’s law) and nonlinear (Forch-
heimer’s law) effective body-force terms in the generalized
Navier-Stokes equations [44]. On the other hand, the viscous
finger phenomenon in 2D channels was studied through the
LBM for two miscible fluids [45] and two immiscible fluids
with zero [45] and finite [46] surface tension. We also mention
that the LBM was adapted to describe the hydrodynamics of
3D liquid crystals [47], and very recently used [48] to study
the flow of a nematic liquid crystal in microfluidic channels.

In the following we digress on the statistical properties
and the dynamics of an interface separating two immiscible
fluids flowing in a Hele-Shaw cell, or in 2D and 3D systems
modeling these cells, which is the main subject of this work.
The dynamics of growing interfaces has stimulated inten-
sive theoretical and experimental investigations motivated
by its own challenging fundamental aspects and potential
technological applications as well [15,16]. In this context,
the displacement of a fluid by another during the flow in
a porous medium has been considered as a representative
example in the study of the dynamics of roughening interfaces
[15,16]. The main experimental tool in such studies is the
Hele-Shaw cell [49,50], which mimics the porous media and
have unveiled a rich variety of phenomena. The cell is formed
by two plates separated by a little gap of size b. The velocity
of a viscous single-phase flow through the gap, averaged
through the direction perpendicular to the plates, satisfies
Darcy’s law with permeability b2/12. For an immiscible
two-phase flow in a horizontal cell, if the less viscous fluid
displaces the more viscous one, the interface is unstable,
and a linear stability analysis predicts the occurrence of
one-finger or multifinger patterns [49,50]. More recently, very
detailed experimental aspects of this phenomenon [51–53],
and theoretical studies based on the vortex-in-cell method
[54], random-walk techniques and methods from complex
analysis [53], have been put forward, which also include the
phase-field model [55], potential flow analysis [56] of radial
fingering [57,58], and rigorous arguments [59].

In the context of flow in clean Hele-Shaw cells, a second
variant of the LGCA method was formulated [60,61] shortly
after the original proposal [17,18], in which case the Darcy’s
law obtains without the need of the detailed microscopic geom-
etry of the medium. In fact, through the introduction of random
scattering sites, in a stochastic context, the viscous dissipation
of the single-phase flow in a Hele-Shaw cell was investigated
using this modified LGCA method. On the other hand, in the
proposed model for immiscible fluids [62], the authors used
dynamic random scattering sites (a time-dependent approach)
and find that the interface fluctuations exhibit typical random-
walk behavior, with a roughness exponent 1/2; however, the
fluctuations are not associated with hydrodynamic capillary
waves, since the kinetic rules [62], and other assumptions,
differ from those of Ref. [25]. Notwithstanding, Saffman-
Taylor fingering instability [49,50] is observed through this
modeling [63]: the interface is unstable either if the fluids differ
in pressure or in the density of dynamic random scattering
sites. On the other hand, we mention that a two-phase model
similar to that of Ref. [25], but with only local update rules
[64] and with the inclusion of stochastic scattering sites, was
suggested [65] to describe multifractal properties of fingering
patterns associated with the Saffman-Taylor instability in a
clean Hele-Shaw cell. The viscosity contrast was introduced
through the use of distinct collision rules for each fluid. The
authors find that for high surface tension the Hausdorff (fractal)
dimension is in the interval (1.41–1.46), while for moderate
surface tension the fractal dimension is found to be 1.75 (see
the discussion below).

We now discuss highlights of viscous-fingering phenomena
in Hele-Shaw cells with quenched disorder. In the case
of a circular cell, fluid invasion at the center of the cell
exhibits a fractal fingering structure for high capillary number
Ca = μV/σ , where μ = ρν is the dynamic viscosity, ρ is
the density of the fluid, and σ is the interface tension [66]. On
theoretical grounds, for simplicity, the viscosity of the invading
fluid is considered negligible (infinity viscosity ratio), thus
allowing a map [67,68] of the growing front dynamics onto
the diffusion-limited aggregation (DLA) process [69], charac-
terized by a fractal dimension Df ≈ 1.71. Notwithstanding,
the measured [66] fractal dimension of the fingering structure
for high Ca, Df = (1.62 − 1.64) ± 0.04, is very close to the
fractal dimension of the percolation cluster backbone [70],
Df = (1.61 − 1.62) ± 0.02; it also satisfies the inequality
1.3 < D

eff

DLA < D
eff

V F < 1.7, suggested [71] to be valid above
the percolation threshold in the context of the analogy between
DLA, percolation, and viscous fingering. However, at low Ca
the fractal structure is described by invasion percolation with
trapping [72,73], Df ≈ 1.82, which should be compared with
the fractal dimension of ordinary [74] or invasion [72,75,76]
percolation at the threshold: Df = 91/48 ≈ 1.89. We also
remark that the diffusion front of random walkers on 2D
lattices is a fractal object of dimension Df = 1.75, in close
connection with the percolation cluster hull [77]; in 3D lattices
the front is a dense object with D = 3 [78]. Further, in
rectangular cells, two case studies have been reported [79]:
(i) water (wetting fluid) displacing oil (nonwetting fluid),
and (ii) oil (nonwetting fluid) displacing water and glycerol
(wetting fluid), with viscosity ratio M = μ2/μ1 ≈ 200 in the
two cases. The authors find that in the first case (imbibition
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process, with the finger width λ ∼ Ca−1/2), the finger width
is much larger than the pore size (viscous fingering), whereas
in the second case (drainage process), the finger width has
the same order of the pore size (capillary fingering). In this
context, a dynamical transition has been identified [80]. On the
other hand, self-affine (anisotropic) fractal interfaces [15,81]
from immiscible displacement in porous media were observed
when the displacing fluid is more viscous and more effectively
wets the medium (e.g., water or glycerol displacing air in a
Hele-Shaw cell filled with glass beads). In these experiments
the scale-dependent roughness, W (L) = ALα , where W (L) is
the interface width, α ≈ 0.73 is the roughness exponent, and
A ∼ Ca−1/2 [82], while large variations with time and flow
conditions suggest a more complex dependence on Ca [83],
with the effective value of α varying over a wide range
(0.65–0.91). In the latter experimental study, connection with
the dynamics of random-field Ising model was proposed,
although in this case a crossover from α = 0.8 at small scales
to α = 1

2 at larger scales was found [84], in agreement with
experiments on wetting invasion [85,86]. We remark that,
in the context of fractal growth in hydrodynamic dispersion
through random porous media, direct integration of the
advection-diffusion and linear stokes equations shows that
the following steady flows are obtained [87] according to
the value of the Péclet number, Pe = V L

Dm
, where Dm is the

diffusion constant: (i) for Pe = ∞, the fractal morphology
of the spreading dye (tracer) is characterized by a fractal
dimension close to DDLA; (ii) for Pe = 0, a self-affine fractal
interface is identified with scaling consistent with a growth
process as predicted by the KPZ equation [27]; (iii) for
finite Pe, the behavior is characterized by the competition
between advection and diffusion effects. Last, a series of
very detailed experimental studies in Hele-Shaw cells with
disorder have investigated the interface scaling and fractal
properties under combined viscous, gravity, and capillary
effects [88–93]. In particular, for immiscible displacement of
viscosity-matched fluids in 2D porous media [89], the fractal
structures of the front are characterized by using the box
counting algorithm, which implies Df = 1.33 ± 0.05, con-
sistent with the fractal dimension of the external perimeter in
invasion percolation [94], and the density-density correlation
function (data collapse for several values of Ca), which implies
Df = 2 − α = 1.42 ± 0.05 and β = 0.8 ± 0.3, where β is the
growth exponent (WL ∼ tβ). In addition, the authors find that
the fractal dimension of the structure left behind the front is
Df = 1.85, consistent with invasion percolation with trapping.
Further, a detailed analysis of the two-phase flow of immiscible
fluids in disordered porous media allowed the authors [92]
to propose a quite unified view of the macroscopic transport
properties. Indeed, the characteristic crossover scales between
fractal regimes, i.e., from capillary to viscous fingering, are
discussed using box counting, where the box side size l ranges
from the cell width Ly (cell extent Lx) down to the pixel
size. They thus find D = 1.00 for l > Ly , Df = 1.60 for
Ly > l > a/Ca, and Df = 1.83 for l < a/Ca, where a is the
pore size. We stress that the two mentioned fractal dimensions
are consistent with those of 2D percolation cluster backbone
and invasion percolation with trapping, respectively.

The main goal of our work is to study the interface dynamics
between two immiscible fluids in a Hele-Shaw cell geometry

in clean systems and in systems with quenched disorder;
both cases are investigated through the LGCA model [25]
in the presence of dynamic random scattering sites [63]. In
fact, our approach combines the best features of the LGCA
model, namely, its microscopic kinetic rules [25], interface
hydrodynamic fluctuations effects [26], and dynamic random
scattering sites [63], thereby allowing a nice description of the
Saffman-Taylor instability in a clean Hele-Shaw cell, in very
good agreement with experimental observations [49,50,52,53].
In addition, the inclusion of quenched disorder allows us to
consider the competition between viscous and capillary effects
at the pore level, thus causing the roughening interface to
exhibit very interesting self-affine features.

The work is organized as follows, in Sec. II we briefly
review the LGCA models from which we build the two phase
LGCA with scatterers. In Sec. III we present our results for the
interface dynamics in a clean system, exhibiting the Saffman-
Taylor instability, and in a system with quenched disorder, in
which case we also study scaling behavior, critical exponents,
and fractal dimension of the interface. Finally, a discussion
on the main results and concluding remarks are presented
in Sec. IV.

II. LGCA MODELS

A. Single phase LGCA

The basic model reviewed in this section is named the
random-collision 7-velocity [19]. Time and space are discrete
and the particles can lie only on the sites of a regular triangular
lattice. Moreover, its velocities can assume only seven possible
values, one is null (particle at rest) and six have magnitude of
one lattice unit (unit of length) per time step (unit of time) in
the direction of the lattice edges, ci = [cos(iπ/6), sin(iπ/6)]
with i = 1, . . . ,6, where a lattice unit is the distance between
two sites. Not more than one particle per site in one direction is
allowed. In each time step the outcome of particle collisions are
such that total momentum and particle number are conserved
at each site of the lattice; after each collision the particles hop
to a neighboring site in accord with its velocity. In a collision,
the model takes into account all possible random changes in
the velocity allowed by the conservation laws; the collision is
local, i.e., it depends only on particles at the same site.

In this model, it is natural to define the following hydrody-
namic variables:

ρ(x,t) =
6∑

i=0

Ni(x,t), (1)

the density of particles per site at position x and time t ,

g(x,t) =
6∑

i=1

Ni(x,t)ci , (2)

the momentum density per site, where Ni is the probability
of a particle at position x and time t to have a velocity in the
direction i, considering N0 in Eqs. (1) and (2) as the probability
of a particle to be at rest. These probabilities are obtained by
making space-time averages. Densities per unit area, ρ and g,
are given by

ρ = ρ/(
√

3/2) and g = g/(
√

3/2). (3)
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In systems not far from equilibrium, with smooth variations
in space and time, Chapman-Enskog expansions allows one to
obtain the following dynamic equation [17–19]:

∂u
∂t

+ g(ρ)(u · ∇)u = − 1

ρ
∇p + ν∇2u + 1

ρ
f, (4)

where u is the average flow velocity, ν is the kinematic
viscosity, f is the body force per unit area, and

g(ρ) = 14

24

7 − 2ρ

7 − ρ
. (5)

Boundary conditions are easily implemented [17–19] and
the no-slip boundary condition is introduced by bouncing back
the particles when they arrive at sites marked as solid sites.
In our simulations the force is introduced by increasing the
momentum at a randomly chosen site, if such a change is
possible, until the total desired momentum increase is reached
in each time step.

B. Immiscible two phase LGCA

The immiscible lattice gas (ILG) was introduced by
Rothman and Keller [25] and mimics the dynamics of two
immiscible fluids in two dimensions. This model is similar to
what we have described above except that there are two kinds
of particles: red and blue. As before, we allow not more than
one particle with the same velocity at the same site, even if they
have different colors. In the propagation, the particle maintains
its identity and in a collision, in addition to the conservation
of momentum and particle number, the number of particles
of each color is also conserved at each site. Nonetheless,
not all collisions are allowed; in fact, they depend on the
neighborhood and in the way that particles of the same color
tend to cluster. More specifically, the site configuration could
be represented by 14 Boolean variables, (r0,b0, . . . ,r6,b6) each
one representing the presence of a red or blue particle in the
direction i (again, the direction 0 is associated with a particle at
rest). The effect of the neighborhood on the result of a collision
at the site x is introduced through the definition of the vector
quantity color gradient:

F(x) =
∑

i

ci

∑
j

[rj (x + ci) − bj (x + ci)]; (6)

the vector color flux:

q[r(x),b(x)]) =
∑

i

ci[ri(x) − bi(x)], (7)

and by considering that the resultant site configuration maxi-
mizes the quantity:

q(r′,b′) · F, (8)

and conserves the number of each kind of particle and the
total momentum. In the above equation, a prime indicates
the configuration after a collision. If there is more than one
configuration that maximizes Eq. (8), one of them is randomly
chosen.

Through these rules, an initially mixed system will separate
into regions with only red or blue particles, depending upon
the density of particles and the relative concentration of color
[19,25]. In general, if the density is above two particles per

site and the relative concentration is not too high or too low,
the separation occurs. In a phase separated system it is verified
by simulations that there is a discontinuity in pressure which
obeys Laplace’s law [19,25]:

p1 − p2 = σκ, (9)

where p1 and p2 are the pressure in regions with different
colors, σ is the surface tension, and κ is the curvature of the
interface. The value of σ varies with the density of particles
and for the density used in this paper it is approximately 0.37.
In regions where there is just one kind of particle, the dynamics
is the same as that of the 7-random-velocity model, but in the
interface the dynamics changes.

C. Single phase LGCA with scatterers

This model was introduced by Hayot et al. [60] with the
goal of reproducing the fluid dynamics ruled by Darcy’s law.
The scatterers provide momentum dissipation similarly to the
solid region of porous media or the plates of Hele-Shaw cells.
Here the scatterers are introduced in the random-collision
7-velocity model. In each time step a fixed number of sites
is chosen randomly as solid scattering sites, thus inverting the
velocity of the scattered particles and introducing a damping
term in Eq. (4). The number of scattering sites must be very
low compared with the number of particles in the system.
Furthermore, if the density is chosen to be 3.5 particles per site
g(ρ) = 0, thereby eliminating the advective term in Eq. (4). In
this manner, we obtain [60] the following steady state equation:

αsu = − 1

ρ
∇p + ν∇2u + 1

ρ
f, (10)

where αs is positive and proportional to the density of scatterers
[60]. For a lattice gas in the xy plane subject to a force density
f and a constant pressure (p) gradient also in the x direction,
Eq. (10) reads

αsux = − 1

ρ

dp

dx
+ ν∇2ux + 1

ρ
f. (11)

The effect of the dissipative term can be understood by
comparing the velocity profile for the boundary conditions of
a Poiseuille flow with the parabolic profile which is obtained
in the absence of this term. For this boundary condition the
fluid is confined between two lines of solid sites at y = 0 and
y = L, which implies ux(0) = 0 and ux(L) = 0, due to nonslip
boundary conditions in the solid sites, and the following
solution to Eq. (11) [60]:

ux(y) = 1

αsρ

(
− dp

dx
+ f

){
1 − cosh{r[y − (L/2)]}

cosh(rL/2)

}
, (12)

with r = √
αs/ν.

In Fig. 1 we present the velocity profile for a simulation1

of the single phase LGCA model with scatterers, adopting
periodic boundary conditions (PBCs) in the x direction, for
the indicated values of density of scatterers Ns , homogeneous
density of force per site f , as well as data for a simulation

1The codes we use were built from http://www.lmm.jussieu.fr/
∼zaleski/latgas.html; see Ref. [19].
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FIG. 1. (Color online) Profile of the x component of the mo-
mentum per site gx for the single phase LGCA with scatterers in
a flow with the same boundary condition as the Poiseuille flow
(indicated in the figure). The density of scatterers Ns is indicated,
the density per site is ρ = 3.5, and the body force per site is
f = 1/(256 × 64) ≈ 6.1 × 10−5. Solid lines are fittings of the data
to Eq. (12). Inset: dissipative factor αs as a function of Ns from the
presented profiles.

without scatterers. Since the applied force is homogeneous,
the density (ρ) and the pressure (p) remain constant on
average ( dp

dx
= 0); therefore, the data of the simulations are

well fitted by Eq. (12). As we can see, the presence of
scatterers flattens the velocity profile in comparison with the
parabolic one, except near the walls [43,60,61]. For Ns = 0,
we obtain ν = 0.196, which is in accordance with reported
results [19] for the value of ν for the random-collision
7-velocity model. Following the procedure described in
Ref. [60], we obtain ν = 0.197, 0.176, 0.207, and 0.196 for
Ns = 0.001, 0.002, 0.004, and 0.008, respectively. Also, we
find the dissipative factor αs = 1.95Ns , which is near the theo-
retical estimate from the microscopic model through the use of
the Boltzmann approximation [60]: αs = 2Ns , but greater than
the value observed for the 6-velocity model [60]: αs ≈ 1.1Ns .

In the region where the velocity is flat, the Laplacian term in
Eq. (11) can be neglected, and this equation reduces to Darcy’s
law [43,60,61]:

ux = k

μ

(
− dp

dx
+ f

)
, (13)

where μ = νρ is the dynamic viscosity of the fluid and k is
the permeability of the porous medium; for fluid flow in a
Hele-Shaw cell, k = b2/12, where b is the gap between the
two plates of the cell. This implies

k

μ
≡ 1

αsρ
, (14)

which allows a physical interpretation of the underlying role
played by the scatterers in the model. For homogeneous
pressure, Eq. (13) can also be written in terms of the
momentum and force densities per site:

gx = k

ν
f . (15)

In Fig. 2 we present the simulation of a flow on a lattice
without solid sites and with periodic boundary conditions
in the x and y directions and without any obstructed sites.

0 5 10 15
104 x f

0

0.5

1

g x

0.001
0.002
0.004
0.008

0 0.002 0.004 0.006 0.008
Ns

0

0.02

0.04

0.06

μ/
k

From Fig. 1
From Fig. 2

FIG. 2. (Color online) Component x of the momentum per site,
gx , as a function of the body force per site, f , for ρ = 3.5 and periodic
boundary conditions in the x and y directions, for the values of Ns

indicated. Solid lines are fittings to a Darcy’s law equation form,
Eq. (15). Inset (from Fig. 1): μ/k = 2αsρ/

√
3 as a function of Ns

calculated from Eq. (14) and the estimated value of αs from Fig. 1.

The simulations were performed using 106 time steps and the
results for the average momentum are obtained discarding the
first 20 000 time steps. A linear relation between f and gx or ux

is obtained. The values of μ

k
= αsρ shown in the inset of this

figure are consistent with those obtained from the simulation
in a channel with αs ≈ 2Ns , in agreement with the estimate
from the Boltzmann approximation [60].

Therefore, the approach with scatterers is quite remarkable
since it allows the unified description of Hele-Shaw cell exper-
iments with fluid dynamic viscosity tuned by μ = ( b2

12 )αsρ, or
the flow in a general 2D porous media, which may include
quenched disorder effects, with an average homogeneous
permeability k fixed by Eq. (14).

An interesting situation is the possibility of introducing
scattering sites in the ILG model, in particular for red and blue
fluids having distinct scattering rates, which can be interpreted
as two fluids with different viscosities. This situation can be
realized and shall be discussed in the next section for an
homogeneous lattice and a lattice with quenched disorder.

III. IMMISCIBLE LGCA WITH DYNAMIC SCATTERERS

This model is built by introducing random dynamic scatter-
ing sites in the ILG model. In regions of the lattice where there
is just one kind of fluid, the flow dynamics is the same as the
LGCA model with scatterers and the change occurs only on
the interface. In a static situation, simulations as in Ref. [25]
confirm that Laplace’s law holds and the surface tension has a
value nearly equal to the one found in the ILG model (≈0.37).
In particular, if a flow is established in a system with distinct
scattering rates for the red and blue fluids, we can observe
a Saffman-Taylor-like instability [49,50] in the interface, as
described below.

A. Interface instabilities

The dynamics of the interface between two immiscible
fluids as one displaces the other in a Hele-Shaw cell can be
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discussed by considering the average velocity of flow and
the relation between the viscosities of the two fluids [49–53].
Three general behaviors for the interface are observed as these
parameters are varied: (i) If a more viscous fluid displaces a
less viscous one or a less viscous one displaces a more viscous
one with a low average velocity, the interface is flat; (ii) if a less
viscous fluid displaces a more viscous one with intermediate
values of the average velocity, a single stable finger is observed;
(iii) for sufficiently higher values of the average velocity a
multifinger dynamics sets in. If fluid 2 displaces fluid 1 in a
cell with width Ly the finger patterns observed are governed by
two dimensionless parameters [51,54]: the viscosity contrast

A =
μ1

k1
− μ2

k2
μ1

k1
+ μ2

k2

, (16)

and a dimensionless surface tension

B = 2σ

L2
y

1(
μ1

k1
− μ2

k2

)
V

, (17)

where V is the average velocity of the flow. Further, from a
linear stability analysis of the problem, it is possible to show
that the perturbation with the wavelength [15,50]

λm = 2πLy

√
3

2

√
B = 2π

√
3σ(

μ1

k1
− μ2

k2

)
V

(18)

presents the maximum growth rate; however, all perturbations
with λ > λm/

√
3 are unstable. In the case of a Hele-Shaw

cell, with μ2 	 μ1, λm ≈ πb/
√

Ca, where Ca = μV/σ is the
capillary number.

Turning our attention to the ILGS, with the red fluid
displacing the blue fluid, we observe similar regimes to those
discussed above and the parameters A, B, and λm can be
written as

A = Ns,b − Ns,r

Ns,b + Ns,r

; (19)

B = 2σ

L2
y

1

1.95(Ns,b − Ns,r )ρV
; (20)

λm = 2πLy

√
3

2

√
B = 2π

√
3σ

1.95(Ns,b − Ns,r )ρV
, (21)

where we have used (μ/k) = αsρ, with αs = 1.95Ns , in
Eqs. (16)–(18); moreover the subscripts r and b refer to the
red and blue fluids, respectively.

First, if the scattering rate of the red fluid is higher than
that of the blue fluid, the interface is flat as in (i) above.
If the red fluid has a lower scattering rate, we observe the
three situations exemplified in Figs. 3–5, which are obtained
in a lattice under the following conditions: the first and last
lines are made of solid sites; the density of both fluids is 3.5
particles per site, periodic boundary conditions are applied in
the horizontal direction with the color of the particle changing
when it crosses the boundary sites, as made in [19] to simulate
a fluid invasion process. The viscosity contrast for the three
simulations is A = 0.78. For a finite forcing rate, the velocity
is not constant and depends on the fraction of each fluid; its
average is calculated by considering the time needed to the
most advanced point of the interface to meet the right boundary
of the lattice. In particular, in Fig. 3 we show a simulation

FIG. 3. (Color online) Snapshots of a simulation in which the red
(light gray) fluid with a density of 0.001 scatterers per site displaces
the blue fluid, which has a density of 0.008 scatterers per site. The
forcing rate is 0.0001 and acts from left to right. The width of the sys-
tem is 500

√
3/2. Simulation time step increases from top to bottom.

with a low forcing rate (=0.0001) and an average velocity
V ≈ 4.9 × 10−3 presenting the formation of one finger, which
is our version of the so-called Saffman-Taylor instability [53].
The value of λm ≈ 400 implies Ly/λm ≈ 1.1, in agreement
with the simulation. For a higher forcing rate (=0.0005), and an
average velocity V ≈ 2.2 × 10−2, we observe in Figs. 4 and 5
a multifinger dynamics for the interface between the two lattice
gases, as in regime (iii) above, and in excellent agreement with
the observed two-fluid dynamics in a Hele-Shaw cell [52] for
the two-finger (Fig. 4) and multifinger (Fig. 5) cases. Indeed,
in these two cases, λm ≈ 190 implying Ly/λm ≈ 2.3 (≈ 9.1)
for the simulation presented in Fig. 4 (Fig. 5). Moreover, the
agreement between our predictions for the number of fingers,
shape, and time evolution, as shown in Figs. 3–5, is remarkable
[51–53]. We also emphasize that the finger dynamics is quite

FIG. 4. (Color online) Snapshots of a simulation in which the red
(light gray) fluid with a density of 0.001 scatterers per site displaces
the blue fluid, which has a density of 0.008 scatterers per site. The
forcing rate is 0.0005 and acts from left to right. The width of the
system is 500

√
3/2. Simulation time step increases from (a) to (f).
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FIG. 5. (Color online) Snapshots of a simulation in which the red
(light gray) fluid with a density of 0.001 scatterers per site displaces
the blue fluid, which has a density of 0.008 scatterers per site. The
forcing rate is 0.0005 and acts from left to right. The width of the
system is 2000

√
3/2. Simulation time step increases from (a) to (f).

complex; indeed, as time increases, some fingers can give
rise to both bubble formation and finger amalgamation [see
Figs. 5(e) and 5(f)]. The mentioned agreement is, in fact, the
real reliability test of our approach.

While we do not provide a rigorous mapping between
the immiscible two-fluid flow in a Hele-Shaw cell and the
ILGS model, the simulations discussed above suggest the close
relation between the two systems.

B. Interface dynamics with quenched disorder

The dynamics of the interface between two fluids were
observed in a great variety of experiments in Hele-Shaw cells
with some kind of disorder [16,73,88–92]. The disorder can be
introduced by the spatial variation of the gap between the plates
of the cell [86] or by the introduction of randomly distributed
circular obstacles [82,84]. In both cases the dynamics of
the interface may obey scaling laws, but the values of the
exponents are usually distinct [86,89]. Discarding the effect
of gravity, the interface is unstable to finger formation if the
defending fluid is the higher viscous one, while viscous forces
stabilize the interface in the opposite case. In the unstable
situation, the finger patterns can be controlled predominately
by capillary forces (acting in the scale of the pores), or
by viscous forces, in which case crossover length scales
between the pole-scale structure and macroscopic scales can
be defined [92].

Inspired by these experiments, we consider now the
simulation of the ILGS model for the displacement of the blue
fluid by the red fluid in a system with a random distribution of
circular beads (see Fig. 7). We use no-slip boundary conditions
at solid sites, periodic boundary conditions in the vertical and
horizontal directions, but in the horizontal direction the color
of the particle changes when it crosses the boundary sites. The
average density of particles is equal for the two fluids and has
the same value for all simulations: 3.5 particles per site. We
do not consider effects of wettability in the system, although it
is possible to introduce it in the cellular automata model [19].
Thus, in the unstable situation studied below, the fingers are
controlled by viscous forces at large scales and capillary effects
at small scales.

The bead-filling algorithm is as follows: first, we choose
the total amount of sites to be solid sites, then we choose

10 20 30 40 50
Radius (l. u.)

0.01

0.04

Fr
eq

ue
nc

y 0.0434 e-0.01916x

FIG. 6. (Color online) Distribution of beads radii. The data are
obtained averaging each frequency through 100 realizations of initial
configuration and are well fitted by an exponential distribution.

randomly (with a uniform distribution) the position of the
bead center and its radius (between 20 and 50 lattice units).
If the bead is sufficiently distant from any other solid site (20
lattice units is chosen), the new bead is accepted and the total
amount of solid sites increases. This process is iterated until the
predefined total fraction of solid sites is reached or exceeded.
This algorithm leads to the exponential distribution of radii
shown in Fig. 6, which is well fitted by the Poisson distribution
and implies an average radius equal to 25 lattice units and
an average porosity (the void fraction of the system) equal
to 0.81.

In Fig. 7 we present snapshots of the displacement of a
blue fluid by the red fluid in a disordered medium in three
regimes, with the same forcing rate: 3.0 × 10−4. In Fig. 7(a)
the scattering rate of the red fluid is higher than the scattering
rate of the blue fluid and the stable interface is flat in the void
regions; in Fig. 7(b) the scattering rate of the two fluids is
equal and the interface remains compact; while in Fig. 7(c) the
defending fluid has a higher scattering rate compared to the
invading one, and the interface displays a dendritic pattern, as
expected from Saffman-Taylor instability, and shows bubble
production.

We shall now discuss in detail the interface dynamics in the
following cases:

Case I. Blue and red fluids have the same scattering rate
(0.001).

Case II. The scattering rate of the blue fluid is 0.002, while
the scattering rate of the red fluid is 0.001.

A single-valued interface height function h(y,t) is defined
as the horizontal position (with h increasing from left to right)
of the rightmost red site in the horizontal line at y for the
time step t . In case I a constant forcing rate of 3 × 10−4 is
applied, while in case II a variable forcing rate ranging from
3 × 10−4 to 5.341 × 10−4 is used, depending on the fraction
of the system occupied by the red fluid. The height functions
so produced are presented in Fig. 8 for the two cases studied.

The interface dynamics can be characterized by the time
dependence of its width [16]:

W (Ly,t) =
√

〈[h(y,t) − h̄(t)]2〉, (22)
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FIG. 7. (Color online) Snapshots from three simulations with
distinct parameters of the displacement of the blue fluid by the red
fluid in a disordered medium; the scattering rate of the red (light gray)
[blue] fluid is 0.008 [0.001] in (a), 0.001 [0.001] in (b), and 0.001
[0.008] in (c). In (b) and (c) just below the image of the snapshot we
present the interface between the two fluids. The size of the systems
is 5000 × 2500

√
3/2 and the forcing rate is 3.0 × 10−4. In (b) the

sites at the first and the last horizontal lines are solids.

and the spatial dependence of the equal time correlation
function:

C(l,t) =
√

〈[h(y,t) − h(y ′,t)]2〉, for l = |y − y ′|, (23)

0 2000 4000 6000 8000 10000x
0

1000

2000

3000

4000

5000

y

(a)

0 2000 4000 6000 8000 10000x
0

1000

2000

3000

4000

5000

y

(b)

400

FIG. 8. (Color online) Height function h(y,t) for systems with
size 10 000 × 6000

√
3/2. In (a) the scattering rate of the red (light

gray) and blue fluids are 0.001 (case I), while in (b) the scattering
rate of the red (light gray) fluid is 0.001 and the scattering rate of the
blue fluid is 0.002 (case II). Time increases from left to right and each
figure represents one realization of the respective case.

where angular brackets denote averages on y and on different
realizations of disorder (our data were obtained from simu-
lations of a minimum of 50 and a maximum of 100 disorder
realizations), while h̄(t) denotes the average value of h along y

for a given disorder realization in time step t . It is expected [16]
that W and C presents, respectively, a power-law behavior for
short time and length scales:

W (Ly,t) ∼ tβ, for t 	 t×; (24)

C(l,t) ∼ lα, for l 	 ξ, (25)

where β is the growth exponent, α is the roughness exponent,
t× ∼ Lz defines the crossover time above which the interface
width saturates, where z is the dynamic exponent, and ξ is
the correlation length parallel to the interface. The crossover
time t× is such that for t � t× the interface width saturates in
a value

Wsat ∼ Ly
α. (26)
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FIG. 9. (Color online) Interface width W as a function of time for
(a) case I and (b) case II for the indicated vertical dimensions, with
a = √

3/2, solid lines gives the best power-law function that best fits
the last points of the curve for the largest system size. Insets: average
value of the interface height as a function of time.

It is worth mentioning that the ILG model presents an intrinsic
fluctuating interface with a very short width and for system
sizes with Ly � 64, the values α = 1/2, β = 1/3, and z =
α/β = 3/2 were estimated [26], which are the exponents of the
Kardar-Parisi-Zhang (KPZ) [27] continuum model. However,
for system sizes with Ly � 64, logarithmic corrections were
observed [26] in the scaling law for the saturation width. On the
other hand, under a Saffman-Taylor instability, the interface
width is not expected to saturate.

In Fig. 9 we present the growth of W and the average
height 〈h〉 (see inset) as a function of time for the two cases
studied. First, we notice that 〈h〉 is a linear function of time,
as shown in the inset, and the velocity of the interface is
constant, as mentioned above, with a value of 3.3 × 10−2

lattice units per time step in case I and 3.6 × 10−2 lattice
units per time step in case II. The interface width exhibits two
distinct behaviors with a crossover at t ∼ 10 000, and W ≈ 50,
which is approximately the average bead diameter: (i) for
initial times, we find β ≈ 0.53 and β ≈ 0.51 for cases I and II,
respectively; on the other hand, discarding the initial transient
behavior, the exponent β is found to be β = 0.27 ± 0.07 for
case I and β = 0.56 ± 0.07 for case II. In case I, for the large
lattice sizes used (Ly = 1500

√
3/2 and 6000

√
3/2) and time

interval of observation, i.e., (1 × 103 − 2 × 105) time steps,
we have not witnessed any sign of width saturation, which may
occur in Hele-Shaw experiments with quenched disorder [89].
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 t)
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t = 2,00 x 105
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t / 1000
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FIG. 10. (Color online) Equal time correlation function C(l,t)
as a function of distance l for the indicated values of t in (a) case
I and (b) case II. (c) Roughness exponent α as a function of time
for the two cases. Simulations are performed in a system of size
10 000 × 6000

√
3/2.

In Fig. 10 we present the equal-time correlation functions
for the two cases at three values of time: t1 = 2000,t2 = 10t1,

and t3 = 100t1. The curves present an upturn for short values
of l, which is possibly related to the short scale fluctuations
of the ILG model and a power-law behavior for intermediate
values of l before saturation for l > 100; this length scale is
higher for higher t and the value of W also increases with time.
The difference in the density of scatterers in case II implies a
higher value for the correlation at saturation and for the length
scale associated with the crossover to this regime. We also
calculate the time-dependent value of the roughness exponent
α for 10 � l � 30, which is shown in Fig. 10(c). We see that α
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decreases slowly with time, starting from α ≈ 0.5, and reaches
the lower average value in case II in the longer time studied:
α = 0.39 ± 0.04 at t = 200 000.

C. Universality classes of the roughening process

In case I, the estimated values of the exponents: β = 0.27 ±
0.07 and α = 0.48 − 0.43 ± 0.03 for t � 2 × 104, are very
near the respective values for the discrete random deposition
(RD) model with surface relaxation [95] and the solution of
the continuum Edwards-Wilkinson (EW) equation [96], which
are in the same universality class and have the following
exponents [16]: β = 0.25 and α = 0.5. The reasoning for
this coincidence can be understood by noticing that in case
I the scattering rate of the blue and red fluids are equal, so
that the interface dynamics is governed only by the random
bead distribution and the surface tension. The effect of the
beads distribution is to increase the width in an uncorrelated
fashion (like the RD process), while surface tension softens
the interface (surface relaxation effect), thereby inducing its
correlated character.

In case II the interface is unstable to viscous finger
formation, in which case the viscosity contrast in Eq. (16)
is A = 0.33. The simulation presents two important length
scales, one of them is the average diameter of the beads,
d ≈ 50, and the other is associated with the viscous finger
dynamics, which is dominated by the perturbation with
wavelength λm ≈ 400, i.e., Ly/λm ≈ 13. Comparing Figs. 8(a)
and 8(b), we notice a similar behavior for the height functions
of these two simulations for early times; while, for later
times, the height function shown in Fig. 8(b) exhibits an
oscillating pattern with wavelength ∼λm, superimposed by
small spatial fluctuations with a characteristic length ∼d and
caused by the effective capillary pressure ∼σ/d [16]. As
shown in Fig. 11, for this time regime, the full integrity of
the interface is somewhat lost and the system displays a huge
production of bubbles, thereby originating a large mixed zone
and an interface height function associated with the limits of
this zone. In any event, the result of the quenched disorder
manifests in a time dependent roughness exponent, shown
in Fig. 10(c); in fact, by mapping the interface fluctuations
at a fixed time onto a fractional random walk, with the y

direction playing the role of the random-walker time, the
roughness exponent is identified, after a short transient time,
with the Hurst exponent of a subdiffusive fractional Brownian

FIG. 11. (Color online) Same as in Fig. 8(b): Snapshot of the
system as the most advanced portion of the red (light gray) fluid
meets the right boundary of the lattice.

motion [15], i.e., α(t) < 0.5. More precisely, we find for case
I α(t) = 0.55 − 0.43, while for case II α(t) = 0.53 − 0.39,
with error bars indicated in Fig. 10(c). Therefore, the self-
affine local fractal dimension [15,81], Df (t) = 2 − α(t), reads
Df (t) = 1.45 − 1.57 and Df (t) = 1.47 − 1.61 for cases I and
II, respectively. In both cases, the early-time values of the
fractal dimensions are consistent with the measured fractal
dimension of immiscible displacement of viscosity-matched
fluids in 2D porous media [89], which was suggested [89] to
be related to the fractal dimension of the external perimeter in
invasion percolation [94]. In addition, for case II, it is quite
satisfying to observe that our measured value of Df (t), at the
breakthrough, is consistent with the fractal dimension of the
percolation cluster backbone [70], and also in agreement with
fractal dimensions associated with (i) fingering structure in
a circular Hele-Shaw cell with quenched disorder and fluid
invasion at the center of the cell for high Ca [66]; (ii) viscous
fingering structure due to invasion of a less viscous fluid
in a more viscous one in a horizontal Hele-Shaw cell with
quenched disorder for side sizes l (box counting) in the interval
Ly > l > a/Ca [92].

IV. SUMMARY AND CONCLUSIONS

In this work we presented a thorough study of a model based
on lattice gas cellular automata techniques, including random
dynamic scatterers. Our approach combines the best features
put forward in this class of models: microscopic kinetic
rules, interface hydrodynamic fluctuations effects, and the
presence of random dynamic scattering sites. In fact, the main
achievement of our work is to show that the dynamics of the
proposed model is in very good agreement with the observed
dynamics of immiscible two-fluid flows in Hele-Shaw cells.

In order to fulfill this goal, we first showed that for a single
fluid under a constant injection of momentum, the macroscopic
Darcy’s law equation is recovered, and the ratio k/μ can be
finely tuned through the model parameters. We then reported
simulations of two distinct but related phenomena. (i) For
two immiscible fluids with the less viscous fluid displacing
the more viscous one, the model exhibits the Saffman-Taylor
instability, in which case the number of fingers, shape, and time
evolution is in very good agreement with the predictions from
a linear stability analysis and experimental observation of the
interface dynamics. We also mention that the finger dynamics
is quite complex; indeed, as time increases, some fingers can
give rise to both bubble formation and finger amalgamation.
(ii) Next, we studied the dynamics of the interface between
immiscible fluids under quenched disorder, simulated by
randomly distributed beads with random diameters obeying the
Poisson distribution. In the case of matched-viscosity fluids,
the growth and roughness exponents present values suggesting
the same universality class of the random deposition model
with surface relaxation: β = 0.25 and α = 0.5. In the case of
the less viscous fluid displacing the more viscous one, we find
β ∼ 0.5, and that the interface early-time dynamics is very
similar to the former case; however, as time increases, viscous
fingers develop with the subsequent production of bubbles
in the context of a complex dynamics, thereby giving rise
to an increasing mixed zone. Finally, we emphasize that the
time-dependent behavior of the roughness exponents are quite
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similar in both cases, with a monotonic decreasing from their
starting value: α ∼ 0.5; indeed, after a short transient time,
this exponent can be identified with the Hurst exponent of a
subdiffusive fractional Brownian motion. In particular, after
the transient behavior, the early-time fractal dimension of the
interfaces are consistent with the measured fractal dimension
of immiscible displacement of viscosity-matched fluids in
porous media, and with the fractal dimension of the external
perimeter in invasion percolation. Further, in the case of a less
viscous fluid displacing a more viscous one, our measured
value of the fractal dimension at the breakthrough is consistent
with the fractal dimension of the percolation cluster backbone,
and in agreement with experimental results in Hele-Shaw cells
with quenched disorder.

The above summary clearly supports the conclusion that the
two above-mentioned phenomena were successfully simulated
by our model, with insights and interesting features unveiled.
We thus expect that the reported results will stimulate further
theoretical and experimental studies of two-fluid flow in porous
media.
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