
PHYSICAL REVIEW E 88, 033021 (2013)

Electric double-layer interactions in a wedge geometry:
Change in contact angle for drops and bubbles
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In this paper, we provide a theory to pinpoint the role of electric double layer (EDL) interactions in governing
the contact angle of an electrolyte drop on a charged solid in air or a bubble on a charged surface within an
electrolyte solution. The EDL interactions are analytically solved by representing the three phase contact line as
a wedge edge, with the wedge being formed by the solid-liquid and the air-liquid interfaces, and calculating the
corresponding Maxwell stresses. We demonstrate that the EDL effects induce an “electrowetting-like” behavior,
resulting in a lowering of the contact angle. As a specific example, we use this model to analyze the effect of
added salt on preformed surface nanobubbles, and find, in contrast to what has been reported earlier, that even
for most moderate conditions, added salt may have remarkable effect in altering the contact angle in preformed
surface nanobubbles.
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I. INTRODUCTION

Determination of the contact angle of a drop on a solid,
application of external means to alter this contact angle, and
understanding the resulting contact line dynamics during this
alteration process form the founding basics of the subjects of
wetting and capillarity [1–7]. While a drop of a given liquid
demonstrates a unique value of the contact angle on a given
partially wetting solid in a given surrounding, practical and
technological requirements have motivated development of
methods that may enforce a change in this intrinsic contact
angle value. For example, periodic micronanostructures have
been engineered on the solid to ensure an enhancement in
the contact angle value by enforcing the drop to attain a
Fakir or a Cassie-Baxter state [8–12]. Similarly, one of the
most popular techniques to decrease this contact angle has
been the application of an external electric field—this is
the well-known science of electrowetting, where the elec-
trostatic tension induced by the electric field augments the
wetting behavior resulting in a decrease in the contact angle
[13,14].

Electrowetting problems form a small subset of a bigger
problem set of electrocapillarity, which encompasses all the
problems dictated by the interplay of the capillarity and electric
effects. These electric effects can be static in nature, where
electrostatic forces may lead to a change in contact angle
[13–21], or may be dynamic in nature where the resulting
electric current can substantially affect the capillary dynamics
[22,23]. For the static problem, per unit area electrostatic
wetting tension (having the units of energy per unit area) Wel

scales as CV 2 (where C is the capacitance and V is the voltage)
and the ratio CV 2/γ (where γ is the liquid-vapor surface
tension) dictates the contribution of the electrostatic effects in
modifying the contact angle. For an electrowetting problem,
these parameters (C and V ) can be easily determined from
the system definition [13,14]. Such electrowetting behavior
may be important even when there is no external voltage. This
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typically occurs for the case of the wetting of an electrolyte
drop on a charged surface in air or the formation of a
bubble on a charged solid in the presence of a background
electrolyte solution. In such a situation, an electric double
layer (EDL) [24] develops at the interface of the charged solid
and the electrolyte solution, and this V is the EDL electrostatic
potential (that varies within the drop) and the capacitance is
the dielectric capacitance of the EDL [15]. There are plenty
of examples in recent literature, where such EDL-mediated
electrical effects have been influential in affecting different
dynamic and static capillary problems [15,16,22,23,25,26].
However, in all those studies, the EDL electrostatics have
been simplified by considering only a one-dimensional EDL,
without pinpointing the consequences of the wedge geometry
that invariably appears at the three phase contact line (TPCL)
of the drop [17–21].

In this paper, we provide an analysis that represents the
TPCL as a wedge, calculate the EDL electrostatic distribution
in such a wedge geometry (following the method of Dörr and
Hardt [27]), and use this calculation to obtain the resulting
Maxwell stress and the corresponding change in the drop or
bubble contact angle. The magnitude of the change in the
contact angle depends on the values of parameters such as pH,
surface charge density, electrolyte ion concentration, etc.—we
provide results for substrates such as bare silica and OTS
[(octadecyltrichlorosilane)-silicon], for which there exist well-
known relationships between the charge density, buffer pH, and
the EDL thickness [15,28,29]. Our work is distinctly different
from that of Dörr and Hardt [27] in the sense that they obtain
the EDL electrostatics at the TPCL, and we use this analysis
to compute the Maxwell stress and the resulting alteration
of the drop or bubble contact angle. The present model
is derived on the basis of several simplifying assumptions.
First, we assume that only the solid-liquid interface of the
wedge is charged, whereas the air-water interface is uncharged.
Such an assumption has been well reported in the literature,
[17,18,27,30–32], although there are also studies that conjec-
ture the presence of a finite charge at the air-water interface
[33–36]. Also these physical situations are represented with
the boundary conditions of a specified charge density σ (or the
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corresponding normal electric field) at the solid-liquid inter-
face, and zero charge (hence zero normal electric field) at the
air-water interface. For substrates such as bare silica and OTS-
silicon, for which we provide our results, this charge density
gets fixed by parameters such as bulk pH and bulk electrolyte
ion concentration [15,28,29]. The second assumption concerns
the value of this charge density at the solid-water interface.
We assume that the corresponding surface potential ∼σλ/ε0εr

(where λ is the EDL thickness, ε0 is the permittivity of free
space, and εr is the relative permittivity of water) is substan-
tially small so that we can employ Debye-Hückel linearization
[24] to solve the EDL potential (see later). Finally, we operate
at an ionic concentration such that the corresponding EDL
thickness λ is substantially smaller than the dimensions of
the drop or the bubble—this assumption is necessary for
representing the region around the TPCL as a wedge.

The central result of the study points to a substantially large
decrease in the contact angle of the drop or bubble for both
bare silica and OTS-silicon substrates as a function of buffer
pH, bulk ionic concentration, and the initial EDL-independent
values of the contact angle. The current analysis, although
applicable for predicting contact angles of bubbles or drops
with EDL effects, was motivated to understand the role of
added salt in changing the morphologies of preformed surface
nanobubbles [37–57]. We had earlier demonstrated, through a
scaling analysis, that added salt can have substantial impact on
the nanobubble morphology only for very alkaline buffer pH
[15]. On the contrary, in the present study we show that proper
accounting for the EDL electrostatics at the wedge TPCL
meant that we can substantially improve our predictions, and
observe substantial variation in the nanobubble contact angle
(formed on the OTS-silicon surface) even for an extremely
moderate buffer pH.

II. THEORY

A. Contact angle with the EDL effects

Figure 1(a) shows the schematic of a bubble on a charged
surface inside an electrolyte solution and an electrolyte drop
in air on a charged surface represented as a spherical cap.
These are the two cases where the EDL (triggered at the
interface of the charged solid and the electrolyte) will affect
the contact angle. The TPCL of the drop or the bubble can be
approximated as a wedge edge, with the two sides of the wedge
being the solid-liquid and air-liquid interfaces [see Fig. 1(b)].
Such wedge-edge approximation of the TPCL has been a
popular approach used to study the relevant electrostatics at the
TPCL [17–21]. There are no ions (or EDL) inside the bubble or
the air (for the case of the drop), and the EDL is confined only
at the liquid side [see Fig. 1(b)]. We assume that the presence
of the EDL provides an additional energy (per unit length) of
Wel . The effect of the EDL on the contact angle can be obtained
from the free energy change occurring on account of the
air-liquid interface being displaced by a distance dx towards
the liquid side [in Fig. 1(b)]. Such a displacement implies the
creation of an additional solid-air interface and an equivalent
destruction of the solid-liquid interface. Accordingly, there
will be an increase in surface energy (per unit length)
of (γSV + γLV cos θ )dx and a decrease in surface energy

FIG. 1. (Color online) (a) Left: schematic of the electrolyte drop
placed in air. Right: schematic of the bubble inside an electrolyte
drop. (b) Magnified view of the TPCL [indicated by a black hollow
rectangle in (a)]. This magnified view defines the different parameters,
e.g., contact angle, the planes S12 and S21 in the air and the liquid
sides, the EDL at the the solid-liquid and liquid-vapor interfaces, and
the (x-y) coordinate axes. Here the wedge is considered to be filled
with liquid only, and hence the wedge angle is π − θ . We also show
the distance dx moved by the TPCL. (c) Definition of the axes x ′-y ′

and the r-ϕ coordinate system.

by γSLdx. Additionally, the destruction of the solid-liquid
interface would mean an equivalent destruction of the EDL,
which will lead to a further decrease in the energy (per unit
length) by Wel(θ )dx. Here γij ’s are the interfacial tensions
between phases i and j (L, S, and V stand for liquid, solid,
and vapor or air), θ is the equilibrium contact angle (with
finite accounting of the EDL interaction effects), and Wel(θ )
is the EDL-induced electrostatic wetting tension (per unit
length), which is a function of the contact angle θ . Hence
at equilibrium, we can write

dE = [γSV − γSL + γLV cos θ − Wel(θ )] dx = 0

⇒ cos θ = cos θ0 + Wel(θ )

γLV

, (1)
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where θ0 = cos−1( γSL−γSV

γLV
) is the Young’s angle. We shall get

the drop or the bubble equilibrium contact angle by solving
for θ iteratively from Eq. (1).

B. Calculation of the EDL-induced electrostatic wetting tension

To determine the influence of the EDL electrostatic wetting
tension on the contact angle, we need to determine Wel(θ ).
Following [17–21,56], we can express Wel as [assuming that
there is no charge or electrostatic field inside the bubble or the
air (for the case of the drop)]

Wel = −ex

∫
S21

T̂ · (−n)dS

= ex

∫
S21

[
−	Î + ε0εw

(
EE − 1

2
E2I

)]
· (n)dS, (2)

where T̂ is the Maxwell stress tensor, expressed as T̂ =
[−	Î + ε0εw(EE − 1

2E2I)] (	 is the osmotic pressure, E is
the electric field vector, E is the magnitude of the electric field,
ε0 is the permittivity of free space, εw is the relative permittivity
of water, Î is the identity tensor, ex is the unit normal vector
along the x direction, and n is the outward unit normal
vector to the air-water interface). We can reduce the above
equation using the identities Î · n = n, (EE) · n = (n · E)E,
n = − sin θex + cos θey (ey is the unit normal vector along
the y direction), and E = Exex + Eyey as

Wel =
∫

S21

[
sin θ

(
	 + ε0εw

2
E2

)
+ ε0εw

× (−E2
x sin θ + ExEy cos θ

) ]
dS. (3)

One needs to obtain the electrostatic osmotic pressure 	

to evaluate Wel . Osmotic pressure can be estimated through
Poisson’s equation, which states

∇ · 	 = ε0εw (∇ · E) E. (4)

Considering coordinates parallel and perpendicular to the
interface, which we denote as x ′,y ′ (x ′ and y ′ are obtained
by rotating the specified x-y coordinates [see Fig. 1(b)] by an
angle θ in clockwise direction), and using the fact that the net
electric field perpendicular to the interface is zero, i.e., Ey ′ = 0
(since the air-water interface is assumed to be uncharged), we
can get from Eq. (4) [using the condition that when E = 0,
	 = 0 (typically far away from the TPCL)]

∂	

∂x ′ ex ′ = ε0εw

2

∂
(
E2

x ′
)

∂x ′ ex ′

⇒ 	 = ε0εw

2
E2

x ′ = ε0εw

2

[
E2

x cos2 θ + E2
y sin2 θ

]
.

(5)

Using Eq. (5) in Eq. (3), we get

Wel = ε0εw

2

∫
S21

[−E2
x sin3 θ + 2ExEy cos θ

+ E2
y(sin3 θ + sin θ )

]
dS. (6)

C. Calculation of the electric fields Ex and Ey

To obtain Wel , one needs to obtain Ex and Ey along the
air-liquid interface (or the plane S21). To do so, we apply the
model of Dörr and Hardt [27] who calculated the EDL electric
field close to the TPCL in an electrolyte by approximating
the domain close to the TPCL as a wedge. Here we briefly
review the essential points of the calculation by Dörr and Hardt
[27]. In this calculation, the dimensionless EDL electrostatic
potential is φ̄ = ε0εwφ/λσ (where λ is the EDL thickness
and σ is the charge density) and the dimensionless distances
are x̄ = x/λ, ȳ = y/λ. Dörr and Hardt [27] considered the
linearized Debye-Hückel treatment (requiring the assumption
of weak to moderate EDL potential or charge density), so that
the equation governing EDL potential distribution reads

�̄φ̄ = φ̄, (7)

where �̄ is the Laplacian in dimensionless form. The boundary
conditions for the above equation are

φ̄|ȳ→∞ = 0, (8)

∇̄φ̄ · ex |x̄→∞ = 0, (9)

∇̄φ̄ · eϕ|ϕ=0 = −1, (10)

∇̄ · eϕ|ϕ=π−θ = 0. (11)

In the above equations ∇̄ is the gradient operator in dimen-
sionless form. Dörr and Hardt [27] provided a semiheuristic
solution of the above sets of equations to obtain potential
distribution φ̄ in the wedge as

φ̄ = exp (−ȳ0), (12)

where ȳ0 = ȳ0(x̄,ȳ) is obtained iteratively from the equation

ȳ = ȳ0 −
[
ȳ0 − ȳ0 − d

c
cos (π/2 − θ )

]

× exp

[
− tan (π/2 − θ )

cx̄ + (ȳ0 − d) sin (π/2 − θ )

cȳ0 − (ȳ0 − d) cos (π/2 − θ )

]
,

(13)

[where d = ln ( 2π−2θ
π

) and c = 1 + 0.36 (π/2 − θ )]. Please
note that eq.(13) yields ȳ = ȳ0 as x̄ → ∞.

From Eq. (13), we get

∂ȳ0

∂x̄
= tan (π/2 − θ ) + n5

1 − n3 + n4
, (14)

where

n3 = exp (−m)

[
1 − cos (π/2 − θ )

c

]
, (15)

n4 = n1 exp (−m)

[
ȳ0 − ȳ0 − d

c
cos (π/2 − θ )

]
, (16)
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n5 = −n2 exp (−m)

[
ȳ0 − ȳ0 − d

c
cos (π/2 − θ )

]
, (17)

n1 = tan (π/2 − θ ) sin (π/2 − θ )

[cȳ0 − (ȳ0 − d) cos (π/2 − θ )]
− tan (π/2 − θ ) [c − cos (π/2 − θ )] [cx̄ + (ȳ0 − d) sin (π/2 − θ )]

[cȳ0 − (ȳ0 − d) cos (π/2 − θ )]2 , (18)

n2 = c tan (π/2 − θ )

[cȳ0 − (ȳ0 − d) cos (π/2 − θ )]
, (19)

m = tan (π/2 − θ )
cx̄ + (ȳ0 − d) sin (π/2 − θ )

cȳ0 − (ȳ0 − d) cos (π/2 − θ )
. (20)

Similarly, we can get

∂ȳ0

∂ȳ
= 1 + n7

1 − n3 + n4
, (21)

where

n7 = −n6 exp (−m)

[
ȳ0 − ȳ0 − d

c
cos (π/2 − θ )

]
, (22)

n6 = c

[cȳ0 − (ȳ0 − d) cos (π/2 − θ )]
. (23)

Therefore, the electric field, in dimensionless form, can be
expressed as

Ē = Ēxex + Ēyey

= −∂φ̄

∂x̄
ex − ∂φ̄

∂ȳ
ey = − dφ̄

dȳ0

∂ȳ0

∂x̄
ex − dφ̄

dȳ0

∂ȳ0

∂ȳ
ey

= exp (−ȳ0)

[
tan (π/2 − θ ) + n5

1 − n3 + n4
ex + 1 + n7

1 − n3 + n4
ey

]
.

(24)

From this dimensionless electric field, we can get the dimen-
sional electric field as

E = σ

ε0εw

Ē = σ

ε0εw

[Ēxex + Ēyey] = Exex + Eyey, (25)

where

Ex = σ

ε0εw

exp (−ȳ0)

[
tan (π/2 − θ ) + n5

1 − n3 + n4

]
,

(26)

Ey = σ

ε0εw

exp (−ȳ0)

[
1 + n7

1 − n3 + n4

]
.

III. RESULTS

In this section, we first present the results expressing the
variation of the dimensionless EDL potential and electric field
as a function of the wedge angle. These results are relevant for
the contact angle on any surface as long as the approximations
(see Sec. I) are valid. Application of these electric field
variations to obtain the contact angle change becomes possible
only when one can pinpoint the corresponding EDL thickness
(function of the ion concentration) and the surface charge
density. Here, we shall provide results for two surfaces
(bare silica and OTS-silicon), where these two parameters
are interrelated as a function of the ion concentration and
buffer pH. The choice of these two substrates is motivated by

the abundance of information on their dissociation chemistry
(providing a well-established interrelationship between the
surface charge density and the EDL thickness) and their
relevance in the context of nanobubble formation.

A. Variation of the EDL potential and electric
fields in the wedge geometry

Figure 2 shows the variation of the dimensionless EDL
electrostatic potential along the air-water interface (of the
bubble or the drop). We show the results as a function
of the dimensionless transverse coordinate ȳ, which auto-
matically fixes the corresponding axial coordinate x̄, since
along the air-water interface, ȳ and x̄ are connected as
x̄ = ȳ/ tan (π/2 − θ ). We find an intuitive result in the sense
that we notice a progressive decrease in the EDL potential
away from the TPCL (charge on the interface is localized
at the TPCL, since the solid-liquid interface is charged). A
very similar result was obtained by Dörr and Hardt [27]. On
the other hand, we obtain a relatively more involved result
when we find that for larger θ (or smaller wedge angle, given
by π − θ ), the potential at the air-water interface is larger at
locations close to the TPCL (characterized by smaller values
of ȳ), but at locations substantially away from the TPCL there
is not much effect of the wedge angle on the EDL potential.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

ȳ

φ̄

θ = π/6

θ = π/4

θ = π/3

FIG. 2. (Color online) Variation of the dimensionless EDL
electrostatic potential along the air-water interface (of the bubble
or the drop) for different values of the contact angle. We show
the result as a function of the dimensionless transverse coordinates
ȳ, whereas the corresponding axial coordinates x̄ are defined as
x̄ = ȳ/ tan (π/2 − θ ).
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FIG. 3. (Color online) Variation of the dimensionless (a) axial
electric field and (b) transverse electric field along the air-water
interface for different values of the nanobubble contact angle.
We show the result as a function of the dimensionless transverse
coordinates ȳ, whereas the corresponding axial coordinates x̄ =
ȳ/ tan (π/2 − θ ).

Figures 3(a) and 3(b) show the variation of the axial
and the transverse electric fields at the air-water interface.
Quite remarkably, at locations very close to the TPCL both
components of the electric field are negligible—such behavior
can be justified by a close to uniform value of the EDL
electrostatic potential at such spatial locations (see Fig. 2).
These results are extremely nonintuitive in case one compares
them with the electric field inside an EDL near an ordinary
charged surface, where one invariably finds an increase in the
EDL electric field at locations close to the charged surface.
As one moves away from the TPCL, however, the EDL
potential shows finite spatial variation (see Fig. 2), causing
both Ēx and Ēy to increase with ȳ for small (<1) values
of ȳ. Please note that this increase in the electric fields
occurs (for ȳ < ȳc) despite the fact that the corresponding
EDL potential is lowered with increase in ȳ (for ȳ < ȳc),
and can be attributed solely to the corresponding increase in
the EDL potential gradient (despite lowering EDL potential).
However, for ȳ > ȳc, the consequence of monotonic decrease
of the EDL potential becomes crucial, leading to a monotonic
lowering of the EDL electric field. Finally, quite intuitively, the
decrease in the wedge angle leads to an enhanced (reduced)
influence of the transverse (axial) electric fields, with the
two (transverse and axial electric fields) becoming equal
for θ = π/4. Therefore, Figs. 3(a) and 3(b) provide unique
examples of nonmonotonic spatial variation of EDL electric
fields away from a charged interface, and can be attributed to
the unique wedge configuration of the system.

B. Variation of the contact angle

Figures 2 and 3 provide the dimensionless spatial variation
of the electrostatic potential and fields at the wedge, represent-
ing the TPCL. In order to obtain the effect of EDL electrostatics
at the wedge in altering the drop or bubble contact angle, we
need to know the dimensional magnitude of these electric
fields, which will give the corresponding dimensional values
of Wel(θ ). For that purpose, values of the charge density σ

and the EDL thickness λ are essential. However, these two
variables are not independent; rather they are connected by
the chemical equilibrium dynamics of the electrolyte-charged-
solid interface. For the present study, we consider two surfaces,
namely, bare silica and OTS-silicon. OTS-silicon substrates are
prepared by applying a molecular coating of OTS on the bare
silica, and the surface is characterized by a bare charge density
f σ , where σ is the charge density of bare silica surface and f is
a fraction (lower than unity), which is smaller for a greater cov-
erage of OTS [58]. Motivation to consider bare silica surface
is twofold: First is the massive use of bare silica or silanized
surfaces (which are some derivative of the bare silica surface)
in studying the EDL structure and its consequence in micro-
nanoscale transport [58,59], and second is the availability of
knowledge of the chemical equilibrium dynamics of bare silica
[28,29]. Similarly, OTS-silicon surface is extremely popular
in studying the origin and dynamics of surface nanobubbles
[52,60,61]. Therefore, by studying the wedge-structure EDL-
mediated alterations of the contact angle for these two surfaces,
we ensure that our analysis provides results that are relevant to
the general problem of drop or bubble contact angles, as well
as the specific problem of surface nanobubbles.

The chemical equilibrium reactions for both bare silica and
OTS-silicon surfaces have been studied extensively [15,28,29,
59]. We refrain from providing the detailed derivations, for
which we request the reader to kindly see the Appendix of our
previous paper [15]. The key outputs of the analysis [15] are the
charge density and the zeta potential, and the input parameters
are the buffer pH, ionic concentration, and fractional coverage
f (for the OTS-silicon surface). These are tabulated below.

Figure 4 shows the variation in the change of the contact
angle �θ = θ0 − θ with original (EDL-independent) contact

10 15 20 25 30 35 40
0
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θ0 (degrees)

Δ
θ
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r
ee

s)

Case 1

Case 3

Case 2

FIG. 4. (Color online) Variation of change in the nanobubble
contact angle �θ = θ0 − θ for bare silica surface with the original
(EDL-independent) contact angle θ0 for three different cases, which
are case 1: pH = 5, c = 1 M, case 2: pH = 6, c = 1 M, and case
3: pH = 7, c = 1 M (corresponding σ and ζ values are provided in
Table I).
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TABLE I. Bare silica surface charge density (σ ) and zeta potential
(ζ ) as a function of buffer pH and ion concentration (c). EDL thickness
λ is connected to c as λ = (ε0εwkBT /2000NAce2z2)1/2.

pH c (M) λ (nm) σ (mC/m2) ζ (mV)

5 1 0.33 −16.6 −4.2
0.1 1 −8.9 −11.11
0.01 3.33 −5.5 −23.2

6 1 0.33 −69.75 −13.33
0.1 1 −30.6 −31.8

7 1 0.33 −174.6 −22.8
0.1 1 −81.3 −54.6

8 1 0.33 −314.4 −29.3
0.1 1 −181 −70.4

9 1 0.33 −466.8 −33.7

angle θ0 for the bare silica surface. We consider different
combinations of buffer pH and ion concentration values
(yielding different values of ζ and σ ; see caption of Fig. 4).
For a given ionic concentration, increase in pH increases ζ and
σ values for the bare silica surface, as has been well reported
in the literature [28,29]. This increase would necessarily mean
an increase in hydrophilicity inducing tendency of the EDL
effects, as is reflected in Fig 4. Further, for a given pH and
ionic concentration, �θ is more for smaller θ0—this can be
interpreted from a larger influence of the axial electric field
for smaller θ0 [see Fig. 3(a)]. Please note that for higher pH
values (e.g., pH = 6,7), one cannot get a finite �θ for small
enough θ0, since for such cases one may have �θ > θ0—this
will signify a situation where a stable drop or a bubble
cannot be formed. Also, we provide results for only those
pH and c values for which the resultant electrostatic potential
scale (∼σλ/ε0εr ) is small enough for the application of the
Debye-Hückel linearization approach (see Table I).

Figure 5 shows the variation in �θ as a function of θ0 for
different values of fractional surface coverage of OTS (larger
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FIG. 5. (Color online) Variation of change in the nanobubble
contact angle �θ = θ0 − θ for OTS-silica surface with the original
(EDL-independent) contact angle θ0 for three different cases, which
are case 1: pH = 5, c = 1 M, case 2: pH = 6, c = 1 M, and case
3: pH = 7, c = 1 M (corresponding σ and ζ values are tabulated in
Table I). For each of these cases, we consider two different values
of fractional OTS coverage, namely, f = 0.9 (plot shown by a bold
line) and f = 0.7 (plot shown by a dashed line).

TABLE II. OTS-silicon surface charge density (σ ) and zeta
potential (ζ ) as a function of buffer pH, ion concentration (c), and
fractional surface coverage of OTS (f ).

pH c (M) λ (nm) f σ (mC/m2) ζ (mV)

5 1 0.33 0.9 −14.94 −4.3
1 0.33 0.7 −11.62 −4.4

6 1 0.33 0.9 −62.78 −14.4
1 0.33 0.7 −48.83 −14.6

7 1 0.33 0.9 −157.14 −24.3
1 0.33 0.7 −122.2 −25.6

8 1 0.33 0.9 −282.96 −31.0
1 0.33 0.7 −220.08 −32.1

coverage implies smaller f ). Results (Table II, Fig. 5) indicate
a lowering in �θ with an increase in surface coverage (or
smaller f ). Other effects, such as more pronounced values of
�θ for larger pH and smaller θ0, or a lack of finite �θ for
smaller θ0 and larger pH are equally prevalent for this case
too.

IV. DISCUSSIONS

The model for the wedge-geometry-based EDL-induced
variation of the contact angle is valid for any system where
there is a drop or a bubble formation in the presence of
electrolyte ions. In fact, the model can even be employed
for formation of a drop in an immiscible liquid, as long as
the liquid-liquid interface is uncharged and one of the liquids
can sustain an EDL. Of course the dimensionless variation in
the electric field and the electrostatic potential predicted by
our model (see Figs. 2 and 3) are valid for any combination
of solid-liquid and liquid-air interfaces. However, for exact
quantification of the change in the contact angle we need to
specify the surface and the corresponding interrelationship
(if any) between the parameters such as pH, EDL thickness,
zeta potential, and surface charge density. Given the surge
in recent interests in understanding the effect of electrolyte
ions in applications that involve contact line dynamics on
charged surfaces, e.g., electrowetting [62–64], wetting of
inhomogeneous surfaces [16], etc., this model will ensure
a hitherto missing correct accounting of the EDL effect in
contact angle variations.

As has been discussed previously, the main motivation
of this study, which of course has a much more general
validity, has been in understanding the effect of added salt
in the morphology of preformed surface nanobubbles. There
have been two schools of thought regarding the impact of
added salt on the morphology of the preformed surface
nanobubbles. The first view, mostly based on the evidence
obtained from experiments [60,65], inferred that added salt
will have no influence on the morphology of preformed surface
nanobubbles. The experiments were carried out on HOPG
(highly ordered pyrolytic graphite) for moderate and large salt
concentrations [60,65] as well as on OTS-silicon substrates
(there is no specification of what has been the pH and ionic
concentration values corresponding to which surface nanobub-
bles were studied on OTS-silicon substrates) [60]. Through a
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detailed scaling argument, we introduced a second view to this
problem, where we demonstrated that for substantially alkaline
solutions and for extreme (very large or very small) values
of the salt concentrations, preformed surface nanobubbles
on OTS-silicon may demonstrate significant variation of the
contact angle [15]. Our idea was based on the fact that for
the stated conditions, the ionization of the bare silica leads
to a substantially large zeta potential (∼0.2–0.3 V) ensuring
an equivalently large electrostatic wetting tension, thereby
leading to the noticeable alteration in the nanobubble contact
angle. The other implicit requirement of our previous model
was that there would be minimal coverage of the silica surface
by OTS, else the corresponding lowering of the zeta potential
would be large enough to ensure that the nanobubble contact
angle shows negligible reduction. However, less coverage
of OTS would mean lesser coverage of the nanobubbles,
which is not always a desirable condition. In the present
calculation, we improve these understandings. Our analytical
model establishes that even for extremely moderate (weakly
acidic or neutral) values of buffer pH, we should witness a
substantially large deviation in the nanobubble contact angle
formed on an OTS-silicon surface. One can also understand
from our present analysis why there is no report on the effect of
added salt for nanobubbles on OTS-silicon (e.g., in the study of
Zhang et al. [60]). On an OTS-silicon surface, salt-independent
nanobubble contact angle (θ0) is around 12◦ [60], so there is
a likelihood that on salt addition the bubbles will actually
disappear (since �θ � θ0, as has been discussed in Fig. 5).

Finally, we discuss the recovery of experimental results
with our theory. Experimental studies that give the role of
added salt on contact angle variation are plentiful [64,66–69].
However, what is substantially missing are those studies that
provide contact angle variation for surfaces with a known
connection between ζ , σ , and λ (e.g., surfaces such as bare
silica or OTS-silicon)—without such connection one cannot
validate our proposed theory with experimental results. There

is only a handful of studies that provide experimental results on
contact angle variation on such surfaces [70]; but the problem
is the contact angle values vary massively depending on the
method employed to calculate them [70]. In the context of
effect of added salt on preformed surface nanobubbles, for
surface nanobubbles formed on a HOPG surface there is hardly
any effect [60,65], whereas for the nanobubbles formed on an
OTS-silicon surface, there is no report of the existence of
surface nanobubbles in the presence of added salt [60]. This
may be an implicit validation of our theory, as explained above.

V. CONCLUSIONS

In this paper, based on a wedgelike assumption of the
region around the TPCL, we provide a detailed analytical
solution for the effect of added salt (and resulting EDL) in
altering the contact angle of drops or bubbles in an electrolytic
environment. We provide results for sample substrates, such as
bare silica or OTS-silicon, and demonstrate that for moderate
pH and large ionic concentrations the impact of the EDL
interactions may lead to large lowering of contact angles,
or may even enforce a disappearance of a drop or a bubble.
Although the model can predict the EDL effects in any problem
of contact angle, we discuss a special case of the impact of
added salt on preformed surface nanobubbles, and establish,
unlike previous experimental [60,65] or theoretical studies
[15], that the effect of added salt in causing a substantial,
measurable variation in nanobubble morphology is ubiquitous
and universal even for most moderate conditions.
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