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Scaling and unified characterization of flow instabilities in layered heterogeneous porous media
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The physics of miscible flow displacements with unfavorable mobility ratios through horizontal layered
heterogeneous media is investigated. The flow model is solved numerically, and the effects of various physical
parameters such as the injection velocity, diffusion, viscosity, and the heterogeneity length scale and variance
are examined. The flow instability is characterized qualitatively through concentration contours as well as
quantitatively through the mixing zone length and the breakthrough time. This characterization allowed us to
identify four distinct regimes that govern the flow displacement. Furthermore, a scaling of the model resulted in
generalized curves of the mixing zone length for any flow scenario in which the first three regimes of diffusion,
channeling, and lateral dispersion superpose into a single unifying curve and allowed us to clearly identify the
onset of the fourth regime. A critical effective Péclet number w∗

c based on the layers’ width is proposed to identify
flows where heterogeneity effects are expected to be important and those where the flow can be safely treated as
homogeneous. A similar scaling of the breakthrough time was obtained and allowed us to identify two optimal
effective Péclet numbers w∗

opt that result in the longest and shortest breakthrough times for any flow displacement.
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I. INTRODUCTION

The problem of instability in miscible displacements is
encountered in a variety of applications such as polymer
processing, fixed bed regeneration, and chromatographic sep-
arations [1], as well as in oil recovery processes where phase
behavior acts in favor of local efficiency of the displacement
through miscible flooding. Yet, in many applications, a lower
viscosity of the injected solvent results in reduced sweep
efficiency of the process due to viscous instabilities. Viscous
instabilities have been the subject of numerous studies since
1952 when Hill conducted a linear stability analysis along
with experiments to examine the coupling between gravity
driven and viscous driven instabilities [2]. Interested readers
are referred to the reviews of Homsy [3] and McCloud and
Maher [4] on viscous fingering in porous media. Other forms of
this problem considering the nonmonotonic viscosity profile,
non-Newtonian fluids, heat transfer in the system, and the
chemical reaction can be found in the literature [5,6].

In field applications, the reservoir rocks have variable
permeability and are rarely homogeneous. The nonuniform
distribution of the permeability changes the preferred path
of the flow and becomes the source of another instability
mechanism known as channeling. Viscosity and heterogeneity
induced instabilities appear in the form of extended tails of
the injected fluid, called fingers. The faster these fingers grow,
the faster the injected fluid reaches the production end, and the
flow is characterized as more unstable. Due to its numerous
applications, this problem has been studied extensively by
researchers working in different fields varying from geology
to chemical and petroleum industries. A large number of
investigations have attempted to determine the criteria for
the dominance of any of the viscosity or heterogeneity
mechanisms in the flow. Such attempts started with quan-
tification of the heterogeneity with a single parameter such
as Dykstra-Parson’s coefficient VDP or the Lorenz coefficient
LC in stratified reservoirs [7] or through geometric parame-
ters for artificially built heterogeneous systems [8,9]. These
parameters have mainly considered the range of variations of

permeability and the frequency of these variations to describe
the severity of the heterogeneity [10]. In these works, the
relative importance of heterogeneity to that of viscous forces
traditionally measured through the mobility ratio has been
qualitatively determined for constant mobility ratios. Koval’s
method in proposing a single factor K = HE that combined
the effects of heterogeneity H and viscous forces E was among
the rare quantitative analyses in this regard [11]. Although
Koval’s factors have been useful in the determination of
the loss of efficiency due to both instability mechanisms, it
was limited to one-dimensional studies and did not analyze
the mechanisms of instability and finger structures. Another
quantitative analysis was conducted by Sorbie et al. [12] where
the VDP and the correlation length lD of random heterogeneity
were used as measures of the severity of the heterogeneity.
The effects of the ratio of the transverse (kz) to longitudinal
(kx) permeability on the flow regimes were investigated using
an effective aspect ratio RL = A

√
kz/kx , where A is the

geometric aspect ratio. It was found that large values of
RL corresponding to transverse (vertical) equilibrium (TE)
conditions result in dispersive flow, while scenarios far from
the TE conditions, namely, in Dykstra-Parson’s regimes (DP),
result in isolated channeled fingers. However, the effect of RL

was shown to be important only for very small correlation
lengths and became negligible even for lD = 0.1. The authors
commented that for layered media, transverse permeability
may not have significant effects on the flow except for the
neutral mobility ratio. In a subsequent study, Yang et al. [13]
used asymptotic analysis to analyze flows with no dispersion in
spatially uncorrelated heterogeneous media for limiting values
of the parameter RL. The asymptotic analysis was compared
with predictions from full numerical simulations and allowed
us to separate and characterize the flow in the limiting regimes.

The first experimental study on miscible flows through
heterogeneous porous media was performed by Blackwell
et al. in 1959 [14] and has been a reference for many
subsequent analytical and numerical studies. Among these,
one should cite the study of Araktingi and Orr [15], who
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have used the particle-tracking method to successfully model
miscible flows through heterogeneous porous media and have
reported results that are in agreement with the experimental
ones by Blackwell et al. [14]. The pseudospectral method
was also used by Tan and Homsy [16] to study the effects of
random permeability variations with Gaussian log distribution
on viscous fingering. In both studies, the effects of variance
and correlation length of the permeability distribution on the
growth rate of the instabilities were analyzed. In particular,
Araktingi and Orr [15] observed a monotonic increase of the
instability with both the correlation length and the variance of
the heterogeneity. Tan and Homsy [16] observed a maximum
growth rate at a certain correlation length of heterogeneity
and discussed the resonance between the mechanisms of
instabilities at an optimum correlation length, commensurate
with the intrinsic scale of viscous fingers. These two studies
were later followed by linear stability analysis and nonlinear
simulation studies [1,17–19]. In particular, the study by De Wit
and Homsy [1,17], who focused on media with harmonically
varying permeability, showed that the wave number at which
resonance is observed depends on the log-mobility ratio and
the Péclet number.

In this paper, a thorough examination of the effects of
different parameters on the development of the instability
in heterogeneous media is presented. The study will analyze
the different regimes of the flows and will propose a unified
picture of the flow that incorporates the effects of all pertinent
parameters, including the injection velocity, diffusion rate,
and the mobility ratio, as well as the characteristics of the
heterogeneous medium such as variance and length scale of
permeability.

II. PHYSICAL MODEL AND NUMERICAL METHOD

Figure 1 shows a schematic of the simplified model used in
this work. A fluid (fluid 1) with uniform concentration C1 is
injected in the heterogeneous porous medium with an average
velocity U to displace the resident fluid (fluid 2) of uniform
concentration C2. The flow is assumed to be incompressible,
Newtonian, and isothermal and is governed by the equations

FIG. 1. Schematic of the flow.

for the conservation of mass and momentum and the mass
convection-diffusion [20].

∂u

∂x
+ ∂ν

∂y
= 0, (1)

∂P

∂x
= −μφu

k
,

(2)
∂P

∂y
= −μφν

k
,

∂C

∂t
+ (u · ∇)C = D∇2C. (3)

In the above equations u(u,v) is the interstitial velocity
vector, P is the local pressure, k is local permeability, φ is the
porosity, and μ is the viscosity. Furthermore, the concentration
is denoted by C, and the mass diffusion coefficient is denoted
by D. Following Tan and Homsy [21], diffusive scaling is used
to make the equations dimensionless:

(x̂,y∗) = x,y

Dφ/U
, t∗ = t

Dφ2/U 2
, (û,v∗) = (u,v)

U/φ
,

(4)

p∗ = P

Dμ1φ/k1
, μ∗ = μ

μ1
, k∗ = k

k1
, c∗ = C

C1
.

The permeability is scaled by the average permeability of the
medium k1. A Lagrangian reference frame moving with the
average injection velocity, U/φ, is used so that x∗ = x̂ − t∗
and u∗ = û − 1, and the resulting dimensionless equations are

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0,

∂p∗

∂x∗ = −μ∗

k∗ (u∗ + 1),
(5)

∂p∗

∂y∗ = −μ∗

k∗ v∗,

∂c∗

∂t∗
+ u∗ ∂c∗

∂x∗ + v∗ ∂c∗

∂y∗ =
(

∂2c∗

∂x∗2
+ ∂2c∗

∂y∗2

)
.

Henceforth, the asterisks are dropped for simplicity. In the
above equations, two variables need to be specified to close the
formulation of the problem. First, the nature of the dependence
of the viscosity on concentration must be specified. In
this study, an exponential dependence of the viscosity on
concentration [22–24] is adopted unless otherwise indicated.
Such a dependence closely characterizes the “quarter power
mixing rule” widely used in the petroleum industry to describe
viscosity of nonassociating mixtures and also mixtures of
diluted aqueous solutions [25–27]:

μ(c) = exp[R(1 − c)]. (6)

In the above equation R is the natural logarithm of the
viscosity ratio μ2/μ1 and is related to the mobility ratio M

as R = ln(M). Furthermore, the form of the permeability used
to characterize the heterogeneity of the medium needs to be
defined. At the pore scale, the variability of the permeability
should be negligible for Darcy’s description of the flow to be
applicable. But it should be sensed by the flow at a larger scale
for the medium to be called heterogeneous. In the present study
the permeability of the medium is assumed to vary only in the
transverse (y) direction. As shall be seen later, the gradient of
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(a) (b)

FIG. 2. (Color online) Periodic permeability models with permeability varying between k = 0.7 and k = 1.6 for s = 0.5; (a) q = 1 and
(b) q = 9.

the natural log of the permeability f = ln(k) appears in the
definition of the vorticity, and therefore the heterogeneity will
be characterized using the natural log of the permeability f .
For a layered heterogeneous medium, f is defined as [1]

f = ln[k(x,y)] = s cos

(
2π

ly
qy

)
, (7)

where s is the range of variation of f , q is the frequency
of layers across the flow channel in the y direction, and ly
is the dimensionless width of the domain. Two examples of
heterogeneity models for different values of q are shown in
Fig. 2. Although this adopted periodic permeability is a simple
model of heterogeneity, it still allows us to reveal some of the
mechanisms that can occur in more stochastic permeability
models that are difficult to characterize due to the complexity
of such models.

Using the definition of vorticity ω and the stream function
ψ , where ∇2ψ = −ω, and adopting the correlations for the
viscosity and natural log of the permeability, the set of
equations (5) leads to

∂c

∂t
+ ∂ψ

∂y

∂c

∂x
− ∂ψ

∂x

∂c

∂y
= ∇2c, (8)

ω = (∇ψ + j) ·
(

d[ln(μ)]

dc
· ∇c − ∇ ln k

)

= −(∇ψ + j) · (R∇c + ∇f ) . (9)

These dimensionless equations admit a base-state solution c̄

corresponding to a uniform injection velocity (in the moving
reference frame; ū = v̄ = 0):

c̄ = 1

2
erfc

(
x

2
√

t

)
. (10)

The equations are transformed in Hartley space using the
Hartley transform [28]. This method has the advantage of
increasing the accuracy of differentiations in space but requires
periodic boundary conditions. Therefore the solution is sought
as the sum of the base-state profile c̄ and perturbations (c′)
that decay far upstream and downstream [29]. This leads to a
nonlinear ordinary differential equation for the concentration
perturbation coupled with algebraic equations for the vorticity,
all expressed in the Hartley transform space [29]. Since the
nonperiodic part of the solution is calculated analytically
through base-state equation (10), periodic boundary and initial
conditions can be set for the perturbed concentration and for

vorticity as

(ω̂,ĉ)(−Pe/2 − t,y,t) = (0,0),

(ω̂,ĉ)(Pe/2 − t,y,t) = (0,0),
(11)

(ω̂,ĉ)(x,Pe/A,t) = (ω̂,ĉ)(x,0,t),

(ω̂,ĉ)(x,y,0) = (δ rand(y)e−x2/σ 2
,0).

In the above equations, Pe = ULx

D
is the Péclet number, and

A = Lx/Ly is the aspect ratio of the domain. In dimensionless
form lx = Pe and ly = Pe/A are the length and the width of
the medium, respectively.

The differential equation for the transform of the con-
centration perturbation is stepped in time using a fourth-
order Adams-Bashforth/Adams-Moulton scheme with oper-
ator splitting. Furthermore, underrelaxation was used in the
iterative process relating the vorticity to the stream function.
This algorithm was shown to be numerically stable and
highly accurate for Péclet numbers as high as Pe = 1750
for log-mobility ratio R = 5 and for R as large as R = 7
when Pe = 500. More details about the numerical algorithm
are found in [29,30].

The numerical method was validated by comparing the time
evolution and the related viscous finger interactions for the
homogeneous case where R = 3, Pe = 500, and A = 2 with
those of Tan and Homsy [21]. Furthermore, the convergence
of the numerical solution was examined by considering cases
with different spatial resolutions varying from 256 × 256 to
1024 × 1024 while changing the time step accordingly. In
particular, for the largest mobility ratio examined, R = 5, the
convergence was confirmed by checking that the concentration
contours based on grids of 512 × 512 and 1024 × 1024 were
actually identical.

III. RESULTS AND DISCUSSION

As mentioned before, a heterogeneous medium is charac-
terized by the length scale and variance of the permeability
distribution. In the periodic permeability field defined by
Eq. (7), the width of the channels, which varies as the inverse
of the number of layers, can be regarded as the length scale
of heterogeneity, while s gives a reasonable estimation of the
variance of the permeability distribution. In the first stage,
the focus will be on the effects of the permeability length
scale (number of layers q) on the flow structures and growth
of the mixing zone. The analysis will then be expanded to
analyze the effects of other parameters and examine the flow
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breakthrough time. Unless specified otherwise, the mobility
ratio, permeability variance, Péclet number, and cell aspect
ratio are fixed as R = 3, s = 0.1, Pe = 1024, and A = 2.

A. Flow structures

In this section, the results are presented in the form of time
sequences of concentration contours which vary between 0 and
1. For brevity, the time sequences are presented not necessarily
at the same time intervals, and only the frames that help char-
acterize and explain the development of the flow are shown.

In Fig. 3 two flow displacements through layered media
with q = 2 and q = 9 are compared with that in a homo-
geneous medium. It is clear that the flow structures differ
from one case to the other, with the fingers extending faster
in the flow direction in the case of the two layers and slower
in the nine-layer medium. The number of initial fingers in
the heterogeneous cases is determined solely by the number
of layers, while it depends on the flow properties (Pe,R) in
the homogeneous medium. In the latter case, the number of
fingers decreases through a number of interaction mechanisms
that have already been discussed in the literature. Focusing on
the heterogeneous scenarios, the fingers in the two-layered
medium remain constrained within the high permeability
channels, which is to be contrasted with the nine-layer
medium where, from the initial nine fingers, only two end
up dominating the flow at later times.

The smaller length scale of heterogeneity in the nine-layer
medium results in larger ∇f and a rapid growth of instabilities
at early times (t = 100). However the fingers in the wider
channels of the double-layer medium end up surpassing those
in the nine-layer medium. This can be explained by the fact
that the instability in the double-layer medium is driven by
the so-called channeling mechanism in which the dynamics

are governed by the viscous forces and the paths of the
flow are dictated by the heterogeneity of the medium [16].
In this case, viscosity and heterogeneity driven forces keep
acting with two distinct sharp fingers extending and developing
independently until the flow reaches the downstream boundary.
In the nine-layer medium however, due to the smaller channel
width, after a while the fingers get so close to each other
that further development and growth is stalled in favor
of lateral dispersion across the channels. This dispersion
causes the channeled fingers to fade into a thick wavy front.
Since the growth of fingers during this dispersive stage is
slow, the thickness of the dispersed front is virtually the same
as the length of the fingers at the start of the dispersion. It is
anticipated that an even smaller width of the layers will result
in an earlier start of dispersion and a thinner dispersed front.
Later, instabilities develop at the front as a result of viscous
forces, as shown in Fig. 3(c), and lead to two dominant fingers.
These instabilities are not dictated by the heterogeneity of the
nine-layer medium, but the thickness of the front (influenced
by the thickness of the layers) is expected to affect the number
of emerging fingers as well as their growth rates.

The differences between the two heterogeneous displace-
ments and the homogeneous one help explain different
phenomena observed in experimental and numerical studies
of flow through heterogeneous porous media. In particular,
the dispersion of fingers across the channels in the nine-layer
medium results in stronger mixing of the fluids, which explains
the increase in macroscopic dispersion in heterogeneous media
reported in different simulation and experimental studies
[31,32]. Furthermore, the fact that the effects of heterogeneity
in the nine-layer medium pale as the dispersion of fingers
across the channels occurs and that the later fingers are not
determined by the channels [see Fig. 3(c)] confirms the results
of [15], where it was reported that for a smaller correlation

(a) Homogeneous medium (b) Double layer medium (c) Nine layer medium

FIG. 3. (Color online) Concentration contours for a viscously unstable flow with R = 3, Pe = 1024, and A = 2 in (a) a homogeneous
medium, (b) a double-layer heterogeneous medium, and (c) a nine-layer heterogeneous medium. In each frame the red color (left) represents
c = 1, and the blue color (right) represents c = 0.
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length of heterogeneity, fingers do not follow high permeability
channels.

In what follows, the flow instability in heterogeneous media
is characterized through a quantitative analysis. In specie, the
length of the mixing zone along the flow direction [33] and the
breakthrough time [18] are used to quantify and characterize
the instability.

B. Mixing length

By averaging the values of concentration across the flow
channel the mixing zone length (MZL) is determined. The
mixing zone is defined as the zone with average concentration
values between 0.01 and 0.99 [21].

cav(x) = 1

ly

∫ ly

0
c(x,y)dy,

(12)
MZL = xcav=0.01 − xcav=0.99.

To elaborate more on the behavior of the flow with time, the
variation of the MZL with time is depicted in Fig. 4 for the
nine-layer case discussed above. For comparison purposes,
the MZL of the viscously unstable flow in a homogeneous
medium and those of neutral flow (R = 0) in the nine-layer
medium and in a homogeneous medium are also presented.
Figure 4(a) illustrates whole curves in log-log scales to eluci-
date the trend of the growth of the mixing zone, while Fig. 4(b)
focuses on the initial stages of the flow in linear scales.

It can be seen from Fig. 4 that the viscously stable flow
(R = 0) shows dispersive behavior in both the homogeneous
medium and the nine-layer medium, with its MZL growing
as

√
t . In a homogeneous porous medium, the unstable flow

(R = 3) goes first through a dispersive regime similar to that
observed in the stable flow. This first regime, which lasts up to
t � 200, is followed by the development of viscous instability
where MZL grows almost linearly with time [see Fig. 4(b)]. In
the nine-layer medium, the unstable flow also goes through
initial dispersion, but the MZL graph follows that of the
viscously stable flow in the heterogeneous medium, which has
a slightly higher dispersion rate than that in the homogeneous
medium. Around t � 25, viscous forces help channeled fingers
grow faster than the viscously stable scenario. At this stage,

even though the fingers follow the path dictated by the
heterogeneity, their growth rate depends on both viscous
forces and heterogeneity. Later, the growth rate of the MZL
decreases as the fingers start to disperse across the channels.
Lateral dispersion continues until the gradient of concentration
across the channels becomes negligible. Subsequently, viscous
instabilities develop on the dispersed front at around t � 1400,
and viscous fingering becomes the dominant regime, resulting
in a sudden increase of the MZL.

We will now investigate the effect of the length scale of the
heterogeneity (width of the channels) on the flow behavior.
To this end, more numerical simulations were conducted for
various numbers of layers, and the corresponding MZL were
determined. Figure 5 depicts the variations of the MZL for
the homogeneous medium and for heterogeneous media with
q = 2,5,7,9, and 15. Figure 5 reveals that regardless of the
number of layers, the heterogeneous flows go through the same
regimes identified earlier in the special case of the nine-layer
medium. However, the extent and strength of these regimes
vary from one case to the other, and in some cases, such as
the two-layer medium, the channeled fingers reach the domain
boundary before lateral dispersion of fingers can be actually
observed. As can be seen in Fig. 3, the growth rate of the mixing
zone is larger at the initial stages of the flow for media for larger
number of layers because of larger ∇f . Therefore at early
times the growth rate of MZL increases monotonically with
increasing q, as shown in Fig. 5(b). At later times, however,
a larger number of layers reduces the width of the channels
and as a result speeds up lateral dispersion. Therefore the front
becomes uniform across the medium faster, and the last stage
of viscous fingering develops earlier. As can be seen, the two
regimes of channeling and dispersion that precede the viscous
fingering are shortened as the number of layers is increased. As
we shall see later, for a large enough number of layers, the MZL
of the layered heterogeneous medium will actually asymptot-
ically approach that of the homogeneous medium where only
the initial diffusive regime and viscous fingering are observed.

1. Hydrodynamic scaling

The close similarity in the curves for different numbers of
layers raises the question of whether it is possible to obtain a

(a) (b)

FIG. 4. (Color online) Mixing zone length vs time for stable and unstable flows in a homogeneous medium and in a nine-layer heterogeneous
medium; Pe = 1024, A = 2, s = 0.1. (a) Throughout the process in logarithmic scales and (b) at early times.
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(a) (b)

FIG. 5. (Color online) Mixing zone length vs time for heterogeneous media with different numbers of layers for R = 3, Pe = 1024, A = 2,
and s = 0.1: (a) throughout the process and (b) at the initial times (fewer graphs are shown for better distinction between the lines).

single curve that can describe the variations of the MZL for
any arbitrary number of layers. In order to explore this idea,
we propose to analyze the main parameters that govern the
flows in the different regimes identified earlier. First, one can
note that the first stages of the instability are mainly governed
by the flow within the high permeability layers. This suggests
characterizing the instability at this scale. Hence a characteris-
tic time for lateral dispersion across a layer of width w = Ly/q

and a characteristic length in the streamwise direction are
defined as tc = w2/D and xc = Uw2/(Dφ), respectively. In
dimensionless form these characteristic parameters become

t∗c = tc

Dφ2/U 2
= (w∗Dφ/U )2/D

Dφ2/U 2
= w∗2,

(13)

x∗
c = xc

Dφ/U
= U (w∗Dφ/U )2/(Dφ)

Dφ/U
= w∗2.

The asterisks on the dimensionless parameters were retained
to distinguish them from the dimensional ones. The width
of the domain in dimensionless form is ly = Pe/A, and the
dimensionless width of each layer can be determined as
w∗ = Pe/(qA). A generalized time t̃ and length x̃ are then

defined as

t̃ = t

tc
= t∗

t∗c
= t∗(

Pe
qA

)2 ,

(14)

x̃ = x

xc

= x∗

x∗
c

= x∗
(

Pe
qA

)2 .

A large number of simulations were conducted for many
combinations of a wide range of parameters with Pe = 512,
1024, 2048, A = 2,4,8, and q = 1 to 20, and the mixing
lengths were determined. The corresponding generalized
mixing zone lengths (˜MZL = MZL/xc) are plotted versus the
generalized time and are shown in Fig. 6(a). It is clear that
the scaling does indeed result in a single curve for different
displacement scenarios. Even for cases where the simulations
stopped due to the fingers reaching the boundaries, ˜MZL still
follows the unifying generalized curve. However, it should
be stressed that the different curves do superpose only up to
the time where the viscous fingering regime starts. At this
convective regime, the growth rate of the MZL depends on
the Péclet number and cannot be predicted based only on this
dispersive scaling. The results of this scaling imply that the

(a) (b)

FIG. 6. (Color online) Generalized MZL vs generalized time for R = 3 and s = 0.1 (a) for w∗ = 25.6, 51.2, 56.9, 64, 73.1,

102.4, 113.8, 128, 146.3, 170.7, 204.8, 256, 241.3, and 512 and (b) for w∗ = 51.2 in log-log scale, indicating the flow regimes.
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FIG. 7. (Color online) Weak effect of heterogeneity in media with
a small dimensionless width of layers for R = 3, s = 0.1, Pe = 200,
and A = 2.

quantitative behavior of the displacement can be predicted for
any given scenario and length scale of permeability variations.

The proposed generalization allows identifying and defin-
ing the different dominant flow regimes and the transition times
in between these regimes. Figure 6(b) shows a log-log plot of
˜MZL versus t̃ with trend lines fit to each segment categorizing
a particular flow regime. These regimes can be identified as
initial diffusion, channeling, lateral dispersion, and viscous
fingering. In the initial diffusion regime, ˜MZL grows almost
as

√
t̃ . The coupling between viscous forces and heterogeneity

increases the growth rate of ˜MZL to almost a linear function
of time, t̃1.01, and leads to the channeling regime. In the third
regime, lateral dispersion causes the growth rate to decrease
to less than the initial diffusion regime and ˜MZL ≡ t̃0.32.
Ultimately, viscous fingering leads to ˜MZL growing faster
than in previous regimes. The transition from initial diffusion
to channeling occurs at t̃dC ≈ 0.01, while that from channeling
to lateral dispersion is at t̃CD ≈ 0.07. Finally, lateral dispersion
leads to viscous fingering, which develops at different times
depending on the value of Pe.

The scaling group w∗ = Pe/(qA) = Uw/D suggests that
larger velocity, weaker diffusion rate, or larger channel width
results in a slower transition from channeling to lateral
dispersion and further to viscous fingering. In all these cases,
fingers develop individually in the channels and grow longer
with minimum interactions. Such fingers require more time

to get transversely dispersed, and the flow stays in the lateral
dispersion regime for a longer time before viscous fingering
starts.

Small values of w∗, however, result in stronger disper-
sion compared to the rate of advancement of instabilities
and hinders the development of channeling. In such cases,
emerging channeling fingers, if any, will fade rapidly into
a dispersed front in the early stages of the flow, allowing
viscous fingering to develop across that front. In an extreme
case, a layered system with a large enough number of layers
will not experience channeling or lateral dispersion and will
go directly through viscous fingering as in a homogeneous
porous medium. Therefore as w∗ decreases, ˜MZL deviates
from the unifying generalized curve characterizing the flow in
a heterogeneous medium, and as we shall see later, MZL will
approach that of a homogeneous case. One can therefore select
a critical value of the effective Péclet number w∗

c to separate
flows in which heterogeneity is dominant from those in which
it can be ignored. The value of this critical Péclet number
can be determined on the basis of the extent of the lateral
dispersion regime and, specifically, the slope of the ˜MZL in
that region. Hence a displacement flow with a ˜MZL slope in
the lateral dispersion region of more than about t0.4 (the slope
of the lateral dispersion regime on the curve corresponding
to w∗ = 25.6) leans towards a homogeneous system, and the
effects of heterogeneity can be deemed negligible.

To further illustrate these conclusions, the MZL for
Pe/(qA) = 11.11 and for Pe/(qA) = 5 as well as for the
homogeneous medium are depicted in Fig. 7. The results are
presented in terms of MZL since ˜MZL is not defined for a
homogeneous medium. It is clear that the curves are virtually
indistinguishable, indicating that flows in such heterogeneous
media essentially behave like that in a homogeneous medium,
at least in terms of their MZL.

The close similarity between heterogeneous flows with
small effective Péclet number w∗ and those in a homogeneous
medium was actually found not to be limited to quantitative
properties such as the MZL and is also observed in the actual
flow structures. Figure 8 shows concentration contours for
the homogeneous medium and heterogeneous media with
w∗ = 11.11 and w∗ = 33.3 at t = 300. It is clear that the flow
structures in the homogeneous medium and the heterogeneous
one with w∗ = 11.11 are virtually identical, while the effects
of heterogeneity manifesting in the form of fingers developing
in the high permeability channels are dominant in the medium
with w∗ = 33.3. This further confirms the criteria based on

(a) Homogeneous (b) q= 9 (c) q= 3

FIG. 8. (Color online) Concentration contours for R = 3, Pe = 200, A = 2 for (a) a homogeneous porous medium and (b) nine-layer
heterogeneity, with w∗ = 11.1, and (c) three-layer heterogeneity, with w∗ = 33.3. In each frame the red color (left) represents c = 1, and the
blue color (right) represents c = 0.
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FIG. 9. (Color online) Generalized MZL for different combina-
tions of mobility ratio and variance of permeability distribution (R,s).

the parameter w∗ to define a limit for a permeability length
scale below which the effects of heterogeneity are so small
that they do not play any significant role in driving the
instabilities, and the medium can be treated as homogeneous
in terms of the flow dynamics. As a general guideline, one
may treat flow displacements in heterogeneous media as
effectively homogeneous flows for w∗ < w∗

c−h = 15 and as
heterogeneous flows for w∗ > w∗

c−H = 30.
It is important at this stage to note that the generalized

curve in Fig. 6(b) was generated for given values of the log-
mobility ratio (R = 3) and permeability variance (s = 0.1). It
would therefore be interesting to determine how the previous
conclusions may change for other values of R and s.

Figure 9 depicts generalized curves for different combi-
nations of (R,s). Regardless of the values of R or s, all
curves follow the same trends and go through the different
regimes that have been identified earlier. It is worth noting
that increasing s has the same effect on ˜MZL as decreasing
q had on MZL in Fig. 5. Higher permeability variance leads
to stronger growth rate of fingers inside the channels during
the channeling regime, while it delays the transition to viscous
fingering. This is different from the effect of the viscosity ratio,

which shortens the transition regime as it increases the growth
rate of instabilities in all regimes.

Based on the results in Fig. 9 one may wonder if the scaling
developed so far can be further extended to include the effects
of the heterogeneity variance and viscosity. These two aspects
are examined in the following sections.

2. Heterogeneity scaling

A proper scaling of MZL to account for the effects of
changes in the permeability variance can be accomplished by
dividing both the generalized length and time by kc = exp(2s),
which is the ratio between the maximum and minimum
permeability values. This scaling can be justified by noting
from Darcy’s equation that the effects of permeability k are
commensurate with those of velocity u, ceteris paribus:

u = − k

μ

∂p

∂x
. (15)

One may therefore posit that variations of k ≡ es affect MZL
in the same way as velocity does, or, equivalently, as Pe =
ULx/D ≡ w∗. This and the fact that we have seen that the
appropriate hydrodynamic scaling is based on w∗2 lead to
the proposed heterogeneity scaling of e2s commensurate with
w∗2. The results of scaling the generalized MZL to account
for the effect of the strength of heterogeneity as t̃s = t̃/e2s and
˜MZLs = ˜MZL/e2s are shown in Fig. 10. It is clear that the
proposed scaling does allow us to collapse the various curves
into a single unifying curve that allows us to characterize
MZL regardless of the values of the heterogeneity variance.
Figure 10(b) shows the renormalized curves for different log-
viscosity ratios, and here again qualitative similarity between
the different curves indicates that it may be possible to also
scale the effects of viscosity.

3. Viscosity scaling

As mentioned before, the effect of the log-mobility ratio is
to enhance the instabilities in all regimes, and it is different
from the effect of other properties discussed so far, which are
mainly related to the heterogeneity of the medium. The graphs
of ˜MZLs for different values of R shown in Fig. 10(b) can be

(a) (b)

FIG. 10. (Color online) Renormalization of MZL to account for variance of permeability distribution s. The flow parameters are Pe = 2048,
A = 4, q = 7, (a) R = 3, and (b) s = 0.1 for different log-mobility ratios.
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FIG. 11. (Color online) Fitting of ˜MZLs curves of different
displacement scenarios with Pe = 2048, A = 4, q = 7, and s = 0.1
and for different mobility ratios, as noted on the plot.

reduced to a master curve by scaling only the length by eR/3.1.
Hence the proposed scaling is as follows:

MZLmaster =
˜MZLs

e(R/3.1)
, tmaster = t̃s . (16)

This normalization was obtained through an estimation of
the calculated factors for matching the curves and is not based
on any actual physical arguments. Still, as can be seen from
Fig. 11, it allowed us to build a general unifying curve that
characterizes the first flow regimes for any values of the fluid
properties or the medium’s heterogeneity. Note that despite
the superposition of the curves in the channeling and lateral
dispersion regimes, earlier transition from lateral dispersion to
viscous fingering is observed for higher log-mobility ratios.

Before closing this section, the dependence of the previous
conclusions on the type of viscosity model will be examined.
Different models are used in the literature [34,35], but for the
sake of brevity, our discussion will be based on the quarter
power mixing rule defined as [35]

(
1

μ

)1/4

=
(

C1

μ1

)1/4

+
(

C2

μ2

)1/4

. (17)

Generalized MZL plots generated with the quarter power
mixing rule are shown in Fig. 12 for a viscosity ratio of M = 20
equivalent to R = 3 in the exponential viscosity correlation for
q = 5 and q = 7. For comparison purposes, the corresponding
˜MZL curves for the exponential viscosity model are also
plotted. It can be seen that the variations of ˜MZL of both
viscosity models are qualitatively similar, and the different
regimes discussed earlier can be identified in both cases. This
implies that the same conclusions can be drawn for both models
and indicates that the scaling scheme may actually be valid for
any viscosity model.

C. Time-dependent dominance of flow regimes

The present study shows that flows in heterogeneous
porous media go through the same flow regimes at different

FIG. 12. (Color online) Effect of the viscosity model on MZL
for an unstable flow with a mobility ratio of M = 20 corresponding
to R = 3, with Pe = 2048, A = 4, and s = 0.1 in a five-layer and
a seven-layer medium corresponding to w∗ = 102.4 and w∗ = 73.1,
respectively.

heterogeneity length scales and with different flow properties.
Therefore the dominance of any instability mechanism de-
pends on the time window at which it is considered, and this
allows us to explain and predict the flow behavior. In particular,
the dominance of heterogeneity induced instabilities in the
large length scale of heterogeneity reported by [15,36] is
due to the fact that the effective Péclet number Pe/(qA)
in such cases is large, and as a result the flow will be
mainly in the channeling regime on the generalized graph.
Furthermore, in the work of Tan and Homsy [16] followed
by that of De Wit and Homsy [17], the average slope of MZL
between t = 200 and t = 400, L̇d , was used to characterize the
instability. Their simulations showed that L̇d has a maximum
at a particular heterogeneity length scale, which was attributed
to a resonance between viscosity and heterogeneity driven
instabilities at commensurate length scales. The results of the
present study and the identified general flow behavior show
that such a maximum can be attributed to the fact that in
a heterogeneous medium, L̇d increases with q because of
higher ∇f for larger q, hence the initial increase. However,
for even larger q, the flow goes through lateral dispersion,
therefore leading to smaller average L̇d , for a fixed time period.
Figure 13 depicts L̇d determined between t = 200 and t = 400
versus the number of layers for the same conditions used
by [17] (R = 3, Pe = 2048, A = 2). If the same displacement
process is considered at later times (e.g., between t = 600
and t = 1000, as shown in Fig. 13), heterogeneity models
with larger length scales get the chance to go through lateral
dispersion, and one observes a rapid decrease in the average
slope of MZL. The slope of MZL increases with time in the
channeling regime; hence for media in which the flow is still
in the channeling regime an increase in L̇d is expected at the
t = 600 to t = 1000 time window. Due to these changes, it
is not surprising that the maximum L̇d shifts from q = 6 to
a smaller value of q as the time window is changed from
[t = 200,t = 400] to [t = 600,t = 1000].
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FIG. 13. (Color online) Average slope of MZL L̇d at different
time windows for R = 3, Pe = 2048, A = 2, and s = 0.01.

D. Breakthrough time

Beside the mixing zone length, there are other parameters
for quantifying the instability that are easier to measure in
field applications. One of these parameters is the breakthrough
time of the injected solvent at the production end. The
breakthrough time (BT) is defined as the time when the leading
edge of the mixing zone (c = 0.01) reaches the downstream
end of the porous medium with the total length Ltotal =
tBT + xc=0.01 at BT. In this section the effect of the length
scale of the permeability on the breakthrough time is analyzed,
and the applicability of the discussed generalization to such
measurements is sought.

Figure 14(a) depicts the variation of the BT with the number
of layers q for the sets (Pe,A) = (3072,8),(2048,4),(2048,2),
and (1024,2). All results were obtained for R = 3 and s = 0.1,
and the point q = 0 corresponds to the homogeneous case.
It is clear that the variation of BT with q is nonmonotonic
and actually exhibits a minimum and a maximum for all
considered cases. For wide channels (small but nonzero q),
the flow is more unstable since it is dominated by channel-
ing where fingers develop early, particularly in comparison
with the homogeneous case (q = 0; cf. Fig. 3), hence the
smaller breakthrough time. This minimum breakthrough time

corresponds to the largest number of layers for which the flow
remains in the channeling regime throughout the displacement
process. For intermediate values of q, the flow spends most of
its traveling time in the lateral dispersion regime, resulting
in longer breakthrough times, while for narrow channels
(large q), a fast transition to viscous fingering causes early
breakthrough of the injected fluid. Clearly, there are two
optimum numbers of layers, qoptM and qoptm, that result in a
maximum and a minimum breakthrough time. These optimum
numbers of channels depend on the Péclet number and the
cell aspect ratio and seem to decrease with increasing A and
decreasing Pe.

Following the scaling strategy adopted for characterizing
the flow through MZL, the BT is plotted versus 1/w∗, and the
results are shown in Fig. 14(b). The scaling clearly allows us
to superpose all curves into a single one regardless of the
combinations of Pe and A and to distinguish the extrema
of BT. In particular, it is found that the minimum of the
breakthrough time is reached for w∗ = w∗

optm ≈ 250, while
the maximum is attained for w∗ = w∗

optM ≈ 60. It can be
concluded that for any displacement scenario (a given mobility
ratio and a diffusion rate) in a porous medium with determined
permeability distribution, the injection rate of the solvent can
be adjusted to the distance between injection and production
locations to meet the optimum characteristics Pe

qA
. This will

ensure that the process remains in the lateral dispersion regime
for most of the time and promotes high sweep efficiency of the
process.

E. Effects of dispersion

The previous scaling and flow analysis was based on
constant isotropic diffusion in the flow. Questions may,
however, arise about the extent and validity of the present
study for general dispersive flows. In the case of homogeneous
media, a number of numerical studies have examined the
effects of dispersion on the dynamics of viscous fingering
[16,37–39]. It was found that isotropic velocity-dependent
dispersion has no significant effects on the finger structures
and quantitative properties such as the mixing length, while
anisotropy can result in important differences in the finger
structures. For heterogeneous media, the picture becomes
more complicated as a result of the competition between

(a) (b)

FIG. 14. (Color online) Breakthrough time of the flow with R = 3, s = 0.1 at the total dimensionless length of Ltotal = 2700;
(a) breakthrough time vs the number of layers for different Pe and A and b) breakthrough time vs 1/w∗ = qA/Pe.
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(a) (b)

FIG. 15. (Color online) Effect of dispersion on MZL for s = 0.1,q = 9,R = 2, Pe = 512, and A = 2 for (a) L = 0.7 and different α and
(b) α = 0.5 and different L.

different mechanisms [40]. The present study revealed that all
flows dominated by the medium heterogeneity (w∗ > w∗

c−H )
can be characterized by a single generalized curve. For such
flows, it is reasonable to expect that the effects of dispersion
will be negligible in comparison with those arising from the
medium heterogeneity, and actually, most relevant studies have
ignored dispersive effects [12,13]. In order to ascertain this
and check the generality of the proposed scaling, simulations
that account for dispersion were carried out for layered
heterogeneous media using a velocity-dependent anisotropic
dispersion model [38,41]. Two dimensionless groups are
adopted: α = aT

aL
, which represents the ratio of the strength

of dispersion in the transverse and longitudinal directions,
and L = aLU

aLU+D
, which measures the relative strength of the

longitudinal dispersion [38].
A series of simulations was conducted to determine the

effects of parameters α and L. It was found that for flows
dominated by heterogeneity, velocity-dependent anisotropic
dispersion has very small effects on the finger structures and
quantitative properties such as the mixing length. Actually,
the only noticeable effects were in the fourth regimes, where
some minor differences in the fingers’ shapes were observed,
although the overall structure and number of fingers were
unaffected by dispersion.

Figure 15 depicts the variation of the MZL with time for
different values of the dispersivity ratio α and strength L and
for A = 2,s = 0.1,q = 9,Pe = 512, and R = 2. Clearly, the
mixing zone length is not affected by dispersion over the wide
range of parameters α and L that has been explored. Results
were also obtained for other values of A,s, Pe, and R, and it was
found that in all cases the MZL does not change as a result
of dispersion, at least in the first three regimes, while some
differences may be observed during the last fingering regime.
These results indicate that the proposed scaling actually
extends to dispersive flows and that the previous conclusions
are valid for general dispersive flows in layered heterogeneous
media.

IV. SUMMARY AND CONCLUSION

The coupling between viscous fingering and heterogeneity
induced instability has been investigated through a qualitative
analysis of concentration contours as well as quantitative

characterizations through the mixing zone length and the
breakthrough time. The study considered a wide range of
parameters such as the Péclet number, cell aspect ratio, fluid
mobility ratio, and heterogeneity length scale and variance and
revealed that, in all the scenarios examined, flow displacements
in layered heterogeneous media go through similar flow
regimes, although not necessarily at the same extent and with
the same intensity. Generalized curves have been obtained
for different combinations of the mobility ratio and the
variance of the permeability distribution by scaling time and
MZL using characteristic time and characteristic length based
on the channel width. The slopes of the generalized curve
have been used to identify four regimes that the flow goes
through, namely, an initial diffusive regime followed by a
channeling regime, then lateral dispersion, and, finally, viscous
fingering. Such characterization of the flow regimes helps
to explain the dominance of viscous fingering or channeling
regimes reported in earlier studies for different length scales
of permeability and for different Péclet numbers. Furthermore,
this scaling allowed us to identify the transition from flows
where heterogeneous effects are dominant to those where
these effects can be neglected and the flow can be treated
as homogeneous. Such a transition is governed by a critical
effective Péclet number based on the channels width w∗

c ,
whose value depends on the viscosity ratio and the strength of
heterogeneity. Moreover, it is shown that for small values of the
effective Péclet number, the qualitative behavior and structure
of the flows are virtually identical to those of the homogeneous
case. These results and the scaling obtained in the case of
diffusive flows were found to be also valid when an anisotropic
velocity-dependent dispersion is considered. The scaling of
MZL was further extended to account for the effects of the
mobility ratio and permeability variance and led to a general
master curve that can be used to characterize quantitatively
any flow in layered heterogeneous media. Such master curves
allow us to superpose the MZL up to the viscous fingering
regime and allows us to identify clearly the start of this last
regime.

The flow was also characterized in terms of the break-
through time. It was found that the variation of BT with
the number of layers q is nonmonotonic and goes through
a minimum for small values of the number of layers q and
a maximum for intermediate values. Media with a large
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number of layers lead to the same BT as the homogeneous
medium. Two optimal values of the effective Péclet number
w∗

opt that lead to a maximum and a minimum value of BT were
determined. Here too these optimal values are expected to
depend on the permeability variance and fluid viscosity ratios
and the total length of the domain.

The present study has focused on the viscous fingering
instability in isothermal miscible displacements. However, it is
expected that similar characterizations can be extended to other
displacements such as in Rayleigh-Taylor (gravity driven)
instability [31,42] or thermoviscous fingering [43] and would
help to explain observed phenomena such as the resonance
between the driving mechanisms of instability [42] or the

dominance of any of the mechanisms at different length scales
[31,43]. Furthermore, similarity in the behavior of the mixing
zone for different heterogeneous media has also been reported
for immiscible displacements [44], and it is presumable that the
present scaling approach can also be adopted to characterize
the flow behavior in immiscible flows.
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