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Dynamical systems analysis is performed for reacting flows stabilized behind four symmetric bluff bodies
to determine the effects of shape on the nature of flame stability, acoustic coupling, and vortex shedding.
The task requires separation of regular, repeatable aspects of the flow from experimental noise and highly
irregular, nonrepeatable small-scale structures caused primarily by viscous-mediated energy cascading. The
experimental systems are invariant under a reflection, and symmetric vortex shedding is observed throughout
the parameter range. As the equivalence ratio—and, hence, acoustic coupling—is reduced, a symmetry-breaking
transition to von Karman vortices is initiated. Combining principal-components analysis with a symmetry-based
filtering, we construct bifurcation diagrams for the onset and growth of von Karman vortices. We also compute
Lyapunov exponents for each flame holder to help quantify the transitions. Furthermore, we outline changes in
the phase-space orbits that accompany the onset of von Karman vortex shedding and compute unstable periodic
orbits (UPOs) embedded in the complex flows prior to and following the bifurcation. For each flame holder, we
find a single UPO in flows without von Karman vortices and a pair of UPOs in flows with von Karman vortices.
These periodic orbits organize the dynamics of the flow and can be used to reduce or control flow irregularities.
By subtracting them from the overall flow, we are able to deduce the nature of irregular facets of the flows.

DOI: 10.1103/PhysRevE.88.033011 PACS number(s): 47.70.Pq, 47.27.De, 47.27.ed, 47.32.cb

I. INTRODUCTION

High-Reynolds-number fluid flow [1,2] and high-
momentum combustion [3] are complex flows that couple
dynamics on multiple spatial and temporal scales. Typically,
large-scale structures are generated by external driving, and
small-scale aspects are initiated by energy cascading [1,2].
These small-scale features are highly sensitive to initial condi-
tions and tiny disturbances and exhibit irregular, nonrepeatable
behavior; in addition, they affect the large-scale structures
via feedback, thus complicating the overall flow as well as
its analysis. This sensitive dependence on initial conditions,
coupled with the nonlinearity of the underlying physical
systems, makes it extremely difficult to conduct theoretical or
computational analyses of flows [4,5]. An alternative approach
is to conduct a modal decomposition of experimental data and
develop phenomenological models for the flows. The high-
resolution, high-frequency data needed for such analyses is
becoming more readily available with advances in technology
[6]. In this paper, we introduce an approach whereby modal
decomposition can be used for phase-space reconstruction
and dynamical systems analysis to study large-scale flow and
bifurcations therein as well as to extract characteristics of noise
and irregular facets of the flows.

*Corresponding author: sroy@woh.rr.com

The application reported here is for flame-shedding
dynamics in high-momentum bluff-body-stabilized flames that
are transitioning from near-blow-off to stable and acoustically
coupled conditions [6–9]. The control parameter in the
experiment is the equivalence ratio φ; i.e., the fuel-to-oxidizer
ratio and the corresponding stoichiometric value. The physical
systems analyzed are symmetric under reflection about a line
parallel to the flows, and symmetric vortex shedding [10,11]
is observed in the entire range of control parameters. As the
equivalence ratio is reduced, the flows develop, in addition, the
asymmetric von Karman vortices [6]. The approach outlined
here, an extension of the principal-components analysis of
Ref. [6], is geared toward the determination of the onset and
characterization of the growth of von Karman vortices.

Acoustic instabilities can occur in a combustion environ-
ment when heat release and pressure fluctuations become
coupled and exceed the system damping [3]. We employ
bifurcation diagrams [12] and Lyapunov exponents [13] to
quantify the shedding transitions for different flame holders.
The information can be used to select flame holders that
yield stable flow patterns under modifications in the upstream
conditions. Such analyses may be valuable for bluff-body
applications where a gross change in behavior is undesirable.

We also compute recurrent (or periodic) orbits embedded
in the (state-space) neighborhood of the flows. It has been
asserted, and demonstrated through examples, that chaotic
motions are dense with unstable recurrent orbits [14–17] and
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that dynamical invariants of the chaotic motion can be derived
from the eigenvalues of these cycles [14,18–21]. The chaotic
motion approaches a cycle, follows it closely for some time
before moving away, returns close to another cycle, and the
process is repeated. In this sense, irregular flows are organized
around a “skeleton” of unstable cycles. Methods to extract
periodic orbits from chaotic signals and spatiotemporally
chaotic flows have been introduced [15,22] and used to analyze
experimental time series [23–25].

The experiment is described briefly in Sec. II. In particular,
we discuss possible sources of irregularity in the flow and high-
light the presence of rapidly evolving small-scale structures.
The analysis is presented in detail for flow across a bluff body
in the shape of a v-gutter, and results for the remaining shapes
are outlined in Sec. VII. The first step in the analysis, given
in Sec. III, is a preliminary temporal or spatial filtering of
the flow. In Sec. IV principal-components analysis [26–33]
and symmetry are used to eliminate some irregular facets
and establish the modes associated with the flow. In Sec. V
we propose a method to quantify the magnitude of the von
Karman modes and present the bifurcation diagram in terms of
φ. We also discuss the dynamics in a reduced phase space and
qualitative changes that accompany the onset of von Karman
vortices. Section VI presents the computation of periodic orbits
embedded in the flow and their use in characterizing the noise
and small-scale irregular facets of the flow. The implications
of our analysis are discussed in the concluding section.

II. EXPERIMENT

Flame studies were conducted within an optically ac-
cessible, atmospheric-pressure combustion test section that
contains a bluff-body flame holder for flame stabilization. Air
is delivered into a 152 × 127 mm rectangular test section at
a constant rate of 0.32 kg/s. While the air rate is maintained
constant, propane fuel is added and mixed upstream of the
flame holder to provide equivalence ratios that vary between
φ = 0.6 and 1.1. The flame holder is a v-gutter with a
width of 38.1 mm and an angle of 35◦, which is capable
of holding the flame to a blow-off equivalence ratio of
φ = 0.55. Additional facility details and detailed flame-holder
dimensions are provided in Ref. [6].

Flame-shedding behavior within the test section was stud-
ied using high-speed chemiluminescence imaging. Imaging
was performed to capture the axial plane of the flames in
such a way that the reaction fronts, recirculation zone, and
reactant regions could be viewed simultaneously. The imaging
setup is shown in Fig. 1. A Phantom v7.1 camera is used to
collect the chemiluminescence emitted from the test section
by viewing the axial plane through an angled mirror. This
stainless steel mirror with MgF2 coating provides maximum
reflection of emission from 300 to 900 nm and is required for
imaging because of space limitations. The camera is equipped
with a monochrome CMOS detector set to capture images
with a resolution of 496 × 344 pixels at a rate of 10 kHz.
The detector is sensitive only to light ranging from 400 to
900 nm. Therefore OH∗ chemiluminescence is not collected,
while CH∗ and black-body radiation from soot are captured.
An 85-mm Nikkor lens with an f -stop of 1.4 is coupled to the

FIG. 1. (Color online) Side view of imaging setup with Phantom
v7.1 high-speed camera and mirror.

camera, resulting in a field of view of 165 × 102 mm within
the test section.

For the present study, imaging of the chemiluminescence
from the flame fronts is assumed to be an adequate repre-
sentation of the flame-shedding mechanism. However, we
should point out two drawbacks associated with this technique.
First, when imaging flames at reduced equivalence ratios,
signals decrease as emission from soot and CH∗ is reduced.
Although higher camera sensitivity at short wavelengths and
enhanced signal could be achieved by increasing the exposure
time, the camera has an inherent 95-ms frame rate. Since
image intensifiers often compromise spatial resolution, we
refrain from using them in an attempt to retain as much
flame-shedding structure as possible. Signal-to-noise ratios
along the reaction front varied from ∼10 to ∼20 when the
equivalence ratio was changed from φ = 0.6 to 1.1.

The second drawback of chemiluminescence imaging is
that signals are collected over a line-of-sight and cannot
typically be extended to three dimensions. The current ex-
periment aimed to minimize these effects by establishing,
as far as possible, inlet conditions that were uniform along
the depth axis; thus, the flame flow would be nearly two-
dimensional. However, any nonuniformity in the fuel ratio or
velocity field or symmetry breaking in the depth direction
will result in slight asymmetries in the large structures of
the flame. It should be noted that since turbulent flows are
inherently three-dimensional, extremely small-scale structures
along the shear layers will be captured in our two-dimensional
images. Their collection along the line-of-sight of our imaging
system will, therefore, contribute to measured flow irregularity
and set a lower limit on the structural scales that can be
analyzed.

III. TIME FILTERING

First, we perform a preliminary temporal filtering intended
to reduce the small-scale structures in regions of large flow
gradients. We assume, and the experiment verifies, that the
onset and dynamics of these rapidly evolving structures are
irregular and may be attributed to line-of-sight imaging effects
from the experiment. To filter them, we consider the time
sequence fx(t) ≡ U (x,t) at a fixed location x. Figure 2 displays
the power spectrum of such a signal over 1 s of the flow
(10 000 frames). The spectral components beyond 400 Hz
appear to be irregular. Thus, we filter the signal using the filter
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FIG. 2. (Color online) Power spectrum of time series for (chemi-
luminescence) intensities at a point x for flow at φ = 0.7. Spectrum
beyond 400 Hz does not appear to have a structure. Time filtering of
the signal is implemented using the filter function given in Eq. (1).

function

�(f ) =

⎧⎪⎨
⎪⎩

1 if f � 400 Hz

1
2

[
1 + cos π

f −400
200

]
if 400 Hz < f � 600 Hz

0 if 600 Hz < f

,

(1)

which retains all spectral components below 400 Hz and
smoothly reduces the fraction of spectral components until
600 Hz. The signal is then inverse Fourier transformed to
obtain the filtered dynamics at x, and the time-filtered flow is
constructed by combining the dynamics at all sites. Snapshots
of the original and time-filtered flow at the 500th panel (0.05 s
into the video), Fig. 3, show that some of the rapidly evolving,
small-scale features of the flow have been eliminated.

Results of the analyses described below are robust against
changes in the filter function. For example, none of the
conclusions change if we shift the filter function by (say)
200 Hz. As �(f ) is shifted more, it becomes progressively
more difficult to compute periodic orbits of the flow.

We also implemented spatial filtering as follows: each
snapshot was Fourier transformed, and the high wave-vector
components filtered. The spatiotemporal dynamics are a
composite of these spatially filtered images. The results from
the analysis, including the coherent structures, bifurcation
diagram, and periodic orbits are similar under temporal and
spatial filtering. We also filtered the spatiotemporal dynamics
both spatially and temporally and found comparable results.

IV. PRINCIPAL-COMPONENTS ANALYSIS

A. Preliminaries

For establishing the large-scale modes of the flow, it is
necessary to reduce (or, if possible, eliminate) irregular small-

FIG. 3. The 500th panel of original and time-filtered flow,
illustrating that the rapidly evolving small-scale motions have been
filtered. Size of the images is approximately 100 × 66 mm.

scale features. We employed principal-components analysis
(PCA) for this task [26–33]; its use is facilitated by the presence
of a reflection symmetry in the system. Other approaches such
as dynamic-mode decomposition [34,35] may be required for
modal decomposition in systems with no such symmetry. The
“data” consist of a video recording of the chemiluminescence
of N = 10 000 successive snapshots of the flow taken at
10 kHz. The analysis is conducted within a region defined by
a height H (300 pixels; 100 mm) and a width W (200 pixels;
66 mm) behind the bluff body. We found that oscillations of
the mean and standard deviation of the intensity in a frame
were (nearly) commensurate with vortex shedding and that
the results from the PCA improved when the frame intensities
were normalized (to zero mean and unit variance). PCA was
implemented on the normalized matrix U (x,t) of N rows
and H × W columns, where x = (x,y) and t is time. Here
x represents the spanwise direction, and y = 0 is the central
axis about which the system is reflection symmetric. In PCA
this field is decomposed as

U (x,t) =
HW−1∑

k=0

ak(t)�k(x), (2)

where �k(x) (k = 0,1, . . . ,HW − 1) are referred to as the
principal components or coherent structures and ak(t) are
their time-dependent coefficients. �0(x) is the time-averaged
field. The coherent structures are normalized and form an
orthonormal basis for expansion of the data. The terms in
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FIG. 4. (Color online) First nine coherent structures for flow at φ = 1.1, all of which are nearly symmetric about the horizontal midline.
Our analysis is predicated on the assumption that asymmetric components of these modes are due to slight experimental nonuniformities
and dynamics of the small-scale irregular structures. The scale of individual images, and images in subsequent figures, is approximately
100 × 66 mm.

Eq. (2) are ordered such that their latencies (also referred
to as “energies”) Ln = 〈a2

n(t)〉 are in nonincreasing order.
A reduced-order model [36] for the flow can be derived by
truncating the series (2) at an appropriate order N to obtain an
approximation UN (x,t) ≡ ∑N−1

k=0 ak(t)�k(x). The “quality” of
the approximation is given by

βN =
∑N−1

k=0 Lk∑HW−1
k=0 Lk

. (3)

Larger values of βN correspond to better approximations of
the data.

Two modes of flame shedding are well established in these
reacting flows behind bluff bodies. In our experiments the
more intense is that where a pair of vortices is simultaneously
released from the sides of a symmetric bluff body [6]. The
symmetry of the flow can be expressed in terms of the reflection

operator R : (x,y) → (x,−y) as

U (Rx,t) = U (x,t). (4)

Now, the uniqueness of the principal-components expansion
shows that for a symmetric flow field, �n(Rx) = �n(x)
and, hence, that every coherent structure of the expansion is
symmetric about the central axis [30,31].

The second mode of flame shedding is known as von
Karman vortex shedding, where two vortices are shed asym-
metrically; specifically, a vortex shed from one side of the
bluff body is followed by one shed from the opposite side.
The flow field V (x,t) associated with von Karman shedding
satisfies

V (Rx,t + T ) = V (x,t), (5)

where T is the time interval between successive shedding.
If the vortices are shed periodically, T is constant. Because
of the time delay T , the coherent structures for the flow
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are neither symmetric nor antisymmetric. However, in any
(suitably filtered) flow comprises (only) symmetric and von
Karman vortex shedding, nonsymmetric coherent structures
are due to von Karman shedding. We assume that the intensity
of the antisymmetric components is a measure of the strength
of the latter.

B. PCA for flow at φ = 1.1

Visually, the flow appears to involve only symmetric vortex
shedding. The first nine coherent structures, all of which are
nearly symmetric about the y axis, are shown in Fig. 4. We
posit that the small asymmetry in these modes is not due to
the large-scale flow but to experimental noise, irregularities
from slight nonuniformities in the upstream inlet conditions,
and/or deficiencies in the line-of-sight imaging. We introduce
a symmetry-based method to filter some of these aspects.

The symmetric and antisymmetric components of the nth
coherent structure �n(x,y) are

�n,S(x) = 1
2 [�n(x) + �n(Rx)] ,

(6)
and �n,A(x) = 1

2 [�n(x) − �n(Rx)] ,

respectively. If our assumption is valid that the small asym-
metry in the coherent structures is not due to large-scale flow,
then the antisymmetric component 〈|�n,A(x)|2〉 (1) would be
small and (2) would be nearly unchanged between coherent
structures. As is evident from Fig. 5, these expectations were
indeed realized. The latency 〈|�n,S(x)|2〉 of the symmetric
components of the coherent structure decreases significantly
with the mode number n, while that of 〈|�n,A(x)|2〉 remains
nearly unchanged. Furthermore, the fractional latency of
〈|�n,S(x)|2〉 is larger by about a factor of 100 for the first few
coherent structures. The difference decreases as n increases,
signaling the enhanced role of noise (due to reductions in the la-
tency of the coherent structures). Beyond n ∼ 15, the latencies
of the symmetric and antisymmetric components are similar,
and the symmetric components are probably corrupted as well.

Note that we eliminate the antisymmetric components of
the flow entirely in our analysis. Furthermore, we identify the
cutoff in the PCA expansion by comparing the intensities of
the symmetric and antisymmetric components. As discussed
later in this paper, these modifications to the analysis of Ref. [6]
provide a clear identification of the onset of von Karman vortex
shedding.

C. PCA for flow at φ = 0.8

Although the asymmetry in the flow is not easily observable,
PCA selects modes that contain dominant antisymmetric com-
ponents (see Fig. 6). The presence of the asymmetry implies
that the motion contains structures outside of symmetric
vortex shedding. The analyses of Sec. IV B show that the
fractional latency of the antisymmetric components of Modes
5, 6, 9, and 12 is higher than those of the corresponding
symmetric components (see Fig. 7). Again, we assume that
the nondominant components are noise or irregular-motion
generated and remove them from consideration.

FIG. 5. (Color online) (a) Latency and (b) fractional latency of
the symmetric (red) and antisymmetric (blue) components of the first
15 coherent structures. Observe that latencies of the antisymmetric
components are small (by a factor of ∼100) compared to those of
the corresponding symmetric components. Furthermore, they remain
nearly unchanged as the mode number n increases, supporting
our assertion that the antisymmetric components are caused by
experimental noise, irregular motions, and/or line-of-sight detection.
The fractional latencies of the two components approach each other
as n increases, indicating that, for large n, the symmetric components
are corrupted as well.

V. ONSET OF VON KARMAN VORTICES: BIFURCATION
DIAGRAM AND PHASE PORTRAITS

A. Bifurcation diagram

As discussed previously, in the absence of stochastic or
irregular effects, the coherent structures of a flow that consists
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FIG. 6. (Color online) First nine coherent structures for flow at φ = 0.8. Modes 5 and 6 (as well as 9 and 12, not pictured) appear to be
primarily antisymmetric.

only of symmetric vortex shedding will be symmetric under the
reflection R. The antisymmetric modes are assumed to arise
from von Karman vortex shedding. In addition, as in Ref. [6],
we assume that the strength of the von Karman vortices can
be quantified by the fractional latency of the antisymmetric
coherent structures. The bifurcation diagram, Fig. 8, shows that
antisymmetric modes appear as φ is reduced below 1.0 and that
the latencies contained in the antisymmetric modes increase
as φ is reduced further. The smooth bifurcation diagram, as
compared to the results in Ref. [6], may be attributed to the
filtering scheme used in this study.

B. Phase portraits

The onset of von Karman shedding is accompanied by a
reorganization in the configuration space defined by an(t), n =
0,1, . . . ,14. The periodicity, quasiperiodicity, or aperiodicity
of an orbit is reflected in the configuration space [4]. In
Fig. 9 we use the projection (a0(t),a2(t)) for visualization.
Orbits prior to the onset (φ = 1.1, 1.04, 1.0) appear to be

noisy recurrent orbits, while those following the onset (φ =
0.9, 0.8, 0.7) are more irregular (perhaps noisy quasiperiodic
orbits). The width of the configuration-space orbits is a
measure of the strength of irregular motions. The relatively
narrow widths of the orbits at high equivalence ratios are
attributed to the flame becoming more uniform across the
cross-sectional plane of the rig as a result of acoustic coupling
with the oscillating pressure field within the rig.

C. Lyapunov exponents

One of the defining characteristics of chaotic or irregular
flows is the divergence of nearby points in configuration space
of the flow [4]. Typically, the largest deviations are along
the direction of the flow. Lyapunov exponents [4,13], which
quantify the mean expansion of the dynamics along and across
the flow, can be used as a measure of the “irregularity” of
the flow. Lyapunov exponents and their dependence on the
equivalence ratio are computed using techniques introduced
in Ref. [37]. We limit consideration to projections to the
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FIG. 7. (Color online) (a) Latency and (b) fractional latency of
symmetric and antisymmetric components of coherent structures
0–14 for the flow at φ = 0.8. Note that the dominant components
of modes 5, 6, 9, and 12 are antisymmetric, suggesting the presence
of von Karman vortex shedding.

(a0(t),a2(t)) plane. (Variations of the exponent with the
equivalence ratio do not depend on this choice.) We choose
a small patch of the plane and identify points xi of the orbit
within it. The point xi evolves to a point yi (in a different
patch) during the next time step (0.0001 s). We assume that
the evolution of xi → yi can be approximated by a (locally)
linear transformation L, which is estimated by minimizing the
least-squares difference of (yi − yj ) and L(xi − xj ), for all
pairs of points xi and xj in the original patch. Now we follow
an orbit, constructing patches at each time step and computing
the associated linearizations. The Lyapunov exponent is the

FIG. 8. (Color online) Bifurcation diagram for onset of von
Karman vortex shedding.

logarithm of the largest eigenvalue of the product (per step) as
the orbit length increases.

Figure 10 shows the variation in the Lyapunov exponent
for the flow as the equivalence ratio is changed. The onset of
von Karman vortex shedding is accompanied by an increase in
the Lyapunov exponent, i.e., neighboring points on the phase
diagram diverge faster following the transition.

Fractal properties [38] of an attractor can be used to char-
acterize chaotic motions. However, the correlation dimension
[39,40] of all attractors shown in Fig. 9 are found to be close
to 2. Thus, due to experimental noise and irregular small-scale
facets, it is not possible to derive fractal characterizations of
our flow.

VI. PERIODIC ORBITS IN THE FLOW

The computation of (unstable) periodic orbits will be
illustrated in the context of bluff-body stabilized flames. As
shown below, we find only one periodic orbit prior to the
onset of von Karman vortex shedding and two following
the transition. Interestingly, the period of the cycle prior
to the transition is ∼8 ms, which is representative of the
125-Hz acoustically coupled flame frequency. The presence
of such rapid flow components highlights the critical need for
high-frequency imaging.

A. Preliminaries

Periodic orbits within the flow are most easily identified
using a Poincaré section. Qualitative analysis of a dynamical
system can be simplified by limiting consideration to intersec-
tions of the state-space orbit with a lower dimensional subspace
(Poincaré section) that intersects it transversly; i.e., the section
is not tangent to the orbit. The map from one such intersection
(passing from a given side of the Poincaré section to the other)
to the next is referred to as a Poincaré map [4,41] (see Fig. 11).
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FIG. 9. (Color online) Changes in phase portrait [here the projection to (a0(t),a2(t))] as φ changes from 1.1 to 0.7. Transition to the onset
of von Karman vortices is accompanied by the change of the phase portrait from an inverted-U structure to a filled-loop structure. Similar
changes are observed in other projections as well.

The Poincaré map is discrete and has one less dimension than
the flow.

In Fig. 11 we provide two schematic examples. Figure 11(a)
presents a two-dimensional periodic flow and a Poincaré
section y = 0. The flow intersects the section at the same point
P0 repeatedly;P0 is a fixed point of the Poincaré map. The one-

FIG. 10. (Color online) Lyapunov exponent of the flow in the
range of equivalence ratios studied. Note that the exponent increases
with the onset of von Karman vortex shedding.

dimensional flow has been reduced to a zero-dimensional map.
The second example, illustrated in Fig. 11(b), is a quasiperiodic
flow on a torus. Its intersections with the Poincaré section
lie on a circle, and the Poincaré map is quasiperiodic on
the circle (i.e., similar to an irrational rotation). Here, the
two-dimensional, quasiperiodic flow has been reduced to a
one-dimensional, quasiperiodic Poincaré map. Similarly, a
chaotic flow will be reduced to a chaotic map of one less
dimension on the Poincaré section, and the (closure of the)
intersection will be a strange attractor [4].

Being unstable, periodic orbits are not directly observable;
their presence and location must be inferred from the flow. To
perform this task, we first note that nearby points in chaotic
or irregular flows will diverge (the “butterfly effect”). The
divergence is large along one direction, the mean growth
rate being the (first) Lyapunov exponent [13]; typically, the
divergence of the flow normal to the chaotic attractor (or the
second Lyapunov exponent) is smaller. Consequently, an orbit
that approaches close to a fixed point on the Poincaré section
will maintain proximity to the corresponding periodic orbit of
the flow for a finite time interval. Hence, a point sufficiently
close to a fixed point of a Poincaré map is likely to make a
close return [14,23]. We search for all such close returns on
the Poincaré section. Typically, such points cluster into a few
groups, each of which is assumed to be associated with a fixed
point of the Poincaré map; the fixed point is estimated to be
the centroid of the cluster [23].

B. Periodic orbits for φ = 1.1

We select the Poincaré section a1(t) = 0 for our analysis
and search for crossings from a1 < 0 to a1 > 0. The data
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FIG. 11. (Color online) Schematic examples of Poincaré maps for
flows. (a) Periodic orbit of the flow intersects a single point P0 on the
Poincaré section repeatedly; P0 is a fixed point of the Poincaré map.
(b) Quasiperiodic orbits of the flow intersects the Poincaré section on
a curve. Two successive crossingsP0 and P1 are shown. The Poincaré
map P0 → P1 is quasiperiodic.

(which are available only on a discrete set of time points,
i.e., the frames) are interpolated using a third-order spline to
estimate the crossing time tc. The value of each remaining
coefficient an(tc) (n = 0,2, . . . ,14) at the crossing is also
computed using a spline fit.

Our analysis was conducted on the reduced-order flow
defined by using the first 15 coherent structures. Close returns
on the Poincaré section are defined as orbits that return to
within a prespecified distance ε = 0.01 from the first crossing.
(Identical periodic orbits are found for a range of ε values.)
Figure 12(a) shows the intersections of the periodic (or
quasiperiodic) orbit of the flow (at φ = 1.1) with the Poincaré
section. When there is a close return, we mark the first crossing
with a red circle and its iterate with a green triangle. Each
such pair is connected by a dashed line. The blue open circles
denote crossings whose iterates (i.e., next crossings) do not
fall within ε. We find seven close returns of the Poincaré map.
Notice that all seven first crossings (red circles) are clustered
in one neighborhood; we assume that the proximity of their
returns is due to the presence of a fixed point on the Poincaré
section, and its location is estimated by the mean of the seven
first crossings.

Next, we discuss an inference that can be made on the basis
of the presence of only one periodic orbit in the flow. If the flow
were chaotic, one would expect multiple periodic orbits to be

FIG. 12. (Color online) (a) Intersections of the flow at φ = 1.1
with the Poincaré section a1 = 0. First crossings for close returns,
defined by ε = 0.01, are shown by red closed circles, while returns
to the section are shown by green closed triangles. Dashed lines join
pairs of first crossings and returns; i.e., represent the Poincaré map.
Open circles are the remaining crossings of the orbit with the Poincaré
section, whose returns are farther than ε from the first crossing.
(b) Dynamics of a1(t) between the first crossing and return for the
seven close returns identified in (a). All seven appear to be organized
around a single periodic orbit. The cycle, marked by red circles, is
estimated to be the mean of the seven close returns.

embedded in the attractor and the orbit to follow distinct cycles
in the course of the flow [14,15,18]. In this scenario, several
periodic orbits would have been extracted by our algorithm.
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FIG. 13. (Color online) Projections of the periodic orbit of the flow at φ = 1.1 to the (a1,a2) and (a1,a3) planes.

Our inability to find more than one orbit is the first indication
that the large-scale flow, in the absence of noise and other
irregular facets, is periodic and not chaotic; it also confirms
that our flame oscillations are indeed acoustically coupled to
the experimental rig.

Next, we consider the flows emanating from each of the
seven first crossings [red circles in Fig. 12(a)] and compute
their dynamics at regular time intervals (using spline-fits
as necessary). The dynamics of a1(t) for the seven orbits
are shown in Fig. 12(b). The proximity of the seven orbits
justifies our assumption that the close returns are caused by a
single neighboring periodic orbit. The location of the periodic
orbit a

(P )
1 (t) at time t is assigned as the centroid of the seven

orbits at t . (Note that the periods of the seven close returns,
although similar, are not identical. To compute the cycle, we
linearly scale the period of each orbit so all orbits have a
common period.) The estimated periodic orbit is shown by
red circles in Fig. 12(b). Figure 13 displays two projections
of the recurrent orbit.

Analysis of the remaining flows prior to the onset of von
Karman vortices (i.e., at φ = 1.04 and φ = 1.0) yields quali-
tatively similar results. Specifically, we find only one cycle in
each case, and as can be seen from Fig. 14 for φ = 1.04, the
periodic orbits for the three cases are qualitatively similar.

C. Periodic orbits for φ = 0.8

Poincaré sections for each flow beyond the onset of von
Karman vortices (i.e., φ < 1.0) show two clusters of close
returns. A periodic orbit is associated with each cluster.
Furthermore, the pairs of orbits for all equivalance ratios
beyond the onset are qualitatively similar. Figure 15 shows
the same pair of projections for each cycle for the flow at
φ = 0.8.

Beyond the onset of von Karman vortices, the flow is
organized around two periodic orbits. Figures 15(a) and 15(b)
show two projections of the first cycle and Figs. 15(c) and 15(d)
those of the other. Notice that the orbits do not close precisely
because the centroid of the locations of the first crossings of

FIG. 14. (Color online) Projections of the periodic orbit of the flow at φ = 1.04 to the (a1,a2) and (a1,a3) planes. Note that the projections
are qualitatively similar to those for the flow at φ = 1.1 (see Fig. 13).
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FIG. 15. (Color online) Projections of two periodic orbits of the
flow at φ = 0.8 to the (a1,a2) and (a1,a3) planes. (a) and (b) show
projections of one cycle and (c) and (d) those of the other.

the close returns are, although nearby, not identical to those of
the images.

D. Unstable periodic orbits for the flow

Thus far, we have the computed periodic orbits of the
reduced model defined from the dynamics of the coefficients
a(P )

n (t) of the first 15 coherent structures. An approximation to
the corresponding flow itself can be derived using Eq. (2), i.e.,

UP (x,t) ≈
15∑

n=0

a(P )
n (t)�(x). (7)

Figure 16 provides snapshots (at the same time) to compare the
original flow and the periodic (or recurrent) flow (i.e., the flow
computed from the recurrent orbit). Note that the original flow
contains small-scale structures and other irregular features,
while the recurrent flow exhibits neither. In fact, a video of the
same recurrent flow, provided in the Supplemental Materials,
shows an extremely clean flow that returns to its initial state
following the shedding of a symmetric pair of vortices.

The flame flow following the onset of von Karman vortices
(i.e., for φ < 1) can be de-convoluted in the same manner.
Figures 17(a) and 17(b) show a snapshot of the flow at
φ = 0.8 and the corresponding snapshot of the recurrent
flow. Observe that the periodic flow does not have up-down
symmetry. Figures 17(c) and 17(d) show the symmetric and
antisymmetric components of the latter.

The reconstruction of the periodic flow allows us to
characterize the noise and some other irregular features of
the flow (an alternative to looking at PCA reconstruction in
Ref. [6]). Specifically, the irregular facets can be defined as
the difference between the original flow and the recurrent

FIG. 16. Simultaneous snapshots of (a) the original flow at
equivalence ratio φ = 1.1 and (b) recurrent flow. Note that the former
contains noise and other irregular small-scale structures. The size of
the images is approximately 100 × 66 mm.

flow within the duration of the cycle. Figure 18 contains
snapshots of the difference for four close returns used in
computing the periodic flow at φ = 1.1. Specifically, we
consider four close returns and select a prespecified point

FIG. 17. Simultaneous snapshots of (a) the flow at equivalence
ration φ = 0.8 and (b) recurrent flow. Symmetric and antisymmetric
components of the latter are given in (c) and (d), respectively.
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FIG. 18. Differences in images from equivalent time points of
four close returns and corresponding snapshots of periodic flow at
φ = 1.1. Images represent noise and other irregular facets of the
flow. Note that the images have “similar” statistical features, but the
precise structures depend on the close return.

in state space (see Fig. 13). We identify the corresponding
snapshot of the flow and subtract the image of the recurrent
flow from it. Two observations are in order: (1) The irregular
motion is concentrated near the flow locations of large velocity
gradients. This is to be expected since small-scale structures
are generated by energy cascading, which is concentrated at
locations with high velocity gradients, and (2) the precise
deviations from the periodic flow depend on the specific close
return analyzed. This justifies our nomenclature—irregular
motion—for these small-scale facets of the flow. However,
all four images appear to have similar qualitative features.

One of the remaining tasks is to provide a comprehensive
(and quantitative) statistical characterization of these irregular
structures and their dynamics. We have conducted a pair of
standard tests. First, the spectrum for the noise decays as
a power law in frequency, suggesting that the small-scale
structures are not governed by low-dimensional chaos [42].
Second, PCA of the corresponding spatiotemporal dynamics
shows a slow decay of the latencies. Thus, a large number of
coherent structures is needed to provide a good approximation
to the noise. This pair of results indicates that the small-scale
irregular flows are either stochastic or governed by high-
dimensional dynamics.

VII. FLOW BEHIND OTHER SYMMETRIC BLUFF BODIES

We highlight a collection of results derived from the
analysis of reacting flows behind bluff bodies of other (sym-
metric) shapes. The analyses are identical to that described
in Secs. III–VI. Flow characteristics remain unchanged, but
the strength of the irregularities differs, being smallest for the
v-gutter bluff body.

Figure 19 displays the bifurcation diagrams for the flow
behind (a) cylindrical, (b) flat, (c) square, and (d) v-gutter
bluff bodies. In each case, the estimated onset of von Karman

FIG. 19. (Color online) Bifurcation diagrams for onset and
growth of von Karman vortex shedding with decreasing φ for bluff
bodies of several shapes. In each case the bifurcation appears between
equivalence ratios φ = 0.9 and φ = 1.0.

vortices occurs at an equivalence ratio between φ = 1.0 and
φ = 0.9. However, the growth of the antisymmetric component
following the onset (i.e., smaller φ) is smallest for the v-gutter
and largest for the square flame holder. This may suggest
that the bluff body in the shape of the v-gutter perturbs the
flame flow minimally as the equivalence ratio is reduced
below the onset of von Karman vortex shedding. Another
factor that may be contributing to the shapes of the curves
in Fig. 19 is the acoustic coupling. It appears that, for square
and cylindrical flame holders, the transition to acoustically
coupled flames does not begin for φ < 0.7 and φ < 0.8,
respectively. Differences in the downstream pressure field may
prevent the coupling of the flames at these low equivalence
ratios. However, once the equivalence ratio is increased,
the transition to acoustically coupled conditions appears to
be more abrupt. This sensitivity to equivalence ratio may
prove to be problematic for active control systems that may not
have sufficient time to alter upstream conditions to reduce or
prevent the coupling. The frequency bandwidth of the pressure
and heat-release fluctuations may be used in the future to
understand how the differences in coupling could be caused
by the overlap.

Figure 20 shows projection to the (a0,a2) and (a0,a3)
planes of the phase portrait prior to (i.e., larger φ) and
following (i.e., smaller φ) the onset of von Karman vortex
shedding for the four bluff bodies. Once again, it appears that
the symmetric flow behind the v-gutter contains the lowest
level of noise. The low noise in the v-gutter is in agreement
with the fact that the symmetric energy for the v-gutter is
highest in Fig. 21 (see below). This suggests that heat-release
fluctuations and shedding behind the v-gutter couple best with
the pressure fluctuations in the rig. The remaining bluff-body
shapes with more irregular shedding (symbolized by phase
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FIG. 20. (Color online) Projections to a subspace defined by two eigenvectors illustrate changes of the phase portrait prior to and following
the onset of von Karman vortex shedding for four bluff bodies. Images suggest that the flow behind the v-gutter contains the least noise or
irregularities.

FIG. 21. (Color online) Growth of Lyapunov exponents for flow behind four bluff bodies as the equivalence ratio is reduced. Expansion
rates for flow behind cylindrical, square, and v-gutter bluff bodies are similar. Flow behind the flat plate shows different behavior.

033011-13



HUA, GUNARATNE, KOSTKA, JIANG, KIEL, GORD, AND ROY PHYSICAL REVIEW E 88, 033011 (2013)

FIG. 22. (Color online) Periodic orbits prior to and subsequent to the onset of von Karman vortex shedding for the flow behind the four
bluff bodies.

portraits with more irregularity) probably inherently provide
additional damping of the acoustics [43].

The flows behind all symmetric bluff bodies exhibit similar
qualitative behavior both prior to and subsequent to the onset
of von Karman vortex shedding, as can be observed from the
phase portraits (Fig. 20), Lyapunov exponents (Fig. 21), and
periodic orbits (Fig. 22), although the second set of cycles
for the flow behind the cylinder appear different. However,
the flow behind the v-gutter exhibits the least irregularity,
confirming a more efficient coupling of the flame heat release
with the acoustic field in the rig.

We find a larger number of close returns for the flow behind
the v-gutter, which once again suggests that this flow is the
most regular. In addition, periodic orbits for the flow behind
other bluff bodies fail to make (sufficiently) close returns.
For example, for φ = 1.1, we find five, four, and four close
returns for the flow behind the cylindrical, flat, and square
bluff bodies, respectively. We find only two periodic orbits for
each flow following the onset, and they are similar for the flat
plate, the square flame holder, and the v-gutter. The orbits for
the lower equivalence ratio in Fig. 22 also suggest that the
cylindrical flame holder provides the least amount of acoustic
coupling since the returns are farthest away there. However,
we find the same number of periodic orbits [one prior to the

onset (i.e., large ϕ) and two following the onset (i.e., small ϕ)]
for the flow behind each bluff body.

VIII. DISCUSSION AND CONCLUSIONS

Enhancing the performance of combustion systems such
as engines requires designs to minimize or delay flow
instabilities. Unfortunately, higher efficiencies occur in leaner
fuel-air mixtures—the very regime where flow instabilities are
initiated. Theoretical approaches to addressing these issues
encounter serious obstacles. Fundamental equations of fluid
dynamics and chemical kinetics are nonlinear, and flow
characteristics depend sensitively on their precise form and
the values of control parameters and boundary conditions.
Perturbation approaches also fail to yield reliable results in
intensely driven nonlinear systems. In contrast, experimental
techniques, particularly methods for extracting ultra-high-
frequency, high-resolution flow patterns, have undergone rapid
advances in recent years. Thus, the need is critical for
data-based reduced-order models to analyze and control flow
instabilities.

In this study, we introduced a modal decomposition of bluff-
body-stabilized combustion flows. The energy in these flows
is introduced through large-scale external actions, acoustic
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instabilities, or vortex shedding. In addition, the flow con-
tains irregular, small-scale motions created through viscous-
mediated energy cascading. These small-scale motions feed
back and impose irregularities on the large-scale flows as well.
Some of the questions that motivated our study were as follows:
(1) Are large-scale flows regular in the absence of feedback
from the small scales? (2) If so, can transitions in these flows
be identified and characterized? (3) What are the statistical
descriptions appropriate to the small-scale flows?

We focused on high-momentum combustion behind
bluff bodies under conditions that include symmetric vortex
shedding. As the equivalence ratio of the mixture is reduced,
the flow undergoes a transition beyond which the flow sheds
von Karman vortices as well [6]. Since von Karman modes
are observed at small equivalence ratios and will only increase
with the upstream temperatures [44], their onset may signal
the limits in optimizing the efficiency of engines, and designs
that delay their onset may prove useful in enhancing engine
efficiency.

The methods outlined in this paper are extensions of the
proper orthogonal decomposition introduced in Ref. [6]. All
experimental systems we analyzed had a reflection symmetry
about an axis along the flow direction. Symmetric vortex
shedding retains this symmetry, while von Karman shedding
breaks it. Our deconvolution of the flow relied on this
observation: First, when the vortex shedding is symmetric, all
coherent structures in the expansion are necessarily symmetric
under reflection; hence, any asymmetry in the computed
coherent structures is due to noise and irregular feedback
from the small-scale motions. This observation provides
a measure of the irregular motions and an algorithm for
filtering them. Second, when the flow contains von Karman
shedding as well, the strength of these vortices can be
quantified by the antisymmetric components of the coherent
structures.

These assertions were used to identify the onset and growth
of von Karman vortex shedding. The onset is illustrated
with bifurcation diagrams and qualitative changes in the
phase-space orbits. The growth of von Karman modes is
characterized using bifurcation diagrams and Lyapunov ex-
ponents. We further characterized the transition by computing
the (unstable) periodic orbits embedded in the flow. We found
only one such orbit prior to the onset of von Karman vortices
and a pair of orbits following the transition.

The presence of only one or two periodic orbits in the flow
has an important consequence. If the flows were chaotic, one
would expect multiple periodic orbits to be embedded in the
attractor [14,15,18], and our algorithm would have yielded
several periodic orbits. Our inability to find more than one
orbit prior to the transition suggests that the large-scale flow
is periodic (not chaotic) and that the irregular facets of the
flow probably result from feedback from the small scales.
The vanishing of the Lyapunov exponent for φ � 1 provides
additional evidence for the periodicity of the large-scale
flow. These results are consistent with estimates made from
flow characteristics. The cross-sectional area (approximately
150 × 125 mm) and the velocity (approximately 14 m/s)
provide an estimate of the Reynolds number of 3 × 105, which
is below the transition to turbulent flow for a cylindrical barrier

[45], once again suggesting that the primary flame flow is not
irregular.

We conducted the analysis for bluff-body-stabilized flow
behind flame holders of four (symmetric) shapes. The quali-
tative features for the flows are similar in each case, although
the level of irregularity depends on the specific shape of the
flame holder. We found that the onset of von Karman shedding
occurs at (nearly) the same equivalence ratio. However, the
flow behind a v-gutter is least irregular and that behind the
cylindrical bluff body is most irregular. This observation may
assist in optimizing engine design.

Knowledge of the relevant coherent structures and their
symmetries can be used to infer the normal-form equations
for the underlying spatiotemporal dynamics [4,12,46]. These
normal forms can be used to predict secondary bifurcations
in the system [46,47]. Such analyses have been conducted
for many fluid systems, including cellular flame patterns
[48,49].

Periodic orbits within an irregular flow are especially
useful in controlling a chaotic flow [50,51]. The crucial
observation is that since the cycle is embedded in the
irregular orbit, it requires only a small perturbation to guide a
chaotic system toward the periodic orbit [52,53]. Furthermore,
since the requisite perturbations are small, one may assume
that superposition applies; once responses of the system to
a collection of perturbations are established, they can be
superposed in an appropriate way to obtain a prespecified
response of the system. The method has been successfully
applied to control systems as diverse as reaction–diffusion
systems [54], flame fronts [54], lasers [55], magnetoelastic
ribbons [56], cardiac rhythms [57–60], and brain signals [61].
One of our future goals is to validate that periodic orbits within
the flow can be used to reduce or eliminate irregular facets of
bluff-body-stabilized flames.

The motivation for our work was to deconvolute the
complex flame flow into its constituents. In our studies
we explicitly used differences in the symmetries between
symmetric and von Karman vortex shedding to identify flow
patterns associated with each mode. Such partitioning is
required because individual structures consists of a combi-
nation of coherent structures rather than a single structure.
Unfortunately, this approach cannot differentiate two or more
modes with the same symmetry and cannot be used to analyze
physical systems (e.g., jet engines) with no symmetry. One
option is to use the frequency content of the dynamics to
identify coherent structures to be combined into each flow
component. Another possibility is to use dynamical mode
decomposition [34,35].
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