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Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front
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A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser
alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and
theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact
line between the two solutions as convective plumes develop in the acidic solution only. We investigate here
by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A + B → C reaction
the relative role of solutal versus thermal effects in the origin and location of this instability. We show that
heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor
role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that
the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density
stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the
chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of
the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and
nonlinear simulations.
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I. INTRODUCTION

Buoyancy-driven instabilities of miscible interfaces be-
tween reactive fluids impact a wide range of applications and
physicochemical systems [1]. Among the various hydrody-
namic instabilities that act on a stratification of a solution of A
on top of another miscible solution of B in the gravity field, the
most common one is the Rayleigh-Taylor (RT) instability [2,3]
occurring when the density ρa of the upper solution of A
is larger than the density ρb of the lower solution of B. If
ρa < ρb, the system can nevertheless be destabilized either if
B diffuses faster than A because of a so-called double-diffusion
(DD) instability [3–6] or if diffusive-layer convection (DLC)
is triggered when A diffuses faster than B [3,6–8]. In all
cases, these buoyancy-driven instabilities lead in nonreactive
miscible fluids to convective motions, which develop similarly
above and below the initial contact line because of the
symmetry of the underlying density gradient [2–8].

In reactive systems, it is of interest to understand how chem-
ical reactions that influence the density profiles can impact
these buoyancy-driven instabilities. Experimental studies of
such hydrodynamic instabilities in reactive systems involving
simple A + B → C type of reactions have characterized
various patterns either in immiscible two-layer systems [9–17]
or in miscible acid-base systems [18–26] for instance. In such
miscible cases, the reaction can deeply affect the pattern as
it has been shown to break the symmetry of RT, DD [26],
and DLC [21,24] modes. From a theoretical point of view,
the reaction-diffusion-convection (RDC) patterns are studied
by coupling the equation for the flow velocity to evolution
equations for the concentrations of the involved species via
a state equation expressing the density as a function of the
composition [21,26–30].

The comparison between experimental results and theo-
retical predictions is however confronted in such reactive

cases with several difficulties. First of all, the base state of
the problem is time dependent as, upon contact, the miscible
reactive solutions start to mix and reactions begin to operate,
building complex density profiles in the system. To predict
the wavelength and time of appearance of the related RDC
pattern requires one to perform a linear stability analysis
(LSA) of a time-dependent base state of a complex RDC
system of equations. The question arises concerning the time
at which to compare experimental and stability analysis data.
Another issue relates to the way the patterns are visualized.
Color indicators should ideally be avoided as they can be
responsible for totally different patterns to what is seen in their
absence [18,22,23] and because the patterns also depend on the
type of color indicator used [19]. A solution is then to visualize
gradients of the refractive index in the system but it remains
to establish the link between these and density gradients or
even further with concentrations gradients. Last but not least,
the influence of thermal effects still needs to be quantitatively
studied. Acid-base reactions are indeed exothermic reactions
and, intuitively, it is reasonable to suppose that a local heating
in the reaction zone, due to the exothermicity of the reaction,
might lead to a local Rayleigh-Bénard type of mechanism
whereby convection sets in above the reaction zone where the
upper layer of fluid is heated from below. Double-diffusive
effects due to differential diffusion of heat and mass are
also susceptible to come into play [4,26,31]. Such thermally
induced convective effects are well known to couple to reaction
fronts [32–35]. Tanoue et al. [19] by placing a thermochromic
liquid crystal sheet along the outside plane of the reactor
associated to a local probe of the temperature in the cell by
a thermocouple have shown that a temperature increase of
the order of 0.5 K can be measured in the reaction zone for
a simple HCl-NaOH system. More strikingly, hotter thermal
plumes are found to rise following convective motions above
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the reaction region. We have recently argued on the basis of
simple quantitative estimation of related solutal and thermal
Rayleigh numbers that thermal effects should be negligible in
the dynamics of such acid-base fronts in Hele-Shaw cells [24].
The argument remains however heuristic as no linear stability
analysis of the influence of thermal vs solutal effects has been
performed in such systems.

In this context, we revisit here both experimentally and
theoretically reactive asymmetric DLC patterns observed
when a simple exothermic neutralization reaction takes place
inside a vertically orientated Hele-Shaw cell starting from an
initially statically stable density stratification. Our objective is
to investigate quantitatively the relative influence of solutal
versus thermal effects in the hydrodynamic destabilization
mechanism by performing a linear stability analysis of a RDC
model of the problem taking specifically the influence of
the exothermicity of the reaction on the density profile into
account. The dynamics is described by reaction-diffusion-
convection equations for the evolution of the concentration
of the reactants A, B, product C, and of temperature T

coupled to Darcy-Brinkman’s law for the evolution of the
flow velocity. These predictions are compared to experimental
data obtained using an interferometric method and particle
image velocimetry (PIV) techniques to quantify the temporal
evolution of the asymmetric convection and to measure the
experimental growth rate and most unstable wave number
of the early time perturbations. The goal is to compare
experimental characteristic wavelengths and onset times of
patterns with those predicted theoretically, respectively, both
with and without heat effects. We demonstrate that, for
the reaction and concentration ratios used in the experi-
ments, the heat contribution to the instability characteristics
is negligible. We also investigate the contribution of the
various chemical species to the destabilization mechanism,
showing that the instability indeed originates from differential
diffusion phenomena involving the various chemical species
diffusing at different rates rather than from a Rayleigh-
Bénard mechanism due to a localized heating by the reaction.
Eventually, we also discuss the optimal time at which to
compare experimental and theoretical growth rates and most
unstable wave numbers showing good agreement between the
two. We moreover discuss the influence of changes in the
gap width of the cell and of initial concentrations on these
values.

The outline of the article is as follows. In Sec. II, the
experimental procedure and observations are outlined. In
Sec. III, the theoretical model is presented. In Sec. IV, the
base state concentration and density profiles are numerically
obtained. In Sec. V, a linear stability analysis is employed. In
Sec. VI, nonlinear simulations are included. In Sec. VII, we
summarize the results.

II. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental setup consists of a vertically oriented
Hele-Shaw cell made of two glass plates 3.1 cm wide and
5 cm high separated by a gap width h of either 0.5 or
1 mm. Using a specific device allowing a flat interface to be
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FIG. 1. Sketch of the system.

obtained between two miscible solutions [15], an aqueous HCl
solution at concentration A0 is placed on top of an equimolar,
miscible, and denser NaOH solution in the absence of any color
indicator. A schematic diagram is illustrated in Fig. 1. Gravity
points along the x direction while y denotes the transverse
direction. xo is the initial position of the contact line. Once the
reactants meet by diffusion the following exothermic reaction
takes place:

HClaq + NaOHaq → NaClaq + H2O + heat

B. Interferometric method

The visualization of the convective motions is performed
via a PIV technique using chemically inert latex particles
of diameter 5 μm. The visualization of the interface of the
concentration patterns is obtained by digital interferometry
based on a Mach-Zehnder type interferometer coupled with a
CCD camera [36]. The light source is a 633 nm laser beam.
The fringes, which are typically parallel in a homogeneous
medium, are distorted in the presence of refractive index
gradients. The phase shift �φ(x,y) = 2π h �n(x,y)/λ in the
light beam (λ = 633 nm) induced by the local variation of the
refractive index �n(x,y) in the Hele-Shaw cell is computed
by a Fourier transform algorithm [37]. If necessary, the phase
image is corrected by substracting a reference image in order
to eliminate the possible misalignment of the Hele-Shaw cell
window with the light beam. The method gives a precision of
10−5 on the value of the relative refractive index variation. An
example of an interferometry figure is reported on Fig. 2 for
molar solutions and a gap width h = 0.5 mm.

C. Results

Soon after contact, a sinusoidal perturbation grows in the
zone slightly above the initial position x0. Later on, fingers
develop, merge, and grow until they reach the upper limit of
the reactor. Convective flows are observed to rise within fingers
and sink between them (Fig. 3). Remarkably, the zone below
x0 remains unperturbed by convection and features only a
diffusive flux of solutes and a slow downward progression
of the reaction front. The dynamics is thus fundamentally
different from the one observed with similar acid-base systems
in two-layer systems [11] or in the same system in the presence
of a color indicator [18].
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FIG. 2. Interferometric figure of asymmetric DLC obtained using
a 1M HCl solution on top of an equimolar NaOH solution in a vertical
Hele Shaw cell of gap width h = 0.5 mm. The height of the figure is
9.8 mm.

The origin of the instability can be understood in terms
of a DLC mechanism as follows: The fast diffusing acid
leaves the upper layer faster downwards than the base diffuses
upwards. In the absence of any reaction, this difference in
diffusivity would lead to a symmetric density profile with
depletion of the fast diffusing species above and accumulation
of it below the initial contact line respectively [3,6,21]. The
resulting nonmonotonic density profile would then feature two
distinct zones of convective motions that develop at symmetric
distances from x0 in the nonreactive DLC [3,6].

The reactive system behaves differently because the acid
cannot coexist with the base out of the reaction zone as
it is swiftly consumed by the fast neutralization reaction.
Hence, the depletion in acid in the upper solution is not
followed by its accumulation in the lower solution. In the
upper layer for a HCl solution initially on top of a NaOH
solution, as the fast downward diffusion of H+ ions (D =
9.3 × 10−5 cm2s−1) cannot be compensated by the slower
upward diffusion of the Na+ ions (D = 1.3 × 10−5 cm2s−1),
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FIG. 3. (Color online) Superposition of the refractive index and
velocity maps at time 70 s. Convection is observed only in the upper
acidic solution. The mean distance between plumes is 3 mm. The
height of the figure is 9.8 mm. The maximum velocity measured by
PIV is 132 μm/s.

a local minimum in density appears above the initial contact
line. The locally unfavorable stratification of a denser fluid on
top of a less dense one induces convection in the upper layer
through convective rolls. In the lower layer no convection
rolls appear as no local maximum in the density appears
below the initial contact line. The diffusion coefficient of the
upward moving OH− ions (D = 5.3 × 10−5 cm2s−1) is indeed
larger than the diffusion coefficient of the incoming Cl− ions
(D = 2.0 × 10−5 cm2s−1). We can conclude that we have a
nonsymmetric DLC instability: above the reaction zone, the
diffusion of the species downward is faster than the diffusion
of the species upwards while the reverse is operating under the
reaction zone. In order to determine quantitatively the local
evolution of density, the diffusion of ions must be considered
in pairs.

As the reaction is exothermic, a local heating of the solution
in the reaction zone should reinforce this solutal mechanism
by a Rayleigh-Bénard instability of the upper solution heated
from below. Our objective is to quantify the relative importance
of these two sources of instability by a theoretical analysis.

III. THEORETICAL MODEL

In order to support the experimental findings and test the
importance of thermal effects in the dynamics, let us now turn
to a theoretical description of the problem. We assume that
we have two miscible liquids, one containing an acid A, at
initial concentration A0, and the other containing a base B at
initial concentration B0. An exothermic neutralization reaction
produces a salt C and heat via the mechanism

A + B → C + heat. (1)

HCl and NaOH are a strong acid and base respectively, that
totally dissociate into ions in water. However, to compute
density profiles as a function of solutal expansion coefficients
and concentrations we need to take as relevant variables the
concentrations A, B, and C of HCl, NaOH, and NaCl ion pairs,
respectively. These ion pairs are assumed to diffuse with a
constant diffusion coefficient Dij computed as

2

Dij

= 1

Di

+ 1

Dj

, (2)

where Di and Dj are the tabulated diffusion coefficients of
the ions [38]. This allows one to reconstruct the density ρ in
the system as a linear combination of the concentrations and
temperature contributions as

ρ = ρ0[1 + αAA + αBB + αCC − αT (T − T0)], (3)

where ρ0 is the density of pure water at the temperature T0 and
the molar expansion coefficients αi are defined as

αi = 1

ρ0

∂ρ

∂Ci

,

where Ci is the concentration of the relevant chemical species.
These coefficients are taken positive as the solutes are here
increasing the solutal part of density. The thermal expansion
coefficient is defined as

αT = − 1

ρ0

∂ρ

∂T
.
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It is also considered as positive as we deal here with aqueous
solutions at T > 4 ◦C for which the density is a decreasing
function of temperature. Consistently with the fact that the
concentrations used are small, the temperature only varies by a
few Kelvins so that the kinetic constant, the diffusion constants
and the physical properties of water can be considered as
independent of temperature.

The three species concentrations A, B, and C along with the
temperature T satisfy the following RDC evolution equations:

At + u · ∇A = DA∇2A − qAB, (4a)

Bt + u · ∇B = DB∇2B − qAB, (4b)

Ct + u · ∇C = DC∇2C + qAB, (4c)

Tt + u · ∇T = DT ∇2T − �H

ρ0cp

qAB, (4d)

where u is the velocity of the fluid, DA, DB , and DC are
the molecular diffusion coefficients of A, B, and C, while
cp is the constant pressure specific heat of water. DT is
the thermal diffusivity, which is assumed not to depend on
concentrations as the solutions are diluted. The kinetic constant
of the neutralization reaction is q and �H is the enthalpy of
the acid-base reaction.

Although the density in the system changes due to both
solutal and thermal contributions, relative changes are small
enough so that the Boussinesq approximation can be made and
the flow is treated as incompressible. The gap width averaged
two-dimensional (2D) fluid flow inside the Hele-Shaw cell can
be modeled to a good approximation by the Darcy-Brinkman
equation [39], namely

∇ · u = 0, (4e)

∇p = − μ

K
u + 12μ

π2
∇2u + ρ(A,B,C,T )g, (4f)

where p is the pressure in the fluid. The permeability of the
system is K = h2/12. The dynamic viscosity and acceleration
due to gravity are μ and g respectively. The 2D domain is
considered infinite. The initial conditions for this problem are

A = A0, B = 0, C = 0, T = T0 for x < 0

A = 0, B = B0, C = 0, T = T0 for x > 0

where one recalls from Fig. 1 that x < 0 is the upper region
and x > 0 is the lower region.

We introduce the following nondimensionalization:

t̂ = t

tc
, x̂ = x

lc
, û = u

uc

, p̂ = K

lcμuc

(p − pa − ρ0gx)

(a,b,c) = 1

A0
(A,B,C), θ = − ρ0cp

A0�H
(T − T0),

where hats denote a dimensionless quantity and g = |g|. The
normalization speed, time, and length are

uc = αAA0Kg

ν
,tc = DA

u2
c

, and lc = DA

uc

,

respectively, where ν = μ/ρ0 is the kinematic viscosity. The
constant hydrostatic pressure and the ambient pressure pa have
been used to define the dimensionless pressure. Additionally
the dimensionless density is given by ρ̂ = (ρ − ρ0)/(αAA0).
Substituting these nondimensional quantities into Eqs. (3)

and (4) and dropping hats for convenience leads to the final
dimensionless model

∇ · u = 0, (5a)

∇p = −u + Br∇2u + ρ(a,b,c,θ )i, (5b)

ρ = a + RBb + RCc − RT θ, (5c)

at + u · ∇a = ∇2a − Daab, (5d)

bt + u · ∇b = δB∇2b − Daab, (5e)

ct + u · ∇c = δC∇2c + Daab, (5f)

θt + u · ∇θ = Le∇2θ + Daab, (5g)

where i is the unit vector pointing downwards parallel to the
x axis. The ratios of the expansion coefficients are

RB = αB

αA

, RC = αC

αA

, RT = − αT �H

ρ0cpαA

, (6)

As �H < 0 because the reaction is exothermic, RT > 0. The
ratios of the diffusion coefficients are given by

δB = DB

DA

, δC = DC

DA

, (7)

while Le = DT /DA is the Lewis number. Additionally,

Da = qA0tc

is the Damköhler number, which is the ratio between the
hydrodynamic normalization tc and the chemical tchem =
1/(qA0) time scales. Finally

Br = h2

π2l2
c

is the Brinkman parameter quantifying the correction to
Darcy’s law needed when the Hele-Shaw cell gap width is
not sufficiently small with regard to the wavelength of the
instability [39,40].

The initial conditions now become

a = 1, b = 0, c = θ = 0 for x < 0,

a = 0, b = γ, c = θ = 0 for x > 0,

where

γ = B0/A0 (8)

is the ratio between the initial concentrations of the base and
the acid.

For the specific case of the HCl-NaOH experiment, using
the values of the parameters given in Table I fixes six of
the parameters, i.e., RB = 2.22, RC = 2.17, RT = 0.16, δB =
0.61, δC = 0.50, and Le = 46. This study now only depends
on the three remaining parameters Br, Da , and γ related to the
geometry of the cell and to the initial concentrations.

IV. BASE STATE OF THE SYSTEM

In order to analyze the stability of this system with regard to
buoyancy-induced instabilities, we must first compute the base
state of the pure reaction-diffusion problem. In the absence of
flow, the one-dimensional reaction-diffusion base state profiles
can be computed numerically by solving Eqs. (5d)–(5g) with
u = 0. We let a(x,t), b(x,t), c(x,t), and θ (x,t) denote the
base-state solutions. All of the base states approach self-similar
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TABLE I. Typical parameter values at 20 ◦C for water [38].

Description Parameter Value

Kinetic constant q 1.4 × 1011l/(mol s)
Enthalpy of neutralization �H −55.86 kJ/mol

Specific heat cp 4.182 kJ/(kg K)
Kinematic viscosity ν 9.2 × 10−7 m2/s
Gravity acceleration g 9.8 m/s2

Density of water ρ0 0.998 kg/l

HCl diffusion coefficient DA 3.34 × 10−9m2/s
NaOH diffusion coefficient DB 2.13 × 10−9m2/s
NaCl diffusion coefficient DC 1.61 × 10−9m2/s
Thermal diffusivity DT 1.4 × 10−7m2/s

HCl expansion coefficient αA 1.8 × 10−2l mol−1

NaOH expansion coefficient αB 4.4 × 10−2l mol−1

NaCl expansion coefficient αC 4.1 × 10−2l mol−1

Thermal expansion coefficient αT 2.1 × 10−4/K

HCl optical index βA 0.0083 l mol−1

NaOH optical index βB 0.0098 l mol−1

NaCl optical index βC 0.0106 l mol−1

Thermal optical index βT 10−4/K

profiles in the course of time with the similarity variable being
η = x/

√
4t . Using the obtained base-state concentrations, the

dimensionless base-state density profiles can be reconstructed
as

ρ(x,t) = a + RBb + RCc − RT θ. (9)

In Fig. 4, each of the species contribution to the base state
density profile are plotted as a function of η for γ = 1, i.e.,
equimolar initial concentrations. As a reminder, gravity points
towards positive η. For η → ±∞, we are in the pure reactant
solutions at ambient temperature (θ = 0). ρ = a = 1 in the
pure acid reactant (b = c = 0) at η → −∞. In the alkaline
zone where a = c = 0 while b = γ , the density ρ = RBγ .
Any zone in the density profile featuring locally a minimum is
susceptible to trigger buoyancy-driven flows as we have then
locally a denser solution on top of a less dense one.

FIG. 4. Profiles of a, RBb, RCc, −RT θ and ρ for γ = 1. For
our acid-base system here, RB = 2.22, RC = 2.17, RT = 0.16, δB =
0.61, δC = 0.50, and Le = 46.

For γ = 1, as the acid diffuses faster than the base,
the reaction front defined as the location of maximum C
production invades the lower solution containing the base
[41]. In parallel, a local minimum in the density profile is
seen to develop around η = −0.784 in the upper layer. The
temperature’s contribution to this density profile is found to
be very weak because heat diffuses much faster than mass
(Le � 1) and because the value of RT is much smaller than the
other solutal Rayleigh numbers. The contribution of thermal
effects to the base-state density profile is therefore barely
visible on Fig. 4. As thermal effects are barely affecting the
density profile, they have a negligible effect on the dynamics
as will be confirmed in Sec. V. The local minimum (illustrated
in Fig. 4) is thus essentially due to the fact that the species A
(acid) diffuses faster than the species C (salt) so this minimum
in density corresponds to the zone, which is already depleted
in acid while the salt has not had time to reach it yet. This
unstable stratification of a locally denser zone on top of a less
dense one in the upper layer is the origin of the convective
instability observed above the contact line in the experiments.

A. Influence of the ratio of initial concentrations γ

We focus now on analyzing the effect of varying γ , i.e.,
the ratio of the initial concentrations, on the dynamics. By
varying γ , using the large time asymptotic solutions [42], one
finds that there are three different types of density profiles,
which are illustrated in Fig. 5. If γ < 0.424, the density has a
local minimum in the lower layer (η > 0), while if γ > 0.493
the density has a local minimum in the upper layer (η < 0).
If 0.424 < γ < 0.493 then the density profile contains a local
maximum sandwiched between two local minima.

However, the most important factor that one must take into
consideration is that when γ < 0.45 ≈ R−1

B the situation is
initially stratifically unstable as the acid’s contribution to the
density is then larger than the base’s contribution to the density.
Thus to avoid a Rayleigh-Taylor instability one requires that
γ > R−1

B . In order to determine when and where an instability
occurs starting from an initially statically stable configuration

FIG. 5. Profiles of ρ for γ = 0 to 0.6 (solid line) in uniform
increments of 0.15. Additionally, dotted lines are used to denote the
special cases when γ = 0.424 and γ = 0.493.
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of a less dense solution on top of a denser one, we perform a
linear stability analysis in the next section.

V. LINEAR STABILITY ANALYSIS

A. Linear equations and numerical method

Using the base-state concentration and density profiles
computed above, let us analyze the stability of the flow by
LSA. As the flow is incompressible, for convenience, the
stream-function formulation is employed. Using u = ψy and
v = −ψx , we satisfy ∇ · u = 0. Taking the curl of Eq. (5b)
yields

∇2ψ − Br∇4ψ = ay + RBby + RCcy − RT θy. (10)

We introduce normal form perturbations to the base-state
solutions in the form

[ψ,a,b,c,θ ] = [0,a,b,c,θ ] + εeσ t+iky[ik−1F ,A,B,C,T ],

where ε is a small parameter and make the quasi-steady-state
approximation that the base-state solutions vary on a much
slower time scale than the perturbations. Hence considering
the base-state solutions frozen at a given time t0, linearizing
the resulting equations in ε gives

ρ = Fxx − k2F − Br(Fxxxx − 2k2Fxx + k4F) , (11a)

ρ = −k2(A + RBB + RCC − RT T ) , (11b)

σA = axF + Axx − k2A − Da(aB + bA) , (11c)

σB = bxF + δB(Bxx − k2B) − Da(aB + bA) , (11d)

σC = cxF + δC(Cxx − k2C) + Da(aB + bA) , (11e)

σT = θxF + Le(Txx − k2T ) + Da(aB + bA) . (11f)

These equations are solved numerically on a discrete set
of points with the derivatives approximated using finite
differences to allow the system to be expressed in matrix form
as

(L − BrL2)F = k2(A + RBB + RCC − RT T ) , (12a)

σA = D(a)
x
F + LA − DaD

(a)B − DaD
(b)A ,

(12b)

σB = D(b)
x
F + δBLB − DaD

(a)B − DaD
(b)A ,

(12c)

σC = D(c)
x
F + δCLC + DaD

(a)B + DaD
(b)A ,

(12d)

σT = D(θ)
x
F + LeLT + DaD

(a)B + DaD
(b)A .

(12e)

where the fields F , A, B, C, and T are now represented in
vector notation byF ,A,B, C, and T . The diagonal matrix D(z)

is constructed from the base-state solutions with its elements
defined as D

(z)
ij = δij zi where z denotes a, b, c, and θ . Further,

D(z)
x

denotes the diagonal matrix obtained by differentiating

each element of D(z) with respect to x. The linear operator
(∂2

x − k2) is expressed in matrix format using finite differences
as L. By writing M = k2(L − BrL2)−1 one can express the

eigenvector F as

F = MA + RBMB + RCMC − RT MT (13)

to yield the eigenvalue problem

σv = Jv, (14)

where v = (A,B,C,T )T and

J = (
J ′J ′′ )

with

J ′=

⎛
⎜⎜⎜⎜⎝

L + D(a)
x

M − DaD
(b) RBD(a)

x
M − DaD

(a)

D(b)
x

M − DaD
(b) δBL + RBD(b)

x
M − DaD

(a)

D(c)
x

M + DaD
(b) RBD(c)

x
M + DaD

(a)

D(θ)
x

M + DaD
(b) RBD(θ)

x
M + DaD

(a)

⎞
⎟⎟⎟⎟⎠

and

J ′′ =

⎛
⎜⎜⎜⎜⎝

RCD(a)
x

M −RT D(a)
x

M

RCD(b)
x

M −RT D(b)
x

M

δCL + RCD(c)
x

M −RT D(c)
x

M

RCD(θ)
x

M LeL − RT D(θ)
x

M

⎞
⎟⎟⎟⎟⎠ .

This method is similar to the approach used by Kalliadasis
et al. in their LSA of buoyancy fingering of autocatalytic
fronts [35]. The matrix M is numerically obtained using
the subroutine DGESV from LAPACK and the eigenvalues and
eigenvectors of J are obtained using DGEEVX from LAPACK.
For a given fixed wave number k, the growth rate σ is then
obtained numerically. As the base-state solution varies quickly
at the start, this method is not valid for small values of t0.

In order to perform this numerical eigenvalue problem the
infinite domain is truncated to a size w and the equations
discretized using a nonuniform grid. The vertical spatial
coordinate x is defined on a discrete set of N + 1 points as

xj = j
w

N

(
16

w

√
t0 + 1

)1−2|j/N |

with the integer |j | � N/2 so that |xj | � w/2 and the mesh is
finest around x0 = 0 with x1 ≈ 16

√
t0/N . Grid independence

was checked by increasing N until the variation in the
maximum growth rate was below a given tolerance. Typically
N = 200 was found to provide sufficiently accurate results.

B. Thermal effects

The base-state density profiles have a very weak depen-
dence on the temperature. The linear stability analysis allows
us to test whether these small thermal contributions have
nevertheless an impact or not on the flow. In Fig. 6(a) the real
part of the instantaneous growth rate σ is plotted as a function
of the wave number k at various times for γ = Da = 1 and
Br = 0 without thermal effects incorporated. At the onset of
the instability the instantaneous growth rates are complex but
in the course of time become real. Once the maximum growth
rate is real, the rate of increase of the instantaneous growth rate
increases in time. Still later a maximum is reached and then
eventually σ decreases in time. This trend is also observed in
the nonreactive DLC instability [3].
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(a)

(b)

FIG. 6. (Color online) Real part of the instantaneous growth
rates against the wave number k for γ = Da = 1 and Br = 0 in
the isothermal case (a). The difference in the growth rate with the
exothermic case is reported in (b), showing that the exothermic case
for which RT = 0.16 is only slightly more unstable. The curves
are illustrated at times t = 5000, 7000, 104, 1.2 × 104, 1.5 × 104,
2 × 104, 3 × 104, 5 × 104, 105, 3 × 105, and 106 from bottom to top
and eventually right to left.

To determine the effect of the temperature, we compute
the difference with the exothermic case with RT = 0.16 in
Fig. 6(b). One can see that the exothermic growth rates are
only slightly larger than the isothermal ones. The difference
is indeed only of a few percents. This confirms that the effect
of temperature is very weak in this problem. One finds that if
RT is larger or Le is smaller then the temperature effects are
enhanced, however, using the physically relevant parameters
of Table I shows that the effect of the temperature can be
ignored throughout the entire linear regime for the HCl-NaOH
case. Thus the remainder of the linear stability analysis will
focus on the isothermal case, setting RT = 0. In the presence
of the temperature J is a 4N × 4N matrix, however, in its
absence it reduces to a 3N × 3N matrix. As the cpu time of
the eigenvalue problem scales with N3, the numerics takes less
than half the time (27/64) in the absence of the temperature
than in its presence, and so the removal of the temperature
justified by its negligible impact is a useful approximation.

C. Quasi-steady-state approximation

We recall that the amplitude of the disturbances in the linear
stability analysis are given by εeRe(σ )maxt0 , so that no matter
how small ε is eventually the amplitude will become large
and the linear stability analysis will break down. Further, the
magnitude of the term Re(σ )maxt0 is important in determining
the order of the time at which the instability first becomes
physically observable. As we are using the quasi-steady-state
approximation, the growth rate depends on time. As the growth
rates here are very small the linear stability analysis can remain
valid until the time at which the term Re(σ )maxt0 becomes
O(1). This marks the end of the linear regime and the start
of the nonlinear regime in which the dispersion curves of the
LSA lose any meaning.

D. Eigenfunctions

In Fig. 6(a), at t0 = 3 × 104 the most unstable mode occurs
with kmax = 0.0047 and σmax = 6.1 × 10−5. We note that the
term σmaxt0 ≈ 1.8, which means that the system is nearing
the end of the linear regime. We find that the most unstable
mode is real. To determine where the instability occurs in
space, the eigenfunctions associated with this most unstable
mode are plotted at t0 = 3 × 105 along with the base state
solutions in Fig. 7. As the eigenfunction A is largest, all of
the eigenfunctions were normalized with the maximum ampli-
tude of A. In Fig. 7(a), each of the eigenfunctions A, B, and C
are plotted along with the base-state concentrations a, b, and c.
The eigenfunction B is around 102 times smaller than the other
two eigenfunctions and its maximum value is just to the right
of the reaction front, which is not observable in the figure.

In Fig. 7(b), the eigenfunction F associated with the stream
function, reconstructed using Eq. (13), is illustrated with the
base-state density field. This shows that the instability is
located in the upper layer (η < 0) where there is a local
minimum in the base state of the density. More specifically,
the instability is strongest approximately in the region where
the density gradient is most negative, as expected since
this is where the locally denser over less dense region is
most unstable. The eigenfunctions have confirmed that the
instability is only related to the eigenfunctions for species A
and C while the eigenfunction for species B plays no part in
the instability.

These results confirm the important difference between
reactive and nonreactive DLC instabilities in terms of both the
shape of the eigenfunctions and the number of unstable modes
at the end of the linear regime. In the reactive case studied
here, we have one unstable mode with the eigenfunction
associated with the stream function not changing sign. On the
contrary, in the nonreactive DLC instability the eigenfunction
associated with the most unstable mode takes a sign above
the initial interface opposite to the sign below it [3]. Further
in time in the nonreactive DLC instability, a second unstable
mode appears and grows in time until both modes are equally
dominant, but this second eigenfunction has the same sign
above and below the initial interface. As the eigenfunctions
are approximately equal in one region and equal and opposite
in the other region, this allows the instabilities in each region
to develop independently in the nonreactive case.
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(a)

(b)

FIG. 7. In (a) the eigenfunctions A, B, and C associated with the
most unstable mode are plotted against η. In (b) the eigenfunction F
associated with the most unstable mode is plotted against η. This is
for the isothermal case with γ = Da = 1 and Br = 0 at t0 = 3 × 105.

E. Effect of the Brinkman number Br

Returning to the reactive problem at hand, when it comes to
comparing the experimental wavelength and growth rate of the
instability with those in Fig. 6(a) the effect of the Brinkman
number Br must be taken into consideration. The results in
Fig. 6 were obtained using Br = 0 corresponding to the Darcy
limit, which is valid when the gap width of the Hele-Shaw cell
is sufficiently narrow. In dimensionless quantities, the linear
stability analysis for Br = 0 overestimates the instability,
i.e., predicts a shorter wavelength and a larger growth rate.
However, by increasing the value of Br the dimensionless
wavelength increases and the growth rate decreases. To
demonstrate this the real part of the instantaneous growth rate
σ is plotted in Fig. 8 as a function of the wave number k at
various times for Br = 103 and Br = 104 when γ = Da = 1.

Although we find that the qualitative results are the same
as Br is increased, quantitatively there is a difference. By
comparing Fig. 6(a) with Fig. 8(a), although we notice that
increasing Br from 0 to 103 has a stabilizing effect, by the
time t0 = 3 × 104 there is only a small change with the wave

(a)

(b)

FIG. 8. (Color online) Real part of the instantaneous growth rates
against the wave number k for γ = Da = 1, RT = 0, and (a) Br = 103

and (b) Br = 104. In (a) the curves are illustrated at times t = 5000,
7000, 104, 1.2 × 104, 1.5 × 104, 2 × 104, 3 × 104, 5 × 104, 105, 3 ×
105, and 106 and in (b) the curves are illustrated at times t = 104,
1.2 × 104, 1.5 × 104, 2 × 104, 3 × 104, 5 × 104, 105, 3 × 105, and
106, from bottom to top and eventually right to left.

number around 7% smaller and the growth rate around 10%
smaller. However, the differences increase as Br is increased
further. In Fig. 8 the cases Br = 103 and Br = 104 are plotted
over the same range of values to allow a better comparison.
Although the two cases initially look very different, around
t0 = 106 the two cases start to look the same, however, at this
time the term σ t0 ≈ 30 and so the linear stability analysis is
clearly not valid at this time.

For Br < 103, there is only a very small variation in the
dispersion curves, meaning that the Darcy limit of Br = 0 is
adequate to model this problem and the Brinkman correction
term can be removed as was pointed out by Almarcha et al.
[21]. However, when Br is increased above 103, the growth
rates become dampened so that the initiation of the instability
is delayed and takes place over a longer time scale resulting in
a larger wavelength of the instability. The asymptotic evolution
of the wavelength and the growth rate with Br can be recovered
considering Eq. (5b). For sufficiently high values (Br > 106)
the term u can be neglected in front of the term Br∇2u. Thus
balancing Br∇2u with ρ, of order one, we find that the product
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FIG. 9. Numerical dispersion relation computed by evaluating the
variations between two successive time steps of the perturbations in
concentration A for Br = 105 at times 2.8 × 105, 3 × 105, 3.2 × 105,
3.4 × 105, and 3.6 × 105

of time by length goes like Br. Then from Eq. (5d), balancing
∇2a with at or with u.∇a, we see that the lengths scale like
square root of time. So the growth rate scales like Br−2/3

and the wavelength scales like Br1/3. These two asymptotes
are verified experimentally and numerically in the following
(Fig. 10).

VI. NONLINEAR SIMULATIONS

The system of nonlinear equations (5) is numerically solved
in the stream function formalism by the pseudospectral scheme
proposed by Tan and Homsy [43], which has been adapted to
take the chemical reaction into account. The program is based
on the Fourier transform of the stream function ψ and of the
concentrations of the reactants A and B, and of the product C.
The system is integrated in two dimensions on a rectangular
domain of dimensionless length L′

x = Lx/lc and width L′
y =

Ly/lc. At the initial time, ψ = 0 and the concentrations of the
chemical species are given by a step function. Noise is added
on an intermediate line between the two levels of the step
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FIG. 10. Experimental nondimensional growth rate and wave-
length of the perturbations as a function of the Brinkman parameter
Br, and comparison with numerical results shown as the dashed line.

TABLE II. The seven configurations tested experimentally, for
several Hele-Shaw gap widths a and initial concentrations A0.
The value of the respective Brinkman parameter Br [40] and the
normalization time and length used in model 5 are reported.

configuration a (mm) A0 (M) Br tc (s) lc (mm)

1 0.5 0.2 1.39×103 5.96×10−3 4.26×10−3

2 0.5 0.5 8.72×103 9.54×10−4 1.71×10−3

3 1 0.1 2.23×104 1.49×10−3 2.13×10−3

4 0.5 1 3.49×104 2.38×10−4 8.53×10−4

5 1 0.2 8.93×104 3.73×10−4 1.07×10−3

6 1 0.5 5.58×105 5.96×10−5 4.26×10−4

7 1 1 2.23×106 1.49×10−5 2.13×10−4

function in order to allow the emergence of the instability. The
reaction rate is taken as unity (Da = 1). It still corresponds
to a reaction time scale much smaller than the hydrodynamic
time scales, as in the experiments.

We computed the growth rate and wavelength of the per-
turbations of the early stages of the instability. The numerical
domain width was chosen so that a minimum of 50 fingers
were present at onset. The wavelength and largest growth
rate were evaluated by computing the slope of the change
between two successive computing times of the amplitude of
each mode k in the Fourier transform of the concentrations
and of the stream function. An example of related dispersion
curves is reported on Fig. 9. We have checked once more
that the difference between the growth rates, with and without
thermal effects, remains within few percents. The growth rate
at the end of the linear regime is reported on Fig. 10 and is
always smaller than 6.6 × 10−5, i.e., the upper limit value
obtained for porous media (Br → 0). The most amplified
wavelength at the onset of the nonlinear regime is also reported
and we see a good agreement with numerics for all experiments
performed for various values of the gap width and initial
concentration A0. The experimental wavelength and growth
rate are calculated from Fourier transform of the PIV field
in the early times of destabilization. Table II lists the various
experimental conditions used as well as the corresponding
value of the Brinkman parameter and normalization length

1.3395

1.34

1.3405

1.341

1.3415

1.342

1.3425

1.343

1.3435

FIG. 11. (Color online) Superposition of the numerical refractive
index map and of the velocity map for same conditions as the
experiment in Fig. 3.
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and time allowing one to switch between dimensional and
dimensionless variables.

In the nonlinear regime, we also see a good agreement
between experiments and numerics as reported on Fig. 11
where the refractive index computed using values from Table I
is reported for the same conditions and at the same time as in
Fig. 3.

VII. CONCLUSION

In conclusion, we have studied experimentally buoyancy-
driven convection induced by a simple exothermic neutral-
ization reaction between HCl and NaOH solutions in a
vertical Hele-Shaw cell. The reaction drastically modifies the
convective pattern with regard to the nonreactive equivalent,
leading to an asymmetric situation where convection appears
in the upper acidic solution only. A theoretical study based on a
linear stability analysis and nonlinear simulations of a related
reaction-diffusion-convection model has been performed to
explore the relative weight of solutal versus thermal effects
in the source of the instability. Contrary to what one might
have expected, thermal effects are found to be weak in this
problem. The heat of reaction is indeed found to virtually play

a negligible role on the convection observed in this exothermic
reaction problem. On the contrary, computation of the density
profiles and the computation of eigenfunctions of the linear
stability analysis confirm that the source of the instability
is a double diffusive effect between HCl and NaCl. Indeed,
the instability is found to be caused here by the salt product
diffusing slower than the acid leading to a less dense region
above the reaction front triggering a diffusive layer convection
mechanism of instability. Quantitatively the theoretical model
provides wavelengths and growth rates that follow the same
trend and are of a similar order of magnitude to those in the
experiments for all concentrations and Hele-Shaw cell gap
widths scanned. A generalization of these results to classify
the instability mechanisms possible for any kind of reacting
solutions is currently in progress.
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