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Control of centrifugal fingering via a variable interfacial tension approach
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We study the centrifugal fingering instabilities that occur in rotating Hele-Shaw cells containing two different
fluids. A weakly nonlinear analysis of the problem is performed, considering that the surface tension between
the rotating fluids changes with the local curvature of the interface. It is shown that the coupling between the
contact angle and the variable interfacial tension permits the control of the interface disturbances. As a result,
linear perturbations and nonlinear finger competition phenomena can be properly controlled and suppressed.
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I. INTRODUCTION

It is well known that the Saffman-Taylor instability [1]
takes place in the confined geometry of motionless Hele-Shaw
cells, being generated by the viscosity difference between the
moving fluids (viscosity-driven instability). If the less viscous
fluid pushes the more viscous one the interface is unstable, and
patterned structures presenting multiple fingertip splitting are
formed. However, if the more viscous fluid displaces the less
viscous one (reverse viscous flow), the system is stable and no
interfacial instability is observed [2].

A different kind of instability occurs if the Hele-Shaw cell
is allowed to rotate with constant angular velocity around
a vertical axis that passes through its center [3]. In this
rotating version of the problem, the fluid-fluid interface may
become unstable even under reverse viscous flow, due to the
density difference between the fluids. This characterizes a
centrifugally driven hydrodynamic instability [4–10]. If the
inner fluid is denser, centrifugal viscous fingering arise, leading
to the formation of interfacial patterns that are very distinct
from those obtained in the usual viscosity-driven case. Instead
of presenting branched, tip-split fingers, the rotating patterns
exhibit fingers of different lengths, which compete with each
other.

Rotating Hele-Shaw flows have been the object of con-
siderable interest during the past two decades [11]. Among
other things, this particular type of rotating flow has been
serving as a useful prototypical system, with relevance to
the modeling of biological systems involving tissue growth
in rotating bioreactors [12], cell spreading [13], and cell
motility [14]. It is also related to the technological problem of
spin coating [15,16], which involves the rotation of thin fluid
films in low-dimensional environments. On the theoretical
side, researchers have been giving continued attention to
rigorous exact solutions of fluid flows in such confined rotating
systems [17–21].

Despite the significant number of studies examining the
occurrence of interfacial instabilities and complex patterns
in rotating Hele-Shaw cells, and other confined centrifugally
driven systems, there are situations in which the formation
of interfacial irregularities is undesirable. For example, in
rotating bioreactors [12] and spin coating processes [15,16]
the emergence of centrifugally driven instabilities can result in
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uneven or defective surface coverage. Therefore, it is of both
academic and practical importance to find ways to control the
growth of interfacial disturbances in this class of rotating flow
problems.

As a matter of fact, the development of controlling strategies
to the usual viscosity-driven viscous fingering problem has
been a topic of major recent interest [22–31]. One particularly
simple and efficient controlling method has been proposed
in Ref. [31] which considers a curvature-dependent surface-
tension model [32,33]. Within the context of this model, the
surface tension varies in proportion to the local curvature of the
evolving interface [34]. This strategy allowed the manipulation
of the conventional viscosity-driven Saffman-Taylor instabil-
ity leading to the suppression of fingertip-splitting events, and
ultimate stabilization of the deformed interface.

Motivated by the success of the variable interfacial tension
approach in controlling the usual viscosity-driven instability
in motionless radial Hele-Shaw cells [31], in this work
we investigate the possibility of restraining the emergence
of centrifugal viscous fingering instability in rotating Hele-
Shaw flows. Through the employment of a weakly nonlinear
perturbative scheme [35] we show that the interplay between
the variable surface tension and three-dimensional (3D) effects
connected to the contact angle significantly affects the scenario
of instability formation. The effectiveness of our controlling
protocol is examined at both linear and early nonlinear stages
of the dynamics, indicating inhibition of finger competition
phenomena, and consequent stabilization of the rotating fluid-
fluid interface.

II. GOVERNING EQUATIONS OF THE PROBLEM

Consider a Hele-Shaw cell of gap spacing b containing two
immiscible, incompressible, viscous fluids (Fig. 1). Denote
the densities and viscosities of the inner and outer fluids,
respectively as ρ1, η1 and ρ2, η2. Although our model is capable
of describing two fluids of densities and viscosities of any
magnitude, we focus on the centrifugally driven motion where
ρ1 > ρ2, and η1 � η2. The cell rotates with constant angular
velocity �, and there exists a surface tension σ between
the fluids. As in Refs. [31–33] the interfacial tension is not
constant, and varies along the fluid-fluid interface.

To perform the weakly nonlinear analysis of the system,
we consider that the initial circular fluid-fluid interface is
slightly perturbed (Fig. 1), R = R + ζ (θ,t), where θ repre-
sents the azimuthal angle and R is the radius of the initially
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FIG. 1. (Color online) Perspective view of the rotating Hele-Shaw
cell. The plates of the cell have spacing b and rotate about a
perpendicular z axis with angular velocity �. The more viscous and
more dense fluid has initial radius R and occupies the shaded region.
Interface disturbances are denoted by ζ , azimuthal angle by θ , and
the variable interfacial tension between the fluids is given by σ .

circular interface. The interface perturbation is written in the
form of a Fourier expansion ζ (θ,t) = ∑+∞

n=−∞ ζn(t) exp (inθ ),

where ζ/R � 1, ζn(t) = (1/2π )
∫ 2π

0 ζ (θ,t) exp (−inθ )dθ

denotes the complex Fourier mode amplitudes, and n is an
integer wave number.

The n = 0 mode is included in our analysis to keep the area
of the perturbed shape independent of the perturbation ζ . Mass
conservation imposes that the zeroth mode is written in terms
of the other modes as ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2. Note that

in order to address both linear and weakly nonlinear aspects of
the interface dynamics, our perturbative analysis keeps terms
up to the second order in ζ .

The equation of motion of the interface is given by Darcy’s
law [1,2], properly augmented by a centrifugally driven
term [3,4]

vj = − b2

12ηj

∇
[
pj − ρj�

2r2

2

]
, (1)

where vj and pj represent the gap-averaged velocity and
pressure of fluid j , where j = 1,2. In addition, r denotes
the radial distance from the axis of rotation. Equation (1) is
valid in the small Reynolds number limit, where Coriolis and
other inertial effects are negligible [5]. For the inclusion of
such effects into the rotating Hele-Shaw problem, we refer the
reader to Refs. [7,8,10].

From Eq. (1) and the incompressibility condition
∇ · vj = 0, it can be verified that the velocity potential
φj (vj = −∇φj ) obeys Laplace’s equation ∇2φj = 0. The
problem is then specified by two boundary conditions at the
interface

p1 − p2 = σ (K)K (2)

and

n · ∇φ1 = n · ∇φ2. (3)

Equation (2) is a modified version of the usual Young-
Laplace pressure jump at the interface [31] with K = κ + κ⊥,
where κ denotes the spatially varying interfacial curvature
in the plane of the Hele-Shaw cell, and κ⊥ = cos θc/(b/2)
is the constant curvature associated with the interface profile in
the direction perpendicular to the Hele-Shaw plates, set by the
static contact angle θc measured between the plates and the
curved meniscus. In Eq. (2) note the presence of a curvature-

dependent surface tension given by

σ (K) = σ0 + βK, (4)

where the control parameter β can be positive, negative, or
zero, and σ0 is the surface tension when β = 0 [32,33]. The
possible physical mechanisms involved with this particular
functional form of the variable interfacial tension are related
to the addition of surfactants or polymers at the fluid-fluid
interface, or at the cell walls. These issues have been
thoroughly discussed in Refs. [31–33].

Depending on the values of β and θc, the effective surface
tension can be either reduced or increased when the interface
bulges into the displaced fluid, altering the stability of the
fluid-fluid interface. As in Refs. [27,29] we focus on the
situation in which the displaced fluid is nonwetting (θc = π ).
The second important boundary condition [Eq. (3)], known
as the kinematic boundary condition, states that the normal
components of each fluid’s velocity are continuous at the
interface, with n representing the interface unit normal vector.

At this point we stress that the coupling between the
curvature-dependent surface tension σ (K) and the three-
dimensional (3D) term represented by κ⊥ plays a fundamental
role in allowing a proper manipulation of the centrifugal
fingering instability. If the surface tension does not depend
on the curvature (β = 0), since the 3D term is constant (its
gradient is zero), it does not affect the motion of the interface.
However, if β �= 0 we have the coupling of β and the spatially
varying in-plane curvature κ with the 3D term.

To obtain a mode-coupling differential equation for the
interface evolution, we follow standard steps performed in
previous weakly nonlinear studies in Hele-Shaw cells [31,35]:
from the solution of Laplace’s equation we define Fourier
expansions for the velocity potentials. Then, we express φj

in terms of the perturbation amplitudes ζn by considering
condition (3). Substituting these relations and the modified
pressure jump condition Eq. (2) into Eq. (1), always keeping
terms up to second order in ζ , and Fourier transforming, we
find the dimensionless equation of motion for the perturbation
amplitudes (for n �= 0),

ζ̇n = λ(n)ζn +
∑
n′ �=0

[F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′ ], (5)

where the overdot denotes total time derivative, and

λ(n) = |n|
{

sgn(U ) − S(n2 − 1)

[
1 + 2B

(
1 + 2 cos θc

b

)]}

(6)

is the (time-independent) linear growth rate. The parameter

S = σ0

R3�2|ρ1 − ρ2| (7)

represents the ratio of capillary to centrifugal forces, while

B = β

σ0R
(8)

measures the action of curvature-dependent surface-tension
effects. The sgn function equals ±1 according to the sign of
its argument.
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The second-order mode-coupling terms are given by

F (n,n′) = |n|
{

1

2
sgn(U )

− S

(
1 + 4B

cos θc

b

) [
1 − n′

2
(3n′ + n)

]

− SB[3 − n′(5n′ + n) + n′2(n − n′)2]

}
(9)

and

G(n,n′) = A|n|[1 − sgn(nn′)] − 1, (10)

where A = (η2 − η1)/(η2 + η1) is the viscosity contrast. In
Eq. (5) lengths are rescaled by R, and time by R/U , where U =
[b2R(ρ1 − ρ2)�2]/[12(η1 + η2)] is a characteristic velocity.
From this point on, we will be dealing with the dimensionless
version of the governing equations.

The linear growth rate (6) provides relevant information
about the linear stability of the interface, and the nonlinear
terms (9) and (10) offer key analytical insights into the
response of finger competition events to the action of the
variable interfacial tension at the weakly nonlinear regime.
As pointed out at the beginning of this section, recall that in
this work we focus on the centrifugally unstable situation in
which sgn(U ) = 1, A = −1, and θc = π . These are the most
common conditions present in existing experiments in rotating
Hele-Shaw cells. Moreover, these are also the conditions of
important technological applications [12–16] where control of
centrifugal fingering could be needed. We emphasize that the
values we take for our dimensionless parameters are consistent
with typical physical quantities used in real experiments for
rotating Hele-Shaw flows [4,5,9].

III. FINGERING CONTROL: LINEAR
AND NONLINEAR REGIMES

As mentioned earlier in this work, our main goal is to use
the curvature-dependent surface-tension approach to stabilize
usually unstable flows in rotating Hele-Shaw cells. First, in
Sec. III A we try to extract useful information regarding
control of centrifugally driven instabilities at purely linear,
early time stages of the interface evolution. Then, in Sec. III B
we test the robustness of the control strategy verified at the
linear level, turning our attention to the weakly nonlinear
regime. At the nonlinear level, we can examine how the
variable interfacial tension acts on the typical finger com-
petition mechanism which takes place in rotating Hele-Shaw
flows.

A. Linear behavior

We begin our discussion by examining the origin of the
terms in the linear growth rate expression [Eq. (6)]. Since
we concentrate on the situation where sgn(U ) = 1, it is clear
that the centrifugal term does act to destabilize the system.
On the other hand, the second term proportional to S(n2 − 1)
is related to the surface-tension contributions: the first term
on the square bracket is associated to the surface tension
connected to the in-plane curvature κ , and plays a stabilizing
role. The term proportional to the variable surface-tension
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FIG. 2. (Color online) Inhibition of centrifugal fingering at the
linear level. Linear growth rate λ(n) as a function of mode number n

for different values of B. The typical number of interfacial fingers,
given by the maximum of the curves (nmax), drops successively
(nmax ≈ 17,11,6, and 1) as the magnitude of the variable interfacial
tension parameter B is increased.

parameter B presents the contribution due to the transverse
interfacial curvature κ⊥ involving the contact angle. Recall
that Hele-Shaw flows consider a high aspect ratio situation
where b � 1 so that the contact angle term is indeed the
dominant one. Finally, notice that since here we consider
that θc = π , B must be negative in order to stabilize the
interface. Of course, if B > 0 the interface would be further
destabilized, but this is not the effect in which we are currently
interested.

The role of B in controlling the instability at the linear
level is illustrated in Fig. 2. This figure plots the linear growth
rate (6) as a function of mode number n for different values
of the variable surface-tension parameter B: 0, −3.4 × 10−3,
−1.7 × 10−2, and Bc, where Bc denotes the critical value
for which all modes n > 1 become stable [obtained by setting
λ(n) = 0]

Bc = 1

2
(
1 + 2 cos θc

b

)
[

sgn(U )

S(n2 − 1)
− 1

]
. (11)

Figure 2 is plotted by considering the following typical
values of S and b: S = 1.14 × 10−3 and b = 10−2. As a
matter of fact, these characteristic parameter values will
also be used to plot the remaining figures appearing in
this work.

By inspecting Fig. 2 it is clear that the system is unstable
when B = 0: there is a large band of unstable modes,
for which λ(n) > 0. Note that the maximum of the curve
represents the mode of largest growth nmax [obtained by
setting dλ/dn = 0]. For B = 0 we find that nmax ≈ 17. This
number represents the typical number of fingers that emerges
at the rotating interface in the linear regime. Moreover, Fig. 2
indicates that for B = −3.4 × 10−3 the interface becomes
more stable compared with the B = 0 case: the band of
unstable modes is reduced, the growth rate magnitude is
decreased, and the number of fingers drops (now nmax ≈ 11).
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We can also see that by further increasing the magnitude of
B one could stabilize the system quite significantly, making
nmax drop to one when B = Bc [Eq. (11)].

In order to suppress any interfacial instability it would
suffice to consider the case n � 2. The mode n = 0 that
corresponds to a uniform expansion of the circle is marginal
[i.e., λ(n = 0) = 0] for all values of B. Note that mode n = 1
does not introduce any interfacial deformations. In fact, it
corresponds to a global off-center shift of the circle. So, it
preserves circular shape but can be unstable in the sense that
it can lead to droplet translation.

B. Weakly nonlinear stage

Although it is encouraging to be able to verify that at the lin-
ear level one could use the parameter B to control the degree of
centrifugal fingering, rigorously it does not guarantee that such
a controlling strategy will be really effective during nonlinear
stages of the interface evolution. Additionally, the typical
finger competition phenomenon verified in rotating Hele-Shaw
flows is an intrinsically nonlinear effect and cannot be properly
addressed by purely linear analysis [6,36–38]. Therefore, to
check the linear predictions discussed in Sec. III A, and to
elucidate key effects related to finger competition in rotating
Hele-Shaw flow in the presence of a variable interfacial ten-
sion, we proceed by analyzing the weakly nonlinear dynamics
of the system. This is done by concentrating our attention on
the role played by the parameter B in possibly controlling
finger competition events, and ultimately leading to interface
stabilization.

Now the mode-coupling equation (5) is utilized in its
entirety to study the onset of nonlinear pattern formation
through the coupling of a small number of modes. To simplify
our discussion it is convenient to rewrite the complex net

perturbation in terms of cosine and sine modes,

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )], (12)

where an = ζn + ζ−n and bn = i(ζn − ζ−n) are real valued.
Without loss of generality, for the remainder of this work,
we choose the phase of the fundamental mode so that an > 0
and bn = 0. We follow Ref. [35] and consider finger length
variability as a measure of the competition among fingers.
Within our approach the finger competition mechanism can be
described by the influence of a fundamental mode n, assuming
n is even, on the growth of its subharmonic mode n/2. By using
Eqs. (5)–(10) the equations of motion for the subharmonic
mode can be written as

ȧn/2 = {λ(n/2) + C(n)an}an/2, (13)

ḃn/2 = {λ(n/2) − C(n)an}bn/2, (14)

where the finger competition function is given by

C(n) = 1

2

[
C

(
n

2
,−n

2

)
+ C

(
n

2
,n

)]
(15)

and

C(n,n′) = F (n,n′) + λ(n′)G(n,n′). (16)

From Eqs. (13) and (14) we verify that a negative C(n)
increases the growth of the sine subharmonic bn/2, while
inhibiting growth of its cosine subharmonic an/2. The result
is an increased variability among the lengths of fingers of the
outer fluid penetrating into the inner one. This effect describes
the competition of inward fingers. Note that our finger
competition mechanism determines the preferred direction
for finger growth and finger length variability. So, when

a b c

FIG. 3. (Color online) Inhibition of centrifugal fingering at the weakly nonlinear level. Snapshots of the evolving interface, plotted at equal
time intervals for the interaction of the fundamental mode, and its subharmonic. Different values of the variable interfacial tension parameter
B are used: (a) 0, (b) −3.4 × 10−3, and (c) −1.7 × 10−2. The dashed curves are added to better guide the eye regarding finger competition.
The insets show close-up views of the regions delimited by the dashed curves. Darker colors mean later times.
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C(n) < 0, even though there exists finger competition in
both directions (inward and outward), the competition among
inward moving fingers is much stronger than the competition
among outward moving fingers. Reversing the sign of C(n)
would exactly reverse these conclusions, such that modes an/2

would be favored over modes bn/2. In this case, competition
of the outward moving fingers of the inner fluid would have
preferential growth.

For the typical rotating Hele-Shaw flow experimental
parameters used in Refs. [4,5,9] we have found that C(n) < 0
indicating a restrained growth of cosine subharmonic modes
an/2, accompanied by a simultaneous increased growth of
sine subharmonic modes bn/2. These findings are illustrated in
Fig. 3, which plots the time evolution of the rotating fluid-fluid
interface for three different values of B: 0, −3.4 × 10−3, and
−1.7 × 10−2. The interfaces shown in this figure are calculated
with the help of Eq. (12) and consider the weakly nonlinear
interplay of two wave numbers, namely the fundamental
n = n∗, where n∗ is the nearest even integer to nmax and its
subharmonic n/2. We take the initial amplitudes as an/2(0) =
bn/2(0) = 1/750 and an(0) = 1/130. In addition, the interfaces
are plotted for 0 � t � 0.247, at equal time intervals t =
0.062. As in Fig. 2, S = 1.14 × 10−3 and b = 10−2. These
parameters are also utilized to plot Fig. 4.

By examining Fig. 3(a) for B = 0 it is evident that the
inward moving fingers of the outer fluid present different
lengths, indicating the presence of finger competition. The
inset of Fig. 3(a) shows a close-up view of part of the
fingers, where competition among inward moving fingers can
be clearly verified: some inward moving fingers touch the
inner dashed line, while other inward moving fingers do not.
On the other hand, the fingers of the inner fluid pointing
outward have nearly similar sizes, confirming the prediction
that competition among these fingers is repressed. So, the fact
is that when the surface tension is constant, one does observe

a finger competition phenomenon among inward moving
fingers.

A different kind of behavior is revealed in Fig. 3(b)
for B = −3.4 × 10−3: the action of the variable interfacial
tension not only reduces the number of fingers, but also
decreases the competition of the inward moving fingers. By
inspecting the inset of Fig. 3(b) we see that both neighboring
inward moving fingers are very close to the inner dashed
line, indicating weaker competition. Finally, by increasing the
magnitude of B even further [in Fig. 3(c) B = −1.7 × 10−2]
we obtain a much more stabilized fluid-fluid interface in which
finger competition events are hardly observable, as illustrated
by the inset of Fig. 3(c). This supports the idea that the variable
interfacial tension approach is effective in suppressing finger
competition events, and interface disturbances in general, also
at weakly nonlinear stages of the dynamics.

In order to reinforce the visual illustration of the restrained
finger competition for larger B discussed in Fig. 3, we go
ahead and analyze this issue more quantitatively in Fig. 4. The
evaluation of finger competition is done by the quantity

R = |Ri − Ri+1|, (17)

which expresses the absolute value of the difference between
the interfacial positions for consecutive inward moving fingers
i and i + 1, where Ri is the radial position of the tip of an ith
inward moving finger and Ri+1 is the equivalent position of
the neighboring inward moving finger [or the (i + 1)th finger].
These geometric concepts are sketched in Fig. 4(a). Note that
R provides a convenient quantitative measure of the finger
length variability or, equivalently, of the finger competition
events among inward moving fingers.

Useful information about the time evolution of the finger
competition behavior in our system can then be obtained by
analyzing Fig. 4(b) that plots R as a function of time. Note
that the curves for B �= 0 are located below the one for B = 0

FIG. 4. (Color online) Refers to the patterns illustrated in Fig. 3, and uses the same physical parameters. Difference between the interface
positions of the fingertips for consecutive inward moving fingers of the outer fluid R [see Eq. (17) and Fig. 4(a)] as a function of time, for
different values of B as plotted in Fig. 4(b). One readily observes that finger competition is decreased by the use of variable interfacial tension
of increasingly larger magnitude. Here τ = 15t , where t is the time interval used in Fig. 3.
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expressing that finger competition decreases as the magnitude
of B is increased. This demonstrates in a quantitative fashion
that finger competition is significantly affected by the variable
interfacial tension parameter B. This makes it appropriate to
properly tune and control centrifugal fingering in general, and
nonlinear finger competition events in particular.

IV. CONCLUSION

In this work, we revisited the rotating Hele-Shaw flow
problem, and investigated the effect of a curvature-dependent
interfacial tension on the stability properties of the fluid-fluid
interface. This was done by performing a weakly nonlinear
analysis of the rotating flow situation. It enabled us to verify
the effectiveness of the variable interfacial tension approach in

controlling centrifugal fingering both at purely linear stages of
the dynamics, as well as at the onset of nonlinearities. In partic-
ular, we showed that nonlinear finger competition events can
be systematically suppressed, yielding subsequent interface
stabilization. This work offers an additional contribution to
the growing body of recent studies in the literature addressing
a number of different strategies targeting the control of inter-
facial instabilities in confined Hele-Shaw geometries [22–31].

ACKNOWLEDGMENTS

We thank CNPq for financial support through the program
“Instituto Nacional de Ciência e Tecnologia de Fluidos
Complexos (INCT-FCx)” and FACEPE through PRONEM
Project No. APQ-1415-1.05/10.

[1] P. G. Saffman and G. I. Taylor, Proc. R. Soc. A 245, 312
(1958).

[2] G. M. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987);
K. V. McCloud and J. V. Maher, Phys. Rep. 260, 139 (1995);
J. Casademunt, Chaos 14, 809 (2004).

[3] L. W. Schwartz, Phys. Fluids A 1, 167 (1989).
[4] Ll. Carrillo, F. X. Magdaleno, J. Casademunt, and J. Ortı́n, Phys.

Rev. E 54, 6260 (1996).
[5] E. Alvarez-Lacalle, J. Ortı́n, and J. Casademunt, Phys. Fluids

16, 908 (2004).
[6] J. A. Miranda and E. Alvarez-Lacalle, Phys. Rev. E 72, 026306

(2005).
[7] S. L. Waters and L. J. Cummings, Phys. Fluids 17, 048101

(2005).
[8] A. Abidate, S. Aniss, O. Caballina, and M. Souhar, Phys. Rev.

E 75, 046307 (2007).
[9] R. Folch, E. Alvarez-Lacalle, J. Ortı́n, and J. Casademunt, Phys.

Rev. E 80, 056305 (2009).
[10] E. O. Dias and J. A. Miranda, Phys. Rev. E 83, 046311 (2011).
[11] J. Casademunt, Eur. Phys. J. Plus 126, 94 (2011), and references

therein.
[12] S. L. Waters, L. J. Cummings, K. M. Shakesheff, and F. R. A. J.

Rose, IMA J. Math. Med. Biol. 23, 311 (2006).
[13] M. A. Fardin, M. O. Rossier, P. Rangamani, P. D. Avigan,

N. C. Gauthier, W. Vonnegut, A. Mathur, J. Hone, R. Iyengar, and
M. P. Sheetz, Soft Matter 6, 4788 (2010).

[14] C. Blanch-Mercader and J. Casademunt, Phys. Rev. Lett. 110,
078102 (2013).

[15] L. W. Schwartz and R. V. Roy, Phys. Fluids 16, 569 (2004).
[16] K. E. Holloway, P. Habdas, N. Semsarillar, K. Burfitt, and J. R.

de Bruyn, Phys. Rev. E 75, 046308 (2007).
[17] D. G. Crowdy, Q. Appl. Math. 60(1), 11 (2002).
[18] E. S. G. Leandro, R. M. Oliveira, and J. A. Miranda, Physica D

237, 652 (2008).
[19] R. López, Appl. Math. Lett. 22, 860 (2009).

[20] N. R. McDonald, Eur. J. Appl. Math. 22, 517 (2011).
[21] M. Ehrnström, J. Escher, and B. V. Matioc, J. Math. Fluid Mech.

13, 271 (2011).
[22] S. W. Li, J. S. Lowengrub, J. Fontana, and P. Palffy-Muhoray,

Phys. Rev. Lett. 102, 174501 (2009).
[23] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. Lett.

106, 194502 (2011).
[24] E. O. Dias, E. Alvarez-Lacalle, M. S. Carvalho, and J. A.

Miranda, Phys. Rev. Lett. 109, 144502 (2012).
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