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Orbital trajectory of an acoustic bubble in a cylindrical resonator
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INSERM, U1032, LabTAU, Université Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003, Lyon, France

(Received 21 February 2013; published 9 September 2013)

Acoustic cavitation-induced microbubbles in a cylindrical resonator filled with water tend to concentrate into
ring patterns due to the cylindrical geometry of the system. The shape of these ring patterns is directly linked
to the Bjerknes force distribution in the resonator. Experimental observations showed that cavitation bubbles
located in the vicinity of this ring may exhibit a spiraling behavior around the pressure nodal line. This spiraling
phenomenon is numerically studied, the conditions for which a single cavitation bubble follows an orbital
trajectory are established, and the influences of the acoustic pressure amplitude and the initial bubble radius are
investigated.
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I. INTRODUCTION

A gas bubble in a liquid may exhibit different motions
depending on the involved forces: zigzagging and spiraling
motions due to hydrodynamic forces when bubbles rise
through a liquid [1], motions towards an acoustic pressure
node or antinode due to the primary Bjerknes force [2], or
spiraling motions when acoustic and hydrodynamic forces
compete [3]. In the case where the only force is the acoustic
force, most of the experimental and numerical studies focus
on the radial oscillations of bubbles. Marmottant et al. showed
that these radial oscillations give rise to microstreamlines in
the surrounding fluid that can conduct to controlled deforma-
tions, motions, and rupture of nearby vesicles [4], opening
applications in a diverse range of engineering and biomedical
fields such as particle trapping and transport [5,6], mixing [7],
or cell sonoporation [8]. Although most of these applications
involve space displacements of the cavitation bubbles, the
translational bubble motions are still much less studied than
the radial bubble dynamics. In the 1970s, Miller [9] observed
bubbles moving to particular locations and organizing into
stable arrays in a standing-wave acoustic field. He also noticed
that, depending on their sizes, these bubbles may be trapped
or experience orbital trajectories in the vicinity of the pressure
node locations. In the analysis of this phenomenon, Miller
did not consider the bubble radial dynamics, but a more
recent study by Doinikov et al. [10] showed that the coupling
between the radial oscillations and the translational motions
of a spherical bubble in a strong acoustic field can result in
translational instabilities of the bubble around a pressure nodal
plane. Even if understanding the traveling or dancing motions
of a bubble is a key to provide further insight into bubble
control, no particular attention was paid to the translational
motions that bubbles could exhibit in a complex and realistic
three-dimensional acoustic field. The aim of this paper is to
investigate the behavior of bubbles in a cylindrical ultrasonic
standing wave. Supported by preliminary experimental obser-
vations, theoretical and numerical studies are conducted to
determine how bubbles can concentrate into specific patterns
in a cylindrical geometry, and particularly which behavior a
single bubble located on (or in the vicinity of) this pattern can
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exhibit depending on the modal distribution of the acoustic
field, the initial radius of the bubble, and the acoustic pressure
amplitude.

II. RINGING AND SPIRALING BUBBLE OBSERVATIONS

A 30 kHz continuous acoustic wave is generated in a
cylindrical resonator of inner radius a = 4.0 × 10−2 m filled
up to a fixed position h = 4.8 × 10−2 m with air-saturated
spring water at standard conditions of temperature T0 and
pressure P0, using a plane ultrasonic transducer with an active
diameter of 7.9 × 10−2 m, which is located at z = 0. The
spacial distribution of the acoustic pressure amplitude Pa in the
medium is measured with a hydrophone (Reson TC4034). This
amplitude can be adjusted from 0–8 bar at the pressure antin-
ode. The measurement of the displacements of the ultrasound-
induced microbubbles is carried out with a high-speed camera
(Vision Research Phantom v12.1). At moderate pressure am-
plitudes (0.5 < Pa < 2.5 bar), the cavitation-induced bubbles
concentrate into ring patterns [Fig. 1(a)], located at pres-
sure nodes, and made by bubbles whose radii vary around the
equilibrium radius, from 70–120 μm. The radius of the bubble
ring is of about 2.5 × 10−2 m whatever the value of the pressure
amplitude. Some of the bubbles located on this ring exhibit
particular dynamics: they follow an orbital path around the
pressure nodal line. This behavior in the (r , z) plane is
illustrated in Fig. 1(b) showing bubbles spiraling in the
vicinity of the ring pattern. Figure 1(c) presents the r and
z displacements of a spiraling bubble as a function of time
t . The two components of the displacement are sinusoidal.
In this example, the phase between these components nearly
equals π/2 and peak-to-peak amplitudes of the r and z

displacements are both of about 2 mm, so that the bubble
describes a quasicircular trajectory with a constant radius
Rp � 1.0 × 10−3 m and a center located on a pressure nodal
line, i.e., here at rc � 2.5 × 10−2 m.

III. THEORETICAL BACKGROUND

The bubble ring structure is directly linked to the acoustic
waveform in the resonator. Indeed, assuming that the acoustic
field is stationary and azimuthally symmetric, the complex
acoustic pressure p̃a in a cylindrical closed ends resonator can
classically be expressed in the cylindrical coordinate system
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FIG. 1. View of (a) a bubble ring, (b) spiraling bubbles, and
(c) r and z displacements of a spiraling bubble. Insert: bubble
trajectory in the (r , z) plane. Pa � 1.5 bar.

(r,θ,z) as

p̃a = Pa

∞∑
ν=0

∞∑
m=0

Ãν,mJν

(
kwν,m

r
)

cos
(
kzν,m

z
)
eiωt , (1)

where Ãν,m = Aν,meiφν,m is the modal complex amplitude of
the mode (ν,m), ω is the driving angular frequency, Jν is
the cylindrical Bessel function of νth order, kwν,m

(determined
thanks to the boundary condition at r = a) and kzν,m

are the
radial and longitudinal wave numbers, which satisfy the dis-
persion equation k2

wν,m
+ k2

zν,m
= ω2/c2, c being the adiabatic

celerity of sound in the medium. At the experimental driving
frequency (i.e., f = ω/2π = 30 kHz), the two symmetric
modes (0,0) and (0,1) propagate into the resonator. Other
modes are antisymmetric or evanescent. It is worth noting
that the longitudinal closed ends boundary condition chosen
in this model does not reflect the realistic complex conditions at
z = 0 (transducer surface deformation) and z = h (free surface
deformation). The fact is that taking into account a simplified
closed ends condition does not affect the number of modes
that propagate into the resonator but only the z location of the
pressure nodes and antinodes, and, as a consequence, the z

locations of the bubble patterns, which are not of interest here.
Assuming that the energy transfers involved at the longitu-

dinal boundaries and through the acoustic scattering due to the
presence of bubbles ensure that the total energy of the system

E =
∫

V

ρ
ṽ2

a

2
dV +

∫
V

p̃2
a

2ρc
dV, (2)

where ρ is the density of fluid, ṽa is the acoustic velocity, and
V denotes the volume of the system, is divided in equal parts
between the two modes constituting the acoustic field in the
resonator. The principle of equipartition of the energy [11] can
be applied as follows:

〈E0,0〉 = 〈E0,1〉, (3)

where 〈Eν,m〉 is the mean of the energy Eν,m of the mode (ν,m)
over an acoustic period. Writing the relationship between
the modal amplitudes A0,0 and A0,1 as A0,0 + A0,1 = 1, the

equation (3) leads to:

A0,0 = α

1 + α
� 24.8%, (4)

where

α = J0(χ1,1)

√
2

π

(
1 + k2

w0,1

k2
z0,0

sinc
(
2kz0,1h

))
. (5)

As regards modal phases, φ0,0 is set as a reference (φ0,0 =
0). Then φ0,1 can be determined assuming that there is a
local equilibrium of the energy. This means that the coupling
energy vanishes over an acoustic period, which leads, after
calculation, to:

φ0,1 = ±π/2. (6)

The main force that acts on a single bubble is the well-known
primary Bjerknes force written as

Fb1 = −4

3
πR3∇pa, (7)

where R(t) is the time-dependent radius of the spherical
bubble, and where ∇ is the gradient operator. Equations (1)
and (7) clearly show the existence of zeros of the Bjerknes
force, which take the form of a ring which is a stable (unstable)
equilibrium location for bubbles larger (smaller) than the
resonant radius at low excitation amplitude [12]. The radius
of this ring is given by the first zero χ1,1 of the Bessel
function J1(kw0,1r), which is located at r = χ1,1/kw0,1 = 2.5 ×
10−2 m. The value of this theoretical radius coincides with the
experimental one. This result clearly explains the formation
of a ring pattern made by large bubbles at the pressure nodes
in a cylindrical resonator, but does not explain the presence of
spiraling bubbles. This spiraling behavior suggests that there is
a translational instability that causes the bubble to turn around
the nodal line. Some authors have already worked on this kind
of instability. In particular, Doinikov [13] extended Watanabe
and Kukita’s works [14] on the translational motion of a
spherical bubble in a standing wave acoustic field. Doinikov
rederived the one-dimensional equations of motion of a bubble
using an energy approach that enables a feedback between the
radial and the translational motions. Then, these two motions
can be described in the (r , z) plane by a three equation system
as follows: (

1 − Ṙ

c

)
RR̈ +

(
3

2
− Ṙ

2c

)
Ṙ2

− 1

ρ

(
1 + Ṙ

c
+ R

c
dt

)
p̃ = 1

4
ṙ2, (8)

r̈ + 3
Ṙ

R
ṙ = 3

2πρR3
Fext, (9)

where r is the position vector in the (r , z) plane, and where
the external force Fext takes into account the primary Bjerknes
force Fb1 and the Levich viscous drag [15] as follows:

Fext = Fb1 − 12πηR(ṙ − ṽa). (10)

The scattering pressure p̃, expressed as

p̃ =
(

P0 + 2σ

R0

)(
R0

R

)3γ

− 2σ

R
− 4ηṘ

R
− P0 − p̃a, (11)
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where σ is the surface tension of the bubble, R0, its initial
radius, γ , the polytropic exponent, and η, the viscosity of the
fluid, takes into account the complete acoustic pressure field
defined in Eq. (1).

IV. NUMERICAL MODELING OF THE
SPIRALING MOTION

Numerical computations are made using the PYTHON

programming language to simulate radial and translational
motions of a single spherical bubble in a cylindrical acoustic
field. The numerical constants are matched to the experimental
ones (i.e., P0 = 1020 hPa, T0 = 21 ◦C, ρ = 983 kg/m3,
η = 1.0.10−3 kg m−1 s−1, γ = 1.4, and σ = 0.0725 N/m).
Numerical simulations are computed over 2000 acoustic cycles
and the initial location of the bubble is set in the vicinity of a
pressure node (rc � χ1,1/kw0,1 and zc � 3h/4). Figures 2(a)–
2(d) present the trajectory of a single bubble in the resonator
for different values of A0,0 and φ0,1. The ratio ω/ω0, where

ω0 = 1

R0

(
3γP0

ρ
+ 2σ (3γ − 1)

ρR0

)1/2

(12)

is the linear resonance frequency of a bubble, gives information
on the bubble size. Figure 2(a) shows the path described by a
bubble for A0,0 = 100%. In this case, only the mode (0,0)
is considered. This results in unidirectional oscillations of
the bubble. When the amplitude A0,0 decreases to 25% with
φ0,1 = 0, [Fig. 2(b)], the bubble oscillates in the (r , z) plane.
When φ0,1 equals π/2, the trajectory of the bubble becomes
orbital [Figs. 2(c) and 2(d)]. This trajectory may be elliptic
[Fig. 2(c)] or quasicircular [Fig. 2(d)] depending on the A0,0

value. In this latter case, the revolution period of the bubble
is of about 5 ms, which is of the same order of magnitude as
the experimental one [of about 4 ms on Fig. 1(c)]. It is worth
noting that the unidirectional [Fig. 2(a)] and erratic [Fig. 2(b)]
motions of the bubbles have already been studied in recent
works when considering only the mode (0,0) [10] or only the
mode (0,1) [16], respectively. The present study highlights that

(a) (b)

(c) (d)

FIG. 2. Trajectory of a bubble in the (r , z) plane for ω/ω0 = 0.87
and Pa = 0.8 bar, where the dot represents the starting location of
the bubble: (a) A0,0 = 100% where the dashed line represents the
pressure nodal line, (b) (A0,0 = 25%, φ0,1 = 0), (c) (A0,0 = 25%,
φ0,1 = π/2), and (d) (A0,0 = 28%, φ0,1 = π/2), where the crosses
represent the pressure node. Note that for (d), the starting location of
the bubble is set to the pressure node.

a bubble can describe an orbital trajectory only if both plane
and radial modes are considered and if there is a modal phase
shift between these two modes. These observations suggest
that there exist specific values of the modal parameters A0,0 and
φ0,1 allowing a bubble to spiral, opening applications in bubble
transport when controlling the surrounding acoustic field. Note
that Fig. 2 presents results for small bubbles (ω < ω0) for
which the (rc, zc) location is linearly unstable. As regard large
bubbles (ω > ω0), they tend to move to the pressure nodes and
to describe a spiraling trajectory of infinitesimal radius. These
results show that the entire bubble population can be located
in the vicinity of the bubble ring (i.e., the pressure node).

In the case ω > ω0, a theoretical derivation of the modal
parameters that enable this particular motion can be achieved
by introducing in Eq. (9) a circular motion solution around
an equilibrium location (rc = χ1,1/kw0,1 , zc = 3h/4), which is
stable for large bubble radii (ω > ω0). The (r , z) motion is
considered as (rc + Rp cos θ , zc + Rp sin θ ) where θ = t , 
being the constant angular velocity. Assuming a low pressure
amplitude and taking the average over an acoustic period of the
Bjerknes force, a circular motion of the bubble is obtained for

A0,0 = kw0,1J1(χ0,1)

kw0,1J1(χ0,1) + kz0,0

and φ0,1 = ±π

2
. (13)

The theoretical values of the modal parameters are A0,0 =
27.6% and φ0,1 = ±π/2. The first condition ensures that the
contributions of r and z components of the Bjerknes force are
the same, and the phase condition ensures that there is a phase
quadrature relationship between the z component [mainly
supported by the mode (0,0)] and the r one [only supported by
the mode (0,1)]. Considering that this result is suitable for a
low pressure/large bubble approximation, a parametric study
is carried on to obtain the values of the modal parameters
for which the path of a single small bubble can be orbital as
observed in Fig. 2(d). With that aim, for each set of (A0,0, φ0,1)
values, the trajectory of the bubble is compared to the equation
of an ellipse. The ratio ε of the minor and major radii of the
ellipse gives the information on the circularity of the bubble
path: When ε equals 0, the motion of the bubble is nonexistent
or erratic, and when ε equals 1, the motion is perfectly circular.
For intermediate values, the motion of the bubble is elliptic.
Figure 3 presents an example of the variations of this ratio ε as
a function of the modal parameters (A0,0, φ0,1). There exist two
areas for which the trajectory of the bubble is orbital. These
two areas are located around the sets of values A0,0 = 28%
and φ0,1 = ±π/2, which are the same values that are given
by Eq. (13) for large bubbles. The theoretical values given in
Eqs. (4) and (6) that define the modal distribution of the acous-
tic field in the resonator are included in the dark areas of Fig. 3.
For these theoretical values, the trajectories of the bubbles are
elliptic [values not exactly equal to those defined by Eq. (13) in
the case of perfectly circular]. Even if the experimental setup
does not allow a quantitative comparison of the eccentricity of
the trajectories, Fig. 1(c) clearly shows that the experimental
trajectory of the bubble is also not perfectly circular.

The modal parameters obtained above ensure a circular or
quasicircular motion around the pressure nodal line, either for
large or small bubbles. This means that for sufficiently high
pressure amplitudes, the oscillatory motion of small bubbles
around a linearly unstable location becomes stable, as can be

033006-3



DESJOUY, LABELLE, GILLES, BERA, AND INSERRA PHYSICAL REVIEW E 88, 033006 (2013)

FIG. 3. Example of the variations of the normalized ratio ε

with respect to the modal parameters (A0,0, φ0,1) for Pa = 1.5 bar
and ω/ω0 = 0.87. Note that numerical simulations provide similar
distributions with peaked extrema at the same location whatever the
acoustic pressure amplitudes varying from 0.8–2.5 bar.

observed in other contexts of nonlinear oscillator physics [17].
We now investigate the conditions for which stable circular
motion of bubbles around the nodal line can be obtained,
with A0,0 and φ0,1 set to the values obtained above. Figure 4
presents the dependence of the radius Rp of the trajectory of the
bubble as a function of ω/ω0 and Pa . When ω > ω0, bubbles
experience circular motion around their stable equilibrium
location (pressure node). For almost the whole range of the
driving pressure amplitudes, circular motions exist with an
infinitesimal radius Rp: bubbles are trapped. When ω < ω0,

FIG. 4. Trajectory radius Rp as a function of the acoustic pressure
amplitude Pa and of the ratio ω/ω0. The bold continuous line
corresponds to the inertial cavitation threshold defined as Rmax/R0 �
2.3, Rmax being the maximum radius of the bubble.

at low pressure amplitudes (hatched area), bubbles exhibit an
erratic motion in the vicinity of their unstable equilibrium
location. For sufficiently high pressure amplitudes (above the
dashed line), spiraling bubbles exist. Even starting from the
unstable location (rc, zc), a small bubble stabilizes its motion
on a circular path, as illustrated in Fig. 2(d). The pressure
threshold for orbital trajectory (dashed line) is intimately
linked to the bubble nonlinear dynamics. The continuous line
corresponds to the well-known inertial cavitation threshold
defined in Ref. [12]. Above this threshold [collapse area, for
which Eq. (8) is no longer valid], bubbles collapse preventing
them to spiral. Below this threshold (spiraling motion area),
cavitation remains stable, even for high pressure amplitudes,
due to the coupling between the radial and translational
motions. In this area, for a given ω/ω0 value, increasing the
pressure amplitude Pa above the spiraling threshold (dashed
line) results in the decrease of the radius Rp, which helps to
collect small bubbles in the vicinity of the pressure nodal line.
It is worth noting that, for an acoustic pressure amplitude Pa

of 1.5 bar, the order of magnitude of the experimental radius
Rp [of about 1 mm in Fig. 1(c)] is the same as the one found
numerically: from Rp � 0.8 mm at ω/ω0 = 1 (i.e., close to
bubble trap area: R0 = 110 μm) to Rp � 2.7 mm at ω/ω0 =
0.87 (i.e., close to collapse area: R0 = 96 μm).

V. CONCLUSIONS

Bubbles in a cylindrical resonator can concentrate into ring
patterns at the pressure nodes, which correspond to the stable
equilibrium location for large bubbles (i.e., with radius larger
than R0). This ring is linked to the acoustic field, which reduces
in this geometry to a radial and a longitudinal mode. Under
sufficiently high pressure amplitude, the combination of these
two modes allows the existence of an orbital trajectory for
small bubbles (i.e., with radius smaller than R0) around the
ring pattern, which is their linearly unstable location. This phe-
nomenon may find promising applications in the biomedical
and bioengineering areas. Today, the microstreaming induced
by acoustic bubbles is widely studied and has already found
applications for the enhancement of fluid mixing and transport
techniques, which are challenging problems in microfluidic
systems. The spiraling phenomenon may help to contribute
to these microfluidic problematics. The experimental setup
developed here can easily be miniaturized. As an example,
for an acoustic system of characteristic dimensions 1.5 mm
driven at a frequency of 1 MHz, bubbles can describe an
orbital trajectory of radius Rp varying from 0 to 80 μm.
Then the combination of a controlled spiraling effect and of
the microstreaming generation effect may help to adjust the
streamline distributions in microfluidic systems in order to
enhance fluid mixing or transport of small objects.
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