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Time persistence of floating-particle clusters in free-surface turbulence
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We study the dispersion of light particles floating on a flat shear-free surface of an open channel in which the
flow is turbulent. This configuration mimics the motion of buoyant matter (e.g., phytoplankton, pollutants, or
nutrients) in water bodies when surface waves and ripples are smooth or absent. We perform direct numerical
simulation of turbulence coupled with Lagrangian particle tracking, considering different values of the shear
Reynolds number (Reτ = 171 and 509) and of the Stokes number (0.06 < St < 1 in viscous units). Results show
that particle buoyancy induces clusters that evolve towards a long-term fractal distribution in a time much longer
than the Lagrangian integral fluid time scale, indicating that such clusters overlive the surface turbulent structures
which produced them. We quantify cluster dynamics, crucial when modeling dispersion in free-surface flow
turbulence, via the time evolution of the cluster correlation dimension.

DOI: 10.1103/PhysRevE.88.033003 PACS number(s): 47.55.Kf, 47.27.−i

I. INTRODUCTION

Buoyant particles transported by three-dimensional incom-
pressible turbulence are known to distribute nonuniformly
within the flow [1–4]. In the particular case of light tracer
particles (referred to as floaters hereinafter) in free-surface
turbulence, nonuniform distribution is observed on the surface,
where floaters form clusters by accumulating along patchy and
string-like structures [3]. Clustering occurs even if floaters
have no inertia and in the absence of floater-floater interaction,
surface tension effects, or wave motions [3]. Differently from
the case of inertial particles, in which clustering is driven
by inertia and arises when particle trajectories deviate from
flow streamlines [5], clusters are controlled by buoyancy,
which forces floaters on the surface. The physical mechanism
governing buoyancy-induced clustering is closely connected
to the peculiar features of free-surface turbulence, which is
characterized by sources (sinks) of fluid velocity where the
fluid is moving upward (downward) [1]. Once at the surface,
floaters follow fluid motions passively and leave quickly the
upwelling regions gathering in downwelling regions: here,
fluid can escape from the surface and sink whereas floaters
cannot, precisely because of buoyancy [3].

In a series of recent papers [2–4] it was shown that
floater clusters in free-surface turbulence form a compressible
system that evolves towards a fractal distribution in several
large-eddy turnover times (measured at the free surface)
and at an exponential rate. The macroscopic manifestation
of this behavior is the strong depletion of floaters in large
areas of the surface and very high particle concentration
along narrow string-like regions, which are typical of scum
coagulation on the surface of the sea [4]. From a statistical
viewpoint, this is reflected by a peaked probability distribution
function of particle concentration with power-law tails. A
proper description of such power-law distribution requires a
clear understanding of the mechanism by which floaters are
segregated into filamentary clusters.

*Corresponding author: soldati@uniud.it; +39 (0)432 558020.

In this paper we examine such a mechanism from a
phenomenological point of view, and we also quantify cluster
dynamics in connection with the characteristic time scale of
the surface vortices. This analysis is of fundamental interest
since it quantifies the temporal persistency of clusters with
respect to the dominant surface flow scales, but reflects
practically towards modeling of dispersion in many surface
transport phenomena, such as the spreading of phytoplankton,
pollutants, and nutrients in oceanic flow [4].

II. PROBLEM FORMULATION AND
NUMERICAL METHODOLOGY

The physical problem considered in this study is floater
dispersion at the free surface of a turbulent open channel flow.
A sketch of the simulated flow configuration is shown in Fig. 1,
together with the boundary conditions for the fluid (water).
The flow field is calculated by integrating incompressible
continuity and Navier-Stokes equations. In dimensionless
form:

∂ui

∂xi

= 0, (1)

∂ui

∂t
= −uj

∂ui

∂xj

+ 1

Reτ

∂2ui

∂xj ∂xj

− ∂p

∂xi

+ δ1,i , (2)

with ui the ith component of the fluid velocity, p the fluctuating
kinematic pressure, δ1,i the mean pressure gradient driving the
flow, and Reτ = huτ/ν the shear Reynolds number based on
the channel depth h and the shear velocity uτ = √

h| δ1,i | /ρ.
Equations (1) and (2) are solved directly using a pseudospectral
method that transforms field variables into wave-number
space, through Fourier representations for the streamwise
and spanwise directions (using kx and ky wave numbers,
respectively) and a Chebyshev representation for the wall-
normal nonhomogeneous direction (using Tn coefficients). A
two-level explicit Adams-Bashfort scheme for the nonlinear
terms and an implicit Crank-Nicolson method for the viscous
terms are employed for time advancement. More details on the
numerical method can be found elsewhere [5,6].
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FIG. 1. Sketch of the computational domain with boundary
conditions for the fluid.

The floaters motion is described by a set of ordinary
differential equations for velocity vp and position xp at each
time step. In vector form:

dxp

dt
= vp, (3)

dvp

dt
= (ρp − ρf )

ρp

g + (u@p − vp)

τp

(
1 + 0.15 Re0.687

p

)
, (4)

where u@p is the fluid velocity at the floater position, inter-
polated with sixth-order Lagrange polynomials, ρp (ρf ) is the

floater (fluid) density, and τp = ρp d2
p

18 ρf ν
is the floater relaxation

time based on the diameter dp. The Stokes drag coefficient
is computed using the Schiller-Naumann nonlinear correction
[7], required to ensure accurate evaluation of the drag force
exerted on floaters with Reynolds number Rep = |u@p −
vp| dp/ν > 0.2. To calculate individual trajectories, periodic
boundary conditions are imposed on floaters moving outside
the computational domain in the homogeneous directions.
In the wall-normal direction, particles reaching the free-slip
surface still obey the buoyancy force balance, whereas elastic
rebound is enforced at the no-slip bottom wall. We remark
here that the buoyancy force balance does not automatically
enforce particles to stay at the free surface. Equations (3) and
(4) are advanced in time using a fourth-order Runge-Kutta
scheme starting from a random distribution of floaters with
velocity vp(t = 0) ≡ u@p(t = 0).

The results presented in this paper are relative to two
values of the shear Reynolds number: ReL

τ = 171 and ReH
τ =

509 corresponding, respectively, to shear velocities uL
τ =

0.00605 ms−1 and uH
τ = 0.018 ms−1 for a channel depth

h � 0.03m. The size of the computational domain in wall units
is L+

x × L+
y × L+

z = 2πReτ × πReτ × Reτ , discretized with
128 × 128 × 129 grid points (kx = i2π/Lx , ky = j2π/Ly

with i,j = 1, . . . ,128, and Tn(z) = cos[n cos−1(z/h)] with
n = 1, . . . ,129 before de-aliasing) at ReL

τ and with 256 ×
256 × 257 grid points (i,j = 256 and n = 257 before de-
aliasing) at ReH

τ . The grid spacing is uniform in the streamwise
and spanwise directions, with �x+ � 8.46 and �y+ � 4.23
at ReL

τ (�x+ � 12.54 and �y+ � 6.27 at ReH
τ ). The grid

points along the wall-normal direction are clustered near the
free surface and near the bottom wall: the minimum and
maximum resolutions are �z+

min � 0.026 and �z+
max � 2.1 at

ReL
τ (�z+

min � 0.019 and �z+
max � 3.12 at ReH

τ ). For validation
purposes, Fig. 2 shows the mean and root mean square (RMS)
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FIG. 2. Fluid velocity statistics: (a, c) mean streamwise velocity,
u+

m; and (b, d) root mean square components, RMS(ui). Panels (a, b)
refer to the ReH

τ simulation, panels (c, d) refer to the ReL
τ simulation.

The insets in panels (a, b) compare the mean velocity profile to the
wall law u+

m = z+ and to the logarithmic law u+
m = 2.5 ln(z+) + 5.5

in lin-log scale.

fluid velocity profiles for both Reynolds numbers: our results
compare well with those reported in previous studies (see,
e.g., Ref. [8], not shown). Figures 2(a) and 2(c) indicate that
the free surface does not alter significantly the mean velocity
profile, but also does not influence near-wall turbulence. The
strong effect of the free surface on turbulence is revealed by the
increase of the streamwise and spanwise components of the
RMS near the surface itself [see Figs. 2(b) and 2(d)], indicating
the presence of an anisotropic velocity layer [8]. For a more
complete collection of flow field statistics see Ref. [9].

Samples of N = 2 × 105 floaters characterized by specific
density S = ρp/ρf = 0.5 and diameter dp = 250 μm (a value
in the size range of large phytoplankton cells [10]) were
considered. The corresponding values of the nondimensional
response time (Stokes number) St = τp/τf with τf = ν/u2

τ

the viscous time scale of the flow, are StL = 0.064 at ReL
τ

and StH = 0.562 at ReH
τ . Floaters with density much less

than that of the fluid were considered on purpose to confine
their motion to the free surface and produce a behavior which
resembles not at all that of neutrally buoyant, noninertial
particles. To evaluate the integral flow scales (discussed in

033003-2



TIME PERSISTENCE OF FLOATING-PARTICLE . . . PHYSICAL REVIEW E 88, 033003 (2013)

Sec. III C), swarms of N massless fluid tracers characterized
by StL = StH = 0 were also tracked, through the integration
of Eq. (3) with vp(t) = u@p(t).

III. RESULTS AND DISCUSSION

A. Characterization of free-surface turbulence
through energy spectra

Turbulent flow structures near the free surface of an open
channel have been investigated in several previous studies
[6,8,11–15]. All these studies show that surface structures
are generated and sustained by bursting phenomena that
are continuously produced by wall-shear turbulence inside
the buffer layer. Bursts emanate from the bottom of the
channel and produce upwelling motions of fluid as they
are convected toward the free surface. Near the surface,
turbulence is restructured and nearly two-dimensionalized
due to damping of vertical fluctuations [16]: upwellings
appear as two-dimensional sources for the surface-parallel
fluid velocity and alternate to sinks associated with downdrafts
of fluid from the surface to the bulk. Through sources fluid
elements at the surface are replaced with fluid from the bulk,
giving rise to the well-known surface-renewal events [13].
Whirlpool-like vortices may also form in the high-shear region
between closely adjacent upwellings. This phenomenology
has been long recognized to produce flow with properties that
differ from those typical of two-dimensional incompressible
Navier-Stokes turbulence [1,17]. These properties can be
quantified examining the energy spectra of the fluid velocity
fluctuations on the surface [8], shown in Fig. 3 for the
case of statistically steady turbulence. To emphasize the
direction-related aspects of the energy spectra, results for
the surface-parallel velocities are examined in isolation:
Figs. 3(a) and 3(c) show the one-dimensional streamwise
spectra of the streamwise velocity Ex(kx) computed at the free
surface (z+ = 0, circles) and at the channel center (z+ = 254.6
at ReH

τ , z+ = 85.5 at ReL
τ , squares) in the ReH

τ and ReL
τ simula-

tions, respectively; Figs. 3(b) and 3(d) show the spectra of the
spanwise velocity Ey(kx) in the same two regions. The solid
lines represent the slope of the spectrum within the inertial

FIG. 3. (Color online) One-dimensional (streamwise) energy
spectra of the streamwise [ (a, c) Ex(kx)] and spanwise [(b, d) Ey(kx)]
surface-parallel velocity fluctuations.

regimes predicted by the Kraichnan-Leith-Batchelor (KLB)
phenomenology of two-dimensional turbulence [18,19]: k−5/3

x ,
representing the inverse cascade of energy to large flow scales
and k−3

x , representing the direct cascade of enstrophy to small
flow scales. A collective analysis of the spectra shown in Fig. 3
reveals clear deviations from two dimensionality. First, no
evident −5/3 range is observed except for few of the lowest
wave numbers: this can be attributed to the intermittent nature
of turbulence associated with spatial fluctuations in the rate of
energy dissipation. A relatively larger range of high wave num-
bers can be identified over which spectra exhibit a −3 scaling:
In the present flow configuration, however, this corresponds to
the up-cascading of energy from large to small wave numbers,
namely to the merging of smaller flow structures into larger
structures. Such findings cannot be reconciled with the KLB
theory for two-dimensional (2D) turbulence.

Examining Ex(kx), we notice that the spectrum at the free
surface is always below that in the center of the channel.
Also, energy in the high-wave-number portion of the spectrum
decays more rapidly [8], roughly as k−6: This tendency is
particularly evident at ReH

τ and indicates that only large-scale
surface structures survive to the detriment of small-scale ones.
Examining Ey(kx), we observe that the redistribution of energy
from small to large scales in the proximity of the free surface
determines a cross over between spectra at low wave numbers
(for both Reynolds numbers): this finding confirms further that
small scale structures play little role in determining turbulence
properties in this region of the flow.

B. Characterization of particle clustering
through surface divergence

Most of the analyses for geophysical flows have been
conducted considering two-dimensional incompressible ho-
mogeneous isotropic turbulence [20,21]. In such flows the
divergence of the velocity field is zero by construction.
However, the divergence in real surface flows is defined as

∇2D = ∂u

∂x
+ ∂v

∂y
= −∂w

∂z
, (5)

and does not vanish. Therefore floaters, forced to stay on the
surface by buoyancy, probe a compressible two-dimensional
system [2], where velocity sources are regions of local flow
expansion (∇2D > 0) generated by subsurface upwellings and
velocity sinks are regions of local compression (∇2D < 0)
due to downwellings [1]. In Fig. 4 we provide a qualitative
characterization of floater clustering on the free surface by
correlating the instantaneous particle patterns with the col-
ormap of ∇2D. Due to buoyancy, floaters reaching the free
surface cannot retreat from it following flow motions: they can
only leave velocity sources (the red areas in Fig. 4) and collect
into velocity sinks (the blue areas in Fig. 4). Once trapped in
these regions, floaters organize themselves in clusters that are
stretched by the fluid forming filamentary structures. Eventu-
ally sharp patches of floater density distribution are produced,
which correlate very well with the rapidly changing patches
of ∇2D, as clearly shown by Fig. 4. Similar behavior (the
formation of clusters with fractal mass distribution) has been
observed in previous studies [2,3] for the case of Lagrangian
tracers in surface flow turbulence without mean shear.
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FIG. 4. (Color online) Correlation between floater clusters and
surface divergence ∇2D: floaters segregate in ∇2D < 0 regions (in blue,
footprint of subsurface downwellings) avoiding ∇2D > 0 regions (in
red, footprint of subsurface upwellings). (a) ReH

τ , t+ = 180 upon
floater injection; (b) ReL

τ , t+ = 121. The rectangle in panel (a) renders
the relative domain size in the ReL

τ simulation; the rectangle in panel
(b) highlights the floater cluster shown in Fig. 6.

C. Time scaling of floaters clustering

Due to the close phenomenological connection between
clustering and surface turbulence, the cluster length and time
scales are expected to depend on local turbulence properties. In
particular, one can quantify the temporal coherence of surface
flow structures through their Lagrangian integral time scale
(equivalently, their eddy turnover time [1]):

TL,ij =
∫ ∞

0
Rf,ij [t,xf (t)]dt, (6)

where

Rf,ij [t,xf (t)] = 〈u′
f,i[t,xf (t)] · u′

f,j [t0,xf (t0)]〉
〈u′

f,i[t0,xf (t0)] · u′
f,j [t0,xf (t0)]〉 (7)

is the correlation coefficient of velocity fluctuations. Corre-
lation coefficients were obtained upon ensemble-averaging
(denoted by angle brackets) over all N fluid tracers released
within the flow domain. Subscript f denotes the dependence of
Rf,ij on the instantaneous tracer position xf (t). Velocity fluc-
tuations were computed as u′

f,i[t,xf,i(t)] = uf,i[t,xf,i(t)] −
ūf,i[t,xf,i(t)], with ūf,i[t,xf,i(t)] the space-averaged Eulerian
fluid velocity. The estimation of TL,ij is crucial to parametrize
particle spreading rates and model large-scale diffusivity in
bounded shear dispersion [22]. To compute TL,ij we divided
the channel height into 50 uniformly spaced bins filled with
tracers. For each tracer we computed the instantaneous value of
the diagonal elements of Rf,ij and their integral over time to get
TL,11, TL,22, and TL,33. Finally, these were ensemble-averaged
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FIG. 5. Lagrangian integral fluid time scale (TL, symbols) and
Kolmogorov time scale (〈τK〉, lines) in open channel flow at ReH

τ

(squares) and at ReL
τ (circles), as function of the wall-normal

coordinate z+. The inset compares the behavior of 〈τK〉 in open
channel flow with that in closed channel flow (at Rec

τ = 150 and
300, solid lines).

within each bin using only tracers initially located within
the bin.

In Fig. 5 we show, for both ReH
τ and ReL

τ , the wall-normal
behavior of the Lagrangian integral time scale of the fluid
(symbols), obtained as TL = [〈TL,11〉 + 〈TL,22〉 + 〈Tf,33〉]/3.
Note that 〈TL,33〉 � 0 at the surface. For comparison purposes,
the Kolmogorov time scale 〈τK〉, is also shown (dot-dashed
line). The value of TL changes significantly with the distance
from the wall: in the ReH

τ simulation, TL � 120 at the surface,
a value ten times larger than that near the wall (where TL � 14)
indicating that the characteristic lifetime of surface structures
is significantly longer than that of near-wall structures. It is
also evident that TL is everywhere larger than 〈τK〉, confirming
clear scale separation between large-scale surface motions and
small-scale dissipative structures.

To correlate the typical lifetime of surface motions with
that of floater clusters, we examine next the time-evolution
of the local correlation dimension of clusters D2(t) [4]. The
same observable was studied experimentally also by Larkin
et al. [3,4] as a measure of the fractal dimension of floater
distribution. Their main finding is that 〈D2(t)〉 decays at an
exponential rate from 〈D2(t = 0)〉 � 2 to 〈D2(t → ∞)〉 � 1,
the decay time being approximately one surface eddy turnover
time (defined as the typical time for the “largest” eddies to
significantly distort in a turbulent flow). In this work, we
computed D2(t) for several surface clusters, one of which is
followed in time in Fig. 6. This particular cluster was generated
by past upwelling motions, which it survived [Fig. 6(a)], and
is now found sampling a region of the free-surface reached
by another upwelling motion [Fig. 6(b), red area]. Floaters
are swept from the velocity source and redistribute at its
edges maintaining the cluster spatial connection, as shown in
Fig. 6(c). As time progresses [Fig. 6(d)], the cluster reshapes
generating sharp density fronts.

Upon isolating the floaters subsample 	j for each cluster
forming on the surface, we computed at each time step the
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FIG. 6. (Color online) Time evolution of the floater cluster
highlighted in Fig. 4(b). The cluster is examined following its
Lagrangian path, with Eulerian coordinates in each snapshot changing
accordingly. Upon reaching the surface within an upwelling, floaters
start to collect into a neighboring downwelling (blue region) at time
t+ � 36 � 0.7TL. Then, they are hit by a subsequent upwelling (red
region) at (a) time t+ � 121 � 2.4TL, and (b) scattered around at time
t+ � 145 � 2.9TL. (c) Eventually, they form a highly concentrated
filamentary pattern at time t+ � 193 � 3.9TL. This pattern exhibits
strong time persistency and overlives several surface-renewal events.

conditioned correlation dimension D2(	j,t). The instanta-
neous value of D2(	j,t) for the specific cluster examined
in Fig. 6 is given in each figure panel and shows a de-
crease in time associated to the formation of filamentary
clusters: D2(	j,t) � 1.67 at relatively short times [t � 0.7TL,
Fig. 6(a)]; and D2(	j,t) � 1.14 at much larger times [t �
3.9TL, Fig. 6(d)]. These values are also included as circles in
Fig. 7(b), where we show the time behavior of the ensemble-
averaged correlation dimension: 〈D2(t)〉 = ∑Nc

j=1 D2(	j,t)
(red line), withNc the number of clusters over which averaging
was made (Nc = 10 for the profiles shown in Fig. 7). To
render the intermittency of the clustering phenomenon, and
to quantify the uncertainty associated with our measurement,
we also plot the standard deviation from 〈D2(t)〉 (error bars).
The black line in each panel represents the estimate of
〈D2(t)〉 obtained assuming an exponential decay rate [3,4].
In the present flow configuration, the decay time is given as
proportional to the value of TL at the free surface. The best fit to
the data is given by a relation of the type 〈D2(t) − D2(∞)〉 ∝
exp(−t/αTL) with α � 5 for both ReH

τ and ReL
τ . This result

proves the long-time persistency of surface clusters that evolve
in a time significantly larger than TL to a steady state where the
measured 〈D2(t)〉 approaches a value approximately equal to 1,
in agreement with the formation of the filament-like structures
observed in Fig. 6. The present findings confirm qualitatively
those of Larkin et al. [3,4], but show a slower decay time
(larger than TL and, in turn, larger than one eddy turnover
time). This may be due to the different three-dimensional
(3D) flow instance considered below the 2D free surface. We
also remark that 〈D2(t)〉 has an asymptotic behavior because
of the noninteracting point-particle assumptions adopted.
More realistic physical modeling for particles interacting with
surface forces could lead to different long-time behavior.
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FIG. 7. (Color online) Time evolution of the cluster correlation
dimension 〈D2(t)〉 at the free surface. Circles in panel (b) represent
the instantaneous values of D2 for the floater cluster shown in Fig. 6.

IV. CONCLUSION

This study highlights the intermittent character of particle
spatial distribution in free-surface turbulence. Intermittency
is due to the buoyancy-driven clustering effects connected to
the formation of sources and sinks of fluid velocity generated
by subsurface upwelling and downwelling motions. At small
time scales, cluster formation is driven by the divergence
of the flow field at the surface: Clusters evolve in time
producing fractal-like patterns that can be characterized by
their correlation dimension. Our results indicate that these
patterns slowly relax towards a long-term distribution with
exponential decay rate, requiring several Lagrangian integral
fluid time scales. According to the authors of Refs. [13,14],
the surface-renewal time scale, which is usually employed
to quantify interface scalar fluxes, is much smaller than the
Lagrangian time scale and is thus inappropriate to quantify
floater distribution dynamics.

Surface compressibility may play an important role in
determining the motion of passive tracers like pollutants
and nutrients, but also the spreading rate of active ocean
surfactants, such as phytoplankton [2]. Our findings provide
useful indications to parametrize the relevant time scales
characterizing the dispersion of such species and, therefore,
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can assist in developing models to predict cluster formation
and evolution over several surface renewal cycles [22].
Future developments could incorporate the strict physical
connection between simulated cluster dynamics and real

systems at much longer times. In particular, the effects
due to particle finite size (nonoverlapping) and surface
tension (that attracts particles at the surface) [23] should be
considered.
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