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Electrokinetics over charge-modulated surfaces in the presence of patterned wettability:
Role of the anisotropic streaming potential
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In the present study, we focus on evaluating the induced streaming electric field along the orthogonal directions
in a narrow fluidic confinement in the presence of patterned surface wettability and modulated surface charges.
We attempt to assess the implications of such modulations on the related important quantities and pinpoint the
regimes of improved induced streaming potential field and the resulting anisotropy in the induced potential. Our
results reveal that for certain combinations of the parameters characterizing the modulated slip, a significant
amount of augmentation in the streaming electric field might be obtained, whereas in other cases the effects may
lead to adverse consequences. We further demonstrate that the presence of anisotropic modulations on the channel
walls give rise to considerable off-diagonal effects, which makes the streaming potential “disoriented” with the
applied pressure gradient, when the same is not applied along one of the orthogonal directions. Our analysis
also shows that one can remove such “mis-orientations” by finely tuning several relevant flow and geometric
parameters, which may bear immense scientific and technological consequences towards an improved design of
miniaturized energy conversion devices.

DOI: 10.1103/PhysRevE.88.033001 PACS number(s): 47.61.−k

I. INTRODUCTION

Energy harvesting through employing fluid flow in minia-
turized devices has been a topic of great interest in the past
few years. One possible underlying mechanism governing
the same involves the exploitation of streaming potential [1]
in a pressure driven flow field having surplus ionic species
of either positive or negative charges, which converts the
hydrodynamic energy of a pressure driven flow into a net
induced electrical potential. This phenomenon exploits the
fact that, because of complex electrochemical interactions, a
net charge may be induced at the interface (say solid-liquid
interface, for example) of two phases. In an effort to maintain
overall electroneutrality, a net charge of the opposite sign is
induced in the fluid, which is considered to be confined within
a charged interfacial fluid layer (consisting of a fixed as well as
a mobile layer of charges), also known as the electric double
layer [2] (EDL). When a net transport of the fluid is created
by an externally applied force (e.g., pressure gradient), the
charges are transported along with the fluid, which creates a
net current (also called streaming current) in the fluid. This,
in turn, leads to a dynamic accumulation of charges in the
downstream region, which induces a net potential of its own
in order to render the net current zero, which can be used to
convert hydrodynamic energy to electrical energy.

A number of theoretical [1,3–18] and experimental [19,20]
investigations on the evaluation of streaming potential and
energy conversion through streaming potential have previously
been executed, and the corresponding energy conversion
efficiencies have also been evaluated. Though theoretical
estimates show that the conversion efficiency for Newtonian
fluids [8] can go as high as 50%, experimental values of
the conversion efficiency for the same fluids have been
demonstrated to be on the order of [19] 1%–5% in mi-
crochannels. Marginally improved values of energy conversion
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efficiencies (as high as 12%) have been realized for nanofluidic
channels exploiting EDL overlap phenomenon [19]. Recently,
Bandopadhyay and Chakraborty [4–6] demonstrated that by
employing viscoelastic fluids, one may dramatically augment
the energy conversion efficiency.

Recent studies [8,10] show that, by realizing interfacial
slip, one can greatly augment the flow rate and hence the
resulting streaming current, which also results in a relative
augmentation in the induced streaming potential and hence
the energy conversion efficiency. In addition to this, recent
advancements in the field of microfabrication have also led
to the development of a number of new methods [21–33]
of implementing varying surface wettability on microchannel
walls, which include various physical [27–29] and chemical
techniques [30–33]. Variation in surface properties is also
likely to trigger variation in the surface potential, which, in
conjunction with the axially varying wettability, might give
rise to a plethora of intriguing flow physics. It is interesting
to note that such inhomogeneties might also be obtained from
topographically varying surfaces [34–37]. Electro-osmotic and
pressure driven flows in the presence of topographically and
charge-modulated surfaces have previously been investigated
by a number of researchers [34–45] and have been shown
to have useful applications in mixing [34,41–44]. Pressure
driven [46–48] and electrokinetically [34,49–51] driven flows
in the presence of modulated surface wettability have also been
studied by a number of previous researchers. Brunet and Ajdari
[35] have investigated the streaming currents in the presence
of topographical and charge modulations on the surfaces and
have shown that the resulting net streaming currents are much
smaller than the corresponding values generated from an
axially homogeneous surface potential.

In recent years, researchers have realized that the imple-
mentation of patterned surface conditions (both topographical
and chemical) might lead to anisotropy in the nature of the
flow, thus making the net throughput strongly dependent on
the direction of the applied driving force. A number of recent
studies [36,49,52–58] have executed thorough investigations
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on this phenomenon over anisotropic surfaces, i.e., for surfaces
with variation in wettability (or topography) in a preferred
direction. These studies demonstrate that, for flows over such
surfaces, i.e., surfaces with predefined orthogonal directions,
the flow direction is somewhat shifted from the direction
of the driving force [36,49,52–58]. Extrapolating this idea,
one can also infer that the induced streaming potential as a
result of such physical paradigm might also have off-diagonal
components as the streaming current, which is somewhat
analogous to the net throughput, is likely to exist in a direction
other than that of the driving pressure gradient. In this respect,
it should be noted that the direction of the flow will be in
the same direction as the driving force when the channel is
bounded from the lateral directions. However, in the present
study we have considered a channel open in both the lateral
and the longitudinal directions (please refer to Fig. 1), which
allow the flow to take place in both the directions and thus the
possibility of misalignment of flow direction and the direction
of the driving force remains. In fact, as depicted in our results,
it is this feature of the channel which brings anisotropy into the
picture. Considerations of such channels, i.e., channels open
in both longitudinal and lateral directions, are nothing new as
several previous researchers [36,49,52–58] have investigated
the extent of anisotropy in channels with patterned walls
(both topographical and chemical patterning). Additionally, a
number of studies have also been dedicated to finding out the
effective slip for surfaces with a wettability patch of predefined
slip length, with given orthogonal directions, for pressure
driven [48,53,54,58] as well as electro-osmotically driven
flows [49,50,55], albeit mostly for a single surface without
the effects of confinements. In a few of the recent studies
[50,53,54] it has been demonstrated that such an effective slip
can also be defined for a confinement for various kinds of flow
actuation mechanisms. Streaming potential calculation, for
flows over surfaces with patches of wettability and potential,
has previously been executed by Zhao [59], although the ef-
fects of confinements were not investigated in that study. Previ-
ously, Ajdari [36,37,52] investigated the effects of anisotropic
topographical modulations on streaming current and net
throughput in the regime of thin double layers with channel
walls bearing modulated potential. Nevertheless, a close re-
view of the related literature shows that the effects of anisotrop-
ically patterned slip in presence of modulated surface charge on
the streaming potential induced in a narrow fluidic confinement
is yet to be properly addressed by the research community.

In the present study, we focus on the various aspects of
streaming potential generated by virtue of an applied pressure
gradient in a narrow fluidic confinement with modulated
surface potential and axially varying surface wettability (char-
acterized by an axially modulated Navier slip coefficient). We
evaluate the induced streaming potential in both the orthogonal
directions and thereafter quantify the extent of anisotropy in the
flow through the variation in the angular shift in the streaming
potential from the direction of the applied pressure gradient.
We also present a general expression for the induced potential
for an applied pressure gradient at any arbitrary angle with one
of the orthogonal directions of the channel. We further note that
in cases of channels consisting of lateral walls, an additional
pressure gradient will be induced along the lateral direction,
which will render the net flow in that direction to zero. Ajdari

[52] has previously evaluated the induced pressure gradient
in the transverse direction, generated from an axially applied
pressure gradient, over a topographically undulated surface. It
thus follows that, for closed channels, this additionally induced
pressure gradient will induce a streaming electric field of its
own, which will act in tandem with the induced field of the
external gradient. We address the presence of sidewalls in more
detail in the mathematical formalism and further show that the
possibility of a shift in the direction of the induced field exists
in these cases as well. However, while reporting our results,
we consider a channel, which is open in both longitudinal
and lateral directions (refer to Fig. 1) and hence we do not take
into account any such induced pressure gradient. In an effort to
adhere to an elegant analytical framework without sacrificing
the essential physics, we use the Debye-Hückel linearization
for the calculation of the corresponding electrostatic field
and the ion distributions. Our analysis reveals that in some
cases the employment of the modulated slip and potential
result in augmentation in the desired effects, whereas in other
cases the imposed perturbations may act unfavorably. We also
demonstrate that the extent of anisotropy can be controlled by
adjusting various flow parameters to the extent that the induced
potential can be aligned exactly with the applied pressure
gradient acting in any arbitrary direction.

II. MATHEMATICAL MODEL

As a physical system appropriate to the present study, we
consider a channel of slit-type geometry, with the channel
height being H and width w, being much larger than the
channel height. The origin is placed on the bottom wall,
where the x axis runs along the channel in the axial
direction and the y axis runs vertically so that the plates
are positioned at y = 0 and H . The channel walls bear
modulated surface potential, mathematically expressed as
ψ(y = 0,H ) = ζ0[1 + m cos(qx)]. This potential is assumed
to be low enough so that the Debye-Hückel linearization can be
safely applied. The channel walls also bear axially modulated
slip, given by (a) on the bottom wall, ls[1 + δ cos(qx + θ )];
(b) on the top wall, ls[1 + nδ cos(qx + θ )], which makes the
slip differing in phase with the surface potential. The fluid
viscosity, permittivity, and density are taken to be, μ, ε, and
ρ, respectively. It is clear from the description of the geometry
that the modulations run parallel to the z axis and perpendicular
to the x axis. This indicates that the two orthogonal directions
in the channel under consideration are x and z axes. We
name x to be the perpendicular and z to be the parallel
orthogonal directions. In the present analysis, we first attempt
to determine the induced potential field for applied pressure
gradients in these two orthogonal directions. We can combine
the induced fields in these two directions to determine the total
streaming potential for any applied pressure gradient, which
is not oriented along the orthogonal directions.

A. Applied pressure gradient in the x (perpendicular) direction

1. Pressure driven flow

A pressure gradient of magnitude �⊥ along the x direction
in the channel is applied in order to actuate the flow.
As mentioned earlier, the presence of the charge in the
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channel induces a streaming current, which, in turn, induces
a streaming potential and is mathematically denoted by E⊥

0 .

Pressure driven flow in microconfinements in the presence of
modulated slip as described in the present study, has previously
been investigated by Hendy et al. [46], from continuum as well
as molecular dynamics considerations. However, we rederive
the resulting velocity profiles with an assumption of low
Reynolds number flow, thus neglecting the inertial terms in the
Navier-Stokes equation. The equations, combining the effects
of the induced electric field, are given by

−∂p

∂x
+ μ∇2u⊥ + ρeE

⊥
0 = 0, (1a)

−∂p

∂y
+ μ∇2v⊥ = 0, (1b)

∇ · v⊥ = 0. (1c)

It is important to mention here that despite no application of
any external electric field, an electrical body force appears in
Eq. (1a), as attributable to the establishment of a streaming
electric field, E0. Further, it is important to note that in
Eqs. (1a)–(1b), the pressure gradient terms are combined
consequences of the applied and the induced pressure gradients
(as attributed to modulated surface conditions).

Since Eqs. (1a) and (1b) are linear, we can separate out
the contributions from the electrokinetic flow and the pressure
driven flow in the following way: v⊥ = v⊥

p + v⊥
e , where p

and e denote contributions from pressure gradient and electric
field, respectively. The equation for v⊥

p in a nondimensional
form is given by

−∂p

∂x
+ ∇2u⊥

p = 0, (2a)

−∂p

∂y
+ ∇2v⊥

p = 0, (2b)

∇ · v⊥
p = 0. (2c)

The variables in Eqs. (2a)–(2c) have been nondimensional-
ized as follows: up,vp → up

up,ref
,

vp

up,ref
; x,y → x

H
,

y

H
; p → p

(�H ) .

Here, up,ref = H 2�⊥
μ

. We have not used any separate symbol
for the nondimensional variables as we use these variables
all along in our analysis from now onward. The boundary

conditions for the velocity are specified by

u⊥
p (0) = ls[1 + δ cos(qx + θ )]

∂u⊥
p (y = 0)

∂y

and

u⊥
p (1) = −ls[1 + nδ cos(qx + θ )]

∂u⊥
p (y = 1)

∂y
, (3a)

v⊥
p (0) = 0, and v⊥

p (1) = 0. (3b)

Note that here ls → ls/H ; q → qH, after normalization.
Equations (2a)–(2c) can be analytically solved subjected to the
boundary conditions (3a) and (3b) using regular perturbation
method, where a variable ξ can be expressed as

ξ = ξ (0) + δξ (1) + δ2ξ (2) + O(δ3). (4)

Here, ξ can represent variables like, vp, p, ve, etc. In this
respect, it should be noted that the slip modulation amplitude
for the upper wall is nδ and hence, ideally, we should consider
perturbation variable to be nδ instead of δ, for n > 1. However,
in the present analysis, we consider only three values of n =
1, 0, and −1. This makes the amplitude of slip modulation on
the top wall either equal to that of the bottom wall or zero.
Therefore, we can expand the relevant variables using only δ

as the perturbation parameter. Using the solution of the form
described in Eq. (4), one can solve Eqs. (2a)–(2c) by invoking
a stream function, to get a solution of the form

u⊥
p = u⊥(0)

p + δu⊥(1)
p + δ2u⊥(2)

p + O(δ3), (5a)

where

u⊥(0)
p = 1

2 {y(1 − y) + ls}, (5b)

u⊥(1)
p = g1′

p (y) cos(qx + θ ), (5c)

u⊥(2)
p = K1y + K2 + g2′

p (y) cos(2qx + 2θ ). (5d)

Here, g′ = dg

dy
. The functions g′s are defined by

gi
p = ai

1y cosh(iqy) + (
ai

2 + ai
3y

)
sinh(iqy), i = 1,2,

(5e)

�(i)âi = Ĉi , âi = [
ai

1a
i
2a

i
3

]T
, i = 1,2, (5f)

where, the matrices are defined as

�(i) =

⎡
⎢⎢⎢⎣

cosh(iq) sinh(iq) sinh(iq)
1 iq 2iqls

iq sinh(iq) + cosh(iq)
+ ls[i2q2 cosh(iq) + 2iq sinh(iq)] iq cosh(iq) + lsq

2 sinh(iq)
iq cosh(iq) + sinh(iq)
+ ls[i2q2 sinh(iq) + 2iq cosh(iq)]

⎤
⎥⎥⎥⎦ , (5g)

Ĉ1 =

⎡
⎢⎣

0

ls/2

nls/2

⎤
⎥⎦ , Ĉ2 =

⎡
⎢⎣

0
1
2g1′′

p (0)

− n
2 g1′′

p (1)

⎤
⎥⎦ . (5h)

The constants, K1 and K2 are defined as

K1 = − ls
{
ng1′′

p (1) + g1′′
p (0)

}
s(2ls + 1)

, (5i)

K2 = 1

2
lsg

1′′
p (0) + lsK1. (5j)
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Note that if we make n = 1, the coefficient K1 = 0, which
makes the net flow velocity in the second order be uniform
across the section. The effects of the phase difference angle
θ is not very clear in the present case, but becomes obvious
for the flow driven by the induced electric field. Using the
continuity equation (2c) and the boundary condition (3b), one
can easily deduce the y-directional velocity component from
the expressions given above.

The volume flow rate contributed by the applied pressure
gradient can be calculated from the velocity profiles given in
(5a)–(5j) and can be expressed as

V ⊥
p = 1

2

(
ls + 1

6

)
+ δ2

(
1

2
K1 + K2

)
. (5k)

Note that, in expression (5k) the volume flow rate has been
nondimensionalized as V ⊥

p → V ⊥
p /up,refH.

2. Effect of induced surface potential

The surface potentials on the walls induce an electrostatic
field of their own, which dictates the charge distribution
in the channel. The induced electrostatic potential (ψ) can
be described by the Poisson-Boltzmann equation for small
values of the surface potential [34–37] with the Debye-Hückel
linearization, and is expressed as

∇2ψ = λ2ψ, (6)

where λ =
√

2n0z2e2

εkT
is called the inverse of the Debye length

and n0 is the reference number density of the mobile charges
or the bulk fluid ion density. It is important to note that
Eq. (1) has been expressed in a nondimensional form and
the variables have been nondimensionalized as x → x

H
,y →

y

H
,ψ → ψ

ζ0
,ρe → ρe

2ρ0
,λ → λH, where ρe is the volumetric

charge density in the fluid and ρ0 is the reference charge
density. As mentioned earlier, we do not use any separate
symbol for the nondimensional variables. The boundary
conditions for the potential read

ψ(0) = ψ(1) = 1 + m cos(qx). (7)

The solution of Eq. (6), subjected to the boundary condition
(7) is given by

ψ = cosh[λ(1/2 − y)]

cosh(λ/2)
+ m

cosh[Q(1/2 − y)]

cosh(Q/2)
cos(qx).

(8)

Here, Q =
√

λ2 + q2. The charge density in the solution
can be obtained from the Poisson equation, expressed as

ρe = βψ, where β = −zeζ0

kT
. (9)

It is important to note here that the electrostatic potential
distribution and hence the charge density remains the same,
whether the applied pressure gradient is along the x or the z

axis. Another important point regarding the charge distribution
is that Eqs. (6) and (8) are based on the assumption that the
effects of advection in the Poisson-Nernst-Plank (PNP) model
are negligible and the ions are in local equilibrium. A simple
nondimensionalization of the Nernst-Planck equations demon-
strates that this assumption remains valid for relatively low
values of ionic Peclet numbers [60], defined as Pe = urefH/D

(where D is the ionic diffusivity). In the present analysis, the
largest uref is the one caused by the applied pressure gradient,
expressed as uref ∼ H 2�/μ. Choosing, H ∼ 10−6 m, μ ∼
10−3 Pa s, and D ∼ 10−9 m2/s (usual values of ionic diffusivity
[61]), we get Pe ∼ 10−6 � or less. Hence, for � ∼ 104–105,
we get Pe ∼ O(10−2), for which the effects of advection can
be neglected and the Poisson-Boltzmann description of the
ionic distribution remains valid for flows in perpendicular
direction. Therefore, in conclusion, the charge distribution
assumed in the present analysis remains valid, when � ∼
104–105 or less and the channel height remains H ∼ 1 μm or
less. We additionally note that the assumption of equilibrium
charge distribution in the PNP model has been employed
previously by a number of researchers [35–37,49,50,52,59,60]
for analyzing electro-osmotic flows [36,37,49,60] as well as
streaming currents [35,50,52,59].

3. Velocity distribution due to interactions between the interfacial
charges and the induced streaming potential

For the velocity component, u⊥
e , due to the induced electri-

cal field, the following governing equations (in dimensionless
form) hold true:

−∂p

∂x
+ ∇2u⊥

e + λ2ψ = 0, (10a)

−∂p

∂y
+ ∇2v⊥

e = 0, (10b)

∂ue

∂x
+ ∂ve

∂y
= 0. (10c)

The nondimensionalization has been done as ue → ue/

ue,ref, ve → ve/ue,ref, p → p/p0, where ue,ref = − εζ0E
⊥
0

μ
,

p0 = μue,ref

H
, and x, y have been nondimensionalized in the

same way as in Eqs. (2a)–(2c). Note that in Eqs. (10a)–(10c),
the pressure gradient is the one induced by virtue of the axial
modulations in the slip length as well as the surface potential.
The boundary conditions for Eqs. (10a)–(10c) are of same type
as given in Eqs. (3a)–(3c). The solutions to Eqs. (10a)–(10c)
may be provided in terms of a stream function [34]:

φe = (
φ

(0)
e0 + δφ

(1)
e0 + δ2φ

(2)
e0

) + m
(
φ

(0)
e1 + δφ

(1)
e1 + δ2φ

(2)
e1

)
,

u⊥
e = ∂φe

∂y
, (11a)

where

φ
(0)
e0 =

[
1 + lsλ tanh

(
λ

2

)]
y + sinh

[
λ
(

1
2 − y

)]
λ cosh

(
λ
2

) , (11b)

φ
(1)
e0 = g1

e (y) cos(qx + θ ), (11c)

φ
(2)
e0 = 1

2
G1y

2 + G2y + {e1y cosh(qy) + (e2 + e3y) sinh(qy)}
× cos(2qx + 2θ ), (11d)

φ
(0)
e1 = f0(y) cos(qx), (11e)

φ
(1)
e1 = 1

2
Ke1y

2 + Ke2y + f1(y) cos(2qx + θ ), (11f)

φ
(2)
e0 = f2(y) cos(qx) + f3(y) cos(qx + θ )

+ f4(y) cos(3qx + 2θ ). (11g)

033001-4



ELECTROKINETICS OVER CHARGE-MODULATED . . . PHYSICAL REVIEW E 88, 033001 (2013)

The functions in the expressions (11c)–(11g) are given
by

g1(y) = {d1y cosh(qy) + (d2 + d3y) sinh(qy)}, (11h)

f0(y) = (
c0

0 + c0
1y

)
cosh(qy) + (

c0
2 + c0

3y
)

sinh(qy)

+ Q

λ2 cosh(Q/2)
sinh[Q(1/2 − y)], (11i)

f1(y) = c1
1y cosh(2qy) + (

c1
2 + c1

3y
)

sinh(2qy), (11j)

f2(y) = c2
1y cosh(qy) + (

c2
2 + c2

3y
)

sinh(qy), (11k)

f3(y) = c3
1y cosh(qy) + (

c3
2 + c3

3y
)

sinh(qy), (11l)

f4(y) = c4
1y cosh(3qy) + (

c4
2 + c4

3y
)

sinh(3qy). (11m)

The coefficients of the hyperbolic terms are given by

�(1)d̂ = X̂1 and �(2)ê = X̂2. (11n)

The matrices are given by

d̂T = [ d1 d2 d3 ], êT = [ e1 e2 e3 ], (11o)

X̂1 =

⎡
⎢⎣

0

lsλ tanh
(

λ
2

)
nlsλ tanh

(
λ
2

)
⎤
⎥⎦ , X̂2 =

⎡
⎢⎣

0
ls
2 g1′′

e (0)

− nls
2 g1′′

e 1(1)

⎤
⎥⎦ . (11p)

The coefficients G1 and G2 are given by

G1 = − ls

2(2ls + 1)

[
ng1′′

e (1) + g1′′
e (0)

]
, (11q)

G2 = ls

2

{
g1′′

e (0)

(
1 − ls

2ls + 1

)
− nlsg

1′′
e 1(1)

2ls + 1

}
. (11r)

The coefficients K1 and K2 are given by

Ke1 = (n − 1)lsf ′′
0 (0) cos θ

2(2ls + 1)
, (11s)

Ke2 = 1

2
lsf

′′
0 (0) cos θ + lsKe1, (11t)

�(1)ĉ0 = X̂3, �(2)ĉ1 = X̂4, �(1)ĉ2 = X̂5, �(1)ĉ3 = X̂6, and �(3)ĉ4 = X̂5, (11u)

c0
0 = − Q

λ2
tanh

(
Q

2

)
, ĉi = [

ci
1 ci

2 ci
3

]
, where i = 0−4, (11v)

X̂3 =

⎡
⎢⎢⎣

Q

λ2 tanh
(

Q

2

)
[1 + cosh(q)]

Qls tanh(Q/2) + Q2

λ2

Q2

λ2

[
1 + Qls tanh

(
Q

2

)] + qQ

λ2 tanh
(

Q

2

)
[lsq cosh(q) + sinh(q)]

⎤
⎥⎥⎦ , (11w)

X̂4 =

⎡
⎢⎣

0
1
2 lsf

′′
0 (0)

− n
2 lsf

′′
0 (1)

⎤
⎥⎦ , (11x)

X̂5 =

⎡
⎢⎣

0
1
2 lsf

′′
1 (0)

− n
2 lsf

′′
1 (1)

⎤
⎥⎦ , X̂6 =

⎡
⎢⎣

0

lsKe1

−nlsKe1

⎤
⎥⎦ . (11y)

�(i) s can be obtained from the general expression given in
Eq. (5c). The volume flow contributed by the electric field can
be deduced from the profiles (11a)–(11y), which reads

V ⊥
e = 1 + λls tanh

(
λ

2

)
− 2 tanh

(
λ
2

)
λ

+ mδ

(
1

2
Ke1 + Ke2

)

+ δ2

(
1

2
G1 + G2

)
. (12)

The volume flow rate has been made nondimensional as
follows: V ⊥

e → V ⊥
e /ue,refH.

4. Streaming potential evaluation

The charge density combined with the fluid velocity
imparted by the applied pressure gradient and the induced
electric field creates a net transport of charge called the

streaming current. One can obtain the streaming current by
simply integrating the product of the velocity and the charge
density across the channel. It is obvious that the highly
periodic velocity profiles and charge distribution will generate
streaming current also periodic in nature, but the important
contribution comes from the net components of the streaming
currents, which are obtained by taking an average along the
axial direction. This is understandable since the streaming
potential is the result of net accumulation of charged species
in a preferred direction due to the presence of fluid motion.
We observe that the periodic components of the streaming
current would not result in any net accumulation of the ionic
charges in a preferred direction and hence will have no effect
on the genesis of the streaming potential. Therefore, the sole
effect of streaming current on the streaming potential comes
from the net components of the same. Previously, Ajdari [36],
Brunet and Ajdari [35], and Zhao [59] have deduced the
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streaming current for periodic flows and demonstrated that
the net effect comes from the averaged components along
the x direction (axial direction). Ajdari [36] has depicted that
for a microchannel with undulated walls under the regime
of lubrication approximation, the averaged streaming current
from the pressure driven flow and the net throughput from the
electric field satisfy the Onsager reciprocity relation, albeit in
the limit of thin EDL. Brunet and Ajdari [35] extended the
analysis and further demonstrated that the Onsager relation
can also be satisfied without the lubrication approximation,
for undulated channels with modulated surface charge. In their
work the streaming current was again space averaged in the
axial direction. Referring back to the present case, streaming
current can be expressed in the following form:

I⊥
s = I⊥

p + I⊥
e . (13)

Here, p and e signify the contributions from the pressure
gradient and the induced electric field, respectively. The pres-
sure driven streaming current can be expressed in a nondimen-
sional form (nondimensionalized as I⊥

p → I⊥
p /2ρ0up,refH ) as

I⊥
p = I⊥(0)

p + δI⊥(1)
p + δ2I⊥(2)

p + O(δ3), (14a)

where

I⊥(0)
p = β

2 cosh(λ/2)

×
∫ 1

0
{y(1 − y) + ls} cosh[λ(1/2 − y)]dy, (14b)

I⊥(1)
p = mβQ cos θ

2 cosh(Q/2)

∫ 1

0
g1

p(y) sinh[Q(1/2 − y)]dy,

(14c)

I⊥(2)
p = β

cosh(λ/2)

∫ 1

0
(K1y + K2) cosh[λ(1/2 − y)]dy.

(14d)

It is interesting to note that, because of the periodic
components of the velocity generated from the modulated
slip on the channel walls, there exists a net component of
the streaming current from the periodic part of the surface
potential as given in expression (14c), which underlines the
effects of the modulated slip in altering the streaming current.
The component (14c) is the combined effect of modulated slip
and surface charge, whereas the component in Eq. (14d) arises
from the combined consequences of modulated slip and the
axially invariant part of the surface charge (or, equivalently, the
ζ potential). Reviewing expression (14c), one can appreciate
the effects of the phase difference angle on the streaming
current as the contributions from the periodic part of the
potential can be completely nullified by rendering θ = π/2
and can be reversed by rendering θ = π . Thus, it is naturally
expected that the effect of modulated slip on the streaming
potential in the presence of modulated surface potential would
be maximum when the patterned component of the slip and
the surface potential are in phase, whereas the same will be
minimum when they are out of phase.

It follows from the periodic nature of the streaming current
and the velocity profiles that the charges would be carried
in and out of the double layer by the periodic streams of

fluid. Therefore, it is important here to check for the total
charge conservation in the channel. Referring to the work
of Brunet and Ajdari [35], we note that in their study, a
thin EDL limit was considered, where all the charges were
considered to reside inside a thin surface adhering layer, which
produced a streaming current, denoted as the surface current.
Brunet and Ajdari demonstrated that because of the presence
of periodic variations in the streaming current along with
the topographical modulations on the surfaces, the streaming
current has a net surface divergence, which spills charge out
into the bulk solution from the Debye layer. Therefore, in an
effort to conserve the total amount of charge in the Debye layer,
an additional potential difference would be induced in the
channel, which will direct a current (conduction current) into
the Debye layer, maintaining the total amount of charge in the
process. The reason behind the genesis of such net component
of the divergence of surface current was the presence of
topographical undulations on the surfaces and the fact the
streaming current was considered only as a surface current, as
attributable to the TDL approximation, mathematically real-
ized in the form of Helmotz-Smoluchowski slip velocity, used
as the boundary condition, albeit for the electro-osmotically
driven flows. However, in the present analysis, any such
topographical undulations are absent, although the streaming
current is periodic in nature. Additionally, we have discarded
the much used thin EDL approximation and hence we do not
have to explicitly account for the presence of any separate layer
of charge (or, EDL), where a surface current will be generated
by virtue of fluid movement. As a result of this we do not have
to account for any additionally induced potential, the sole
purpose of which is to send the charges back into the EDL,
in order to conserve the total amount of charge. In an effort
to delve deeper into such claims we note that the streaming
current density from the pressure driven flow can be expressed
in the following way (nondimensional, nondimensionalized
with j0 = ρ0up,ref):

jp = ρevp. (15)

Referring to Eq. (9), the charge density is given by

ρe = βψ, where
(16)

ψ = cosh[λ(1/2 − y)]

cosh(λ/2)
+ m

cosh[Q(1/2 − y)]

cosh(Q/2)
cos(qx).

Hence, the current density is finally expressed as

jp = βψ
[{

u(0)
p + δu(1)

p + δ2u(2)
p + O(δ3)

}
ex

+ {
δv(1)

p + δ2v(2)
p + O(δ3)

}
ey

]
. (17)

Here, ex and ey denote unit vectors along the x and y

axes, respectively. Also note that v(0)
p = 0. Following Brunet

and Ajdari [35], we calculate the total net (averaged over x)
divergence of the current density in an effort to know whether
there is any source of charge consumption or creation. The total
net divergence of the current density (in their work Brunet and
Ajdari deduced the net surface divergence, since thin EDL was
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considered) is given by

N =
∫ 2π/q

0

∫ 1

0
∇ · jpdydx

=
∫ 2π/q

0

∫ 1

0

∂jp,x

∂x
dydx +

∫ 2π/q

0

∫ 1

0

∂jp,y

∂y
dydx. (18a)

The second term under integration can be simplified as
follows:∫ 2π/q

0

∫ 1

0

∂jp,y

∂y
dydx =

∫ 2π/q

0
[jp,y(1) − jp,y(0)]dx. (18b)

Again, we recall that, vp(1) = vp(0) = 0 (as attributable to
the no penetration boundary condition). Finally, with the help
of Eq. (17), (18b) renders to∫ 2π/q

0
[jp,y(1) − jp,y(0)]dx = 0. (18c)

The first integral in Eq. (18a) can be broken down by order
of magnitude in the following way:

∂jp,x

∂x
= ∂jp,x

∂x

∣∣∣∣
(0)

+ δ
∂jp,x

∂x

∣∣∣∣
(1)

+ δ2 ∂jp,x

∂x

∣∣∣∣
(2)

+ O(δ3). (19)

Here

∂jp,x

∂x

∣∣∣∣
(0)

= −qFx,0(y) sin(qx),

(20a)

Fx,0(y) = m

2
{y(1 − y) + ls}cosh[Q(1/2 − y)]

cosh(Q/2)
,

∂jp,x

∂x

∣∣∣∣
(1)

= −qFx,11(y) sin(qx + θ )

− 2qFx,12(y) sin(2qx + θ ), (20b)

where

Fx,11 = g1′
p (y)

cosh[λ(1/2 − y)]

cosh(λ/2)
,

Fx,12 = m

2
g1′

p (y)
cosh[Q(1/2 − y)]

cosh(Q/2)
,

∂jp,x

∂x

∣∣∣∣
(2)

= −qFx,21(y) sin(qx)

(20c)
− 2qFx,22(y) sin(2qx + 2θ )

−Fx,23(y)[3q sin(3qx + 2θ )

+ q sin(qx + 2θ )],

where

Fx,21(y) = m(K1y + K2)
cosh[Q(1/2 − y)]

cosh(Q/2)
,

Fx,22(y) = g2′
p (y)

cosh[λ(1/2 − y)]

cosh(λ/2)
,

Fx,23 = m

2
g2′

p (y)
cosh[Q(1/2 − y)]

cosh(Q/2)
.

A close review of Eqs. (19) and (20) reveals that the
left-hand side in Eq. (19), i.e., the term under integration, is
completely periodic in x and hence averaging the same along
the x direction would result in net zero value; i.e.,∫ 2π/q

0

∫ 1

0

∂jp,x

∂x
dydx = 0. (21)

Therefore, the net total divergence of the streaming current
density turns out to be zero (N = 0). It thus follows from
the work of Brunet and Ajdari [35] that there will not be any
additionally induced potential, since there is no net creation or
consumption of charges (or, in other words no net spilling of
charges out of the EDLs). This is understandable since in the
present case we have not considered topographical undulations
in the channel walls and hence the net divergence becomes
zero, as was also the case in the analysis previously executed
by Brunet and Ajdari [35]. The same approach has also been
adapted by Zhao [59], while evaluating the streaming potential
for surfaces with patterned wettability, albeit for an unbounded
domain restricted only by a bottom wall. In that study, the
streaming potential was considered to be a constant (i.e.,
independent of x) and the streaming currents were determined
by averaging the cross sectional charge throughput.

The contribution of the electric field on the streaming
current can also be calculated in a similar fashion and can
be expressed in a nondimensional form (nondimensionalized
as I⊥

e → I⊥
e /2ρ0ue,refH ) as follows:

I⊥
e = I⊥(0)

e + δI⊥(1)
e + δ2I⊥(2)

e + O(δ3), (22a)

I⊥(0)
e = β

cosh(λ/2)

×
∫ 1

0

{
1 + ls tanh(λ/2) − cosh[λ(1/2 − y)]

cosh(λ/2)

}
× cosh[λ(1/2 − y)]dy

+ m2βQ

2 cosh(Q/2)

∫ 1

0
f0(y) sinh[Q(1/2 − y)]dy,

(22b)

I⊥(1)
e = mβ

cosh(λ/2)

∫ 1

0
(Ke1y + Ke2) cosh[λ(1/2 − y)]dy

+ mβQ cos θ

2 cosh(Q/2)

∫ 1

0
g1

e (y) sinh[Q(1/2 − y)]dy,

(22c)

I⊥(2)
e = β

cosh(λ/2)

∫ 1

0
(G1y + G2) cosh[λ(1/2 − y)]dy

+ m2βQ

2 cosh(Q/2)

∫ 1

0
{f2(y) + f3(y) cos θ}

× sinh[Q(1/2 − y)]dy. (22d)

It should be mentioned that, for low surface potentials, the
streaming current for the electric field becomes negligible as
compared to the streaming current contributed from the applied
pressure gradient. Nevertheless, one interesting thing to note
from the expressions (22b)–(22d) is that the combined effects
of the modulated slip as well as modulated potential appears in
all three components, unlike the streaming current generated
by virtue of pressure driven flow. However, the effect of the
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phase difference appears only in Eqs. (22c) and (22d) and again
the effects of the modulated and axially invariant components
of the surface potential can be manipulated to aid and oppose
each other by making θ = 0 and π , respectively.

At this stage we can calculate the induced streaming
potential by invoking the electro-neutrality criterion, which
states that the net current through the channel should be zero if
no external electric field is applied [1,5]. This can be expressed
mathematically as

2ρ0up,refHI⊥
p − 2ρ0εζ0E

⊥
0 H

μ
I⊥
e + I⊥

c = 0. (23)

In Eq. (23), I⊥
c denotes the conduction current generated

from the induced electric field. The conduction current can be
expressed as a function of the electrical conductivity of the
solution in the presence of low surface potential, which takes
the form

I⊥
c = σHE⊥

0 , σ = 2n0z
2e2

f
. (24)

Here, f is the friction factor for the ions moving inside
the fluid and σ is the electrical conductivity of the solution.
Strictly speaking, the conductivity is a strong function of the
ion concentrations and, hence, the EDL potential distribution.
The conductivity (σ/σ0; σ0 = 2n0z

2e2/f ) comes out to be
O[cosh(ψ)], which on expanding becomes σ

σ0
≈ 1 + ψ2

2 +
O(ψ4). For low surface potential, one can neglect the ψ2

terms and can approximate the conductivity to be σ0. One can
obtain a solution for the induced electric field E0, by solving
Eq. (23), by replacing the conduction current with expression
(24), which takes the following form:

E⊥
0 = − I⊥

p

γ − α1I⊥
e

�⊥. (25)

In expression (25), γ = zeμ

H 2f
,α1 = εζ0

H 2 . Equivalently,

Eq. (25) can be written as E⊥
0 = R⊥�⊥, where, R⊥ =

− I⊥
p

γ−α1I⊥
e
.

B. Applied pressure gradient in the z (parallel) direction

1. Pressure driven flow

A pressure gradient of magnitude �‖ along the z direction
in the channel is applied in order to actuate the flow, which
induces a streaming potential mathematically denoted by E

‖
0 .

The equation, combining the effects of the induced electric
field is given by

−dp

dz
+ μ∇2w‖ + ρeE

‖
0 = 0. (26)

One can separate solutions for pressure driven and electro-
osmotically driven flows (w‖ = w

‖
p + w

‖
e ) in a way similar

to that in the previous section. Implementing the same
nondimensionalization scheme as discussed in Sec. II A 1, one
can obtain the equations for the pressure driven flow as

−dp

dz
+ ∇2w‖

p = 0. (27)

Note that here wp,ref = H 2�‖
μ

. Boundary conditions for w

remain the same as conditions (3a), with u⊥ replaced with w‖.
A solution of the form (4) can be obtained for w‖, which can
be written as

w‖
p = w‖(0)

p + δw‖(1)
p + δ2w‖(2)

p + O(δ3). (28)

Here

w‖(0)
p = 1

2
{y(1 − y) + ls}, (29a)

w‖(1)
p = hp1(y) cos(qx + θ ),

(29b)
hp1(y) = [bp11 cosh(qy) + bp12 sinh(qy)],

where

bp12 = ls[n − s1(q)]

2s2(q)
, bp11 = 1

2
ls + lsqbp12,

w‖(2)
p = χ1y + χ2 + [bp21 cosh(2qy) + bp22 sinh(2qy)]

× cos(2qx + 2θ ), (29c)

where

χ1 = − qls

2(2ls + 1)
{nbp11 sinh(q) + bp12[n cosh(q) + 1]}

and

χ2 = 1

2
lsqbp12 + lsχ1,

bp22 = −nlsh
′
p1(1) + lsh

′
p1(0)s1(2q)

2s2(2q)
, (29d)

bp21 = 1

2
ls + 2lsqbp22.

In Eqs. (22a)–(22d),

s1(iq) = cosh(iq) + iqls sinh(iq)

and

s2(iq) = (
1 + i2q2l2

s

)
sinh(iq) + 2iqls cosh(iq). (29e)

Note that the “dash” sign on the various functions denotes
derivative with respect to y. The volume flow rate can be
obtained from the velocity profiles:

V ‖
p = 1

2

(
ls + 1

6

)
+ δ2

(
1

2
χ1 + χ2

)
. (30)

2. Velocity distribution for induced streaming potential

For the velocity component, w‖
e , due to the induced electri-

cal field, the following governing equations (in dimensionless
form) hold true:

∇2w‖
e + λ2ψ = 0. (31)

Equation (24) has been obtained for the charge distribution
given in Eq. (9). The solution to Eq. (24) takes the same form
as given in Eq. (4) and can be expressed as

w‖
e = (

w
‖(0)
e0 + δw

‖(1)
e0 + δ2w

‖(2)
e0

)
+m

(
w

‖(0)
e1 + δw

‖(1)
e1 + δ2w

‖(2)
e1

) + O(δ3). (32)

Note that, subscript 0 denotes contribution from the axially
invariant part of the surface potential and subscript 1 denotes
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that from the axially varying component. The individual
contributions can be expressed as

w
‖(0)
e0 =

[
1 + lsλ tanh

(
λ

2

)]
− cosh

[
λ
(

1
2 − y

)]
λ cosh

(
λ
2

) , (33a)

w
‖(1)
e0 = he01(y) cos(qx + θ ), (33b)

where

he01(y) = κ11 cosh(qy) + κ12 sinh(qy),

with

κ11 = lsλ tanh(λ/2)[s3(q) − nlsq]

s2(q)

and

κ12 = κ11 − λls tanh(λ/2)

lsq
,

(33c)
w

‖(2)
e0 = η1y + η2 + he02(y) cos(2qx + 2θ ),

where

he01(y) = κ21 cosh(2qy) + κ22 sinh(2qy),

where

η1 = − ls[nh′
e01(1) + h′

e01(0)]

2(2ls + 1)

and

η2 = 1

2
h′

e01(0) + lsη1, with

κ21 = ls[h′
e01(0)s3(2q) − 2nlsqh′

e01(1)]

2s2(2q)

and

κ22 = κ21 − (1/2)lsh′
e01(0)

2lsq
.

The contributions from the axially varying part of the
surface potential are given by

w
‖(0)
e1 = he10(y) cos(qx),

he10(y) = k01 cosh(qy) + k02 sinh(qy) − cosh[Q(1/2 − y)]

cosh(Q/2)
,

(33d)

where

k01 = [lsQ tanh(Q/2) + 1][s3(q) + nlsq]

s2(q)

and

k02 = [lsQ tanh(Q/2) + 1][−s1(q) + 1]

s2(q)
,

w
‖(1)
e1 = �1y + �2 + he11(y) cos(2qx + θ), (33e)

he11(y) = k11 cosh(2qy) + k12 sinh(2qy),

where

�1 = ls cos(θ )[nh′
e1(1) + h′

e1(0)]

2(2ls + 1)

and

�2 = 1

2
lsh

′
e1(0) cos(θ ) + ls�1,

with

k11 = lsqk02[s3(2q) − 2qlsn]

2s2(2q)

and

k12 = k11 − (1/2)lsh′
e10(0)

2lsq
,

w
‖(2)
e1 = he12(y) cos(qx + θ ) + he13(y) cos(qx)

+he14(y) cos(3qx + 2θ ), (33f)

he12(y) = k21 cosh(qy) + k22 sinh(qy),
(33g)

he13(y) = k31 cosh(qy) + k32 sinh(qy),

he14(y) = k41 cosh(3qy) + k42 sinh(3qy), (33h)

where the coefficients are given by

k21 = ls�1[s3(q) − nlsq]

s2(q)
,

k22 = k21 − (1/2)ls�1

2lsq
,

k31 = ls[h′
e1(0)s3(q) − nlsqh′

e1(1)]

2s2(q)
,

k32 = k31 − (1/2)lsh′
e1(0)

2lsq
,

k41 = ls[h′
e1(0)s3(3q) − 3nlsqh′

e1(1)]

2s2(3q)
,

k42 = k41 − (1/2)lsh′
e1(0)

3lsq
.

Here s3(iq) = sinh(iq) + iqls cosh(iq). The volume flow
rate for the electro-osmotic flow can also be calculated easily
by integrating the profile and can be expressed as

V ‖
e = 1 + λls tanh

(
λ

2

)
− 2 tanh

(
λ
2

)
λ

+ mδ

(
1

2
�1 + �2

)

+ δ2

(
1

2
η1 + η2

)
. (34)

3. Streaming potential evaluation

Streaming potential for the applied pressure gradient in
the z direction can also be calculated in the same way as in
Sec. II A 4. The streaming current is expressed in the same
form as in Eq. (13). We calculate the streaming current for the
pressure driven flow to be

I ‖
p = I ‖(0)

p + δI ‖(1)
p + δ2I ‖(2)

p + O(δ3). (35)

In Eq. (28) contributions from various orders are given by

I ‖(0)
p = β

2 cosh(λ/2)

∫ 1

0
{y(1 − y) + ls} cosh[λ(1/2 − y)]dy,

(36a)

I ‖(1)
p = mβ cos(θ )

2 cosh(Q/2)

∫ 1

0
hp1(y) cosh[Q(1/2 − y)]dy,

(36b)

I ‖(2)
p = β

cosh(λ/2)

∫ 1

0
{χ1y + χ2} cosh[λ(1/2 − y)]dy.

(36c)
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A comparison between Eqs. (36a)–(36c) and (14b)–(14d)
reveals that the streaming current in both the directions
show the same kind of variation with the phase shift angle
and the amplitude of the axially varying component of the
surface potential. The only difference between the flows in
the x and the z directions is that for the present case of
flow the y component of the velocity is absent. Note that
Eqs. (36a)–(36c) have been expressed with nondimensional
variables, the nondimensionalization scheme being the same
for Eqs. (14a)–(14d). Following Eqs. (22a)–(22d), one can
evaluate the contribution of the streaming electric field in the
total streaming current and the same can be expressed for the
flow presently under consideration as

I ‖
e = I ‖(0)

e + δI ‖(1)
e + δ2I ‖(2)

e + O(δ3). (37)

The individual components are given by

I ‖(0)
e = β

cosh(λ/2)

∫ 1

0

{
1 + ls tanh(λ/2)

− cosh[λ(1/2 − y)]

cosh(λ/2)

}
cosh[λ(1/2 − y)]dy

+ m2βQ

2 cosh(Q/2)

∫ 1

0
he10(y) cosh[Q(1/2 − y)]dy,

(38a)

I ‖(1)
e = mβ

cosh(λ/2)

∫ 1

0
(�1y + �2) cosh[λ(1/2 − y)]dy

+ mβQ cos θ

2 cosh(Q/2)

∫ 1

0
he01(y) cosh[Q(1/2 − y)]dy,

(38b)

I ‖(2)
e = β

cosh(λ/2)

∫ 1

0
(η1y + η2) cosh[λ(1/2 − y)]dy

+ m2βQ

2 cosh(Q/2)

∫ 1

0
{he12(y) + he13(y) cos θ}

× cosh[Q(1/2 − y)]dy. (38c)

Finally applying the assumption of zero net current, one can
find out the equation for the streaming potential in the same
form as given in Eq. (23):

2ρ0up,refHI ‖
p − 2ρ0εζ0E

‖
0H

μ
I ‖
e + I ‖

c = 0. (39)

In Eq. (39), the conduction current I
‖
c is given by

I ‖
c = σHE

‖
0. (40)

One can express the streaming potential as

E
‖
0 = R‖�‖, where R‖ = − I

‖
p

γ − α1I
‖
e

. (41)

C. Anisotropic streaming potential for applied pressure
gradient in any general direction

In the previous sections we have determined the streaming
potential for applied pressure gradients in orthogonal direc-
tions. Now we attempt to work out the induced potential
for an applied pressure gradient in any direction, which, in

x2 z

x1

x

yΩ

H

x2 z

x1

x

yΩ

H

Angle 1θ

FIG. 1. (Color online) A schematic of the channel with two plates
at y = 0 and H , along with the surface modulations. The direction
of the modulation has been shown with the single lines on the plates.
Along these lines the values of cos(qx + θ) in the slip modulation is
0. The modulations in the surface potential have not been explicitly
shown, as they run parallel to the slip modulations, with a phase
shift of θ . The orthogonal directions are x (perpendicular) and z

(parallel), which run along and across the modulations, respectively.
The pressure gradient (�) has been applied along the x1 axis, which
makes an angle θ1 with the z axis.

general, does not match with the two orthogonal directions.
For a better physical outlook we present a schematic of
the channel in Fig. 1. The channel height and the other
relevant characteristics of modulations remain essentially the
same as described earlier. The two orthogonal directions, i.e.,
the directions parallel and perpendicular to the wettability
and charge modulations are denoted by the z and x axes,
respectively. The applied pressure gradient (magnitude �) is
assumed to make an angle θ1 with the z axis. We also define a
new axis system, with respect to the applied pressure gradient,
where the pressure gradient works along the x1 axis, the y axis
is the same as that of the orthogonal axes system, and x2 is
a mutually perpendicular axis to both x1 and y. The induced
streaming potential can be expressed in a general form given by

E0 = E0,1e1 + E0,2e2, (42)

where, ei and E0,i are unit vectors and induced streaming
potential along the xi direction, respectively. The two compo-
nents for the streaming potential can be related to the applied
pressure gradient through the following general tensorial
relation:

Ẽ = M̃T [R̃(M̃�̃)]. (43)

The tensors are expressed as

Ẽ =
[

E0,1

E0,2

]
, �̃ =

[
�1

�2

]
, R̃ =

[
R⊥ 0

0 R‖

]
, and

M̃ =
[

sin (θ1) − cos (θ1)

cos (θ1) sin (θ1)

]
. (44)

In Eqs. (44), �1 and �2 denote applied pressure gradients
along the x1 and x2 directions, respectively. For the present
considerations, we note that �1 = � and �2 = 0. Reviewing
Eqs. (41) and (25), one can infer that, in general, R⊥ 	= R‖,
which indicates that an applied pressure gradient along the
x1 direction will generate an induced potential along the x2

direction, or there will be off-diagonal effects. Denoting the
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angle between the streaming potential and the applied pressure
gradient (i.e., the x1 axis) by θd , we obtain an expression for
the same:

θd = tan−1

[
tan(θ1)

R⊥

R‖

]
− θ1. (45)

We call this angle the deviation angle. It can be easily
verified from Eq. (45) that, by putting θ1 = 0 or π/2, i.e.,
for applied pressure gradients along the orthogonal directions,
θd = 0, which indicates absence of any off-diagonal effects.
It can also be observed that a weak anisotropy appears even
if there is no wettability modulation present, as attributable to
the modulated surface charge, which influences the streaming
potential through Eqs. (22a)–(22d) and (38a)–(38c). Differ-
entiating (45), with respect to θ1, one can show that the
maximum deviation angle is achieved if θ1 = π/4. Following
the expressions for the streaming potentials, it becomes
apparent that the primary source of anisotropy is the O(δ) terms
in the streaming current, as the zeroth order streaming currents
for pressure driven velocity are identical and the contributions
from the O(δ2) terms have significantly smaller effects as
compared to the zeroth order terms. Noting that the O(δ)
terms in Eqs. (14c) and (36b) are outcomes of axially varying
components of surface potential, it follows that anisotropy
and off-diagonal effects in the induced potential become more
prominent for the presence of axially varying surface potential,
although the streaming potential achieves higher value for an
axially invariant potential. Quite intuitively, it also follows
that a higher value of δ would result in higher anisotropy and
off-diagonal effects.

D. Cases of channels with sidewalls along with anisotropic slip
and potential modulation

In the previous section, we have considered a channel,
open in both the x2 and the x1 directions (as depicted in
Fig. 1) and have shown that anisotropic streaming potential
is generated as a result of such arrangements. However, in
practice any channel would consist of sidewalls. Therefore,
for practical relevance it is important to investigate the effects
of the presence of sidewalls on the induced streaming potential
and the resulting anisotropy. In the present section, we consider
the same channel as shown in Fig. 1, only closed along the x2

direction by sidewalls.
As depicted in previous studies [62], the anisotropic

patterning tends to create an off-diagonal component of the
flow rate. However, the presence of sidewalls will prevent
any such flow from occurring. This is achieved through
an additionally induced pressure gradient along the lateral
direction (between the two side walls), which drives its own
fluid currents in order to render the net flow rate along the
lateral direction to zero. It has already been shown by Stroock
et al. [60] that the streamlines take spiral shape in cases of
grooved channels, with the grooves being at some angle with
the channel axes, i.e., the direction of the applied pressure
gradient. However, in the present case, the induced pressure in
the transverse direction will again induce a separate streaming
potential of its own, which will act in tandem with the one
induced by the externally applied pressure gradient. This is
quite interesting since the final outcome of these two separate

electric fields is that the direction of the resultant streaming
potential will again be somewhat shifted from the direction of
the applied pressure gradient, although the net throughput will
strictly follow the direction of the applied pressure gradient.
This simply indicates that there will be a transverse component
of the induced electric field as well. The existence of such
transverse components of induced potential in anisotropically
patterned channels has already been demonstrated by Ajdari
[36], for topographical undulations on the surfaces. In an effort
to quantify the aforementioned transverse pressure gradient
and the resulting change in the streaming potential, we consider
a channel closed along the x2 direction and an external pressure
gradient (�1) has been applied in the same along the x1 axis
(refer to Fig. 1; the channel is of same shape, only closed
along the x2 axis). We first note that the net throughput in a
channel with the present form of patterning can be expressed
in a tensorial form in the following way:

J̃ = urefHM̃T [Ṽ (M̃�̃)]. (46a)

The pressure and the rotation matrices have already been
described in Eqs. (44). The additional matrices are given by

J̃ = [ J1 J2 ]T and Ṽ =
[

V ⊥
p 0

0 V
‖
p

]
. (46b)

Here J1 and J2 represent net throughputs in the x1 and x2

directions (refer to Fig. 1) and the terms V ⊥
p and V

||
p have

already been derived in Eqs. (5k) and (30), respectively. Note
that in equation (46a) the pressure matrix includes the applied
as well as the (net) induced pressure gradients. Now, following
Ajdari [35], we can find the induced pressure gradient in the
x2 direction by equating J2 to 0. A simple expansion of the
matrices in Eqs. (46a) gives

�2 = �1(V ⊥
p − V

||
p ) sin(θ1) cos(θ1)

V ⊥
p cos2 θ1 + V

||
p sin2 θ1

. (47)

Note that, in deriving Eqs. (46a) and (47), we have assumed
that VE 
 Vp; i.e., the contribution from the streaming
potential in modifying the net throughput is small compared
to that from the active pressure gradient. Equation (47) shows
that there exists a transverse induced pressure gradient when
V ⊥

p 	= V
||
p . We further note that, for θ1 = 0

◦
or 90

◦
, i.e., when

the channel axes and the principle axes of the patterning
coincide, this induced pressure becomes zero, as expected.
Since the pressure gradient in the transverse direction is now
known [from Eq. (47)], we can easily calculate the resulting
induced streaming potential from the relation [Eq. (43)]:

Ẽ = M̃T [R̃(M̃�̃)]. (48)

The relevant matrices have already been defined. Therefore,
the final result is that a component of the induced potential is
present in the transverse direction as well, as evident from
Eq. (48). Interestingly, this means, as mentioned earlier, that
the net electric field is somewhat shifted from the direction
of the applied pressure gradient. This angle shift can be quite
easily calculated and turns out to be

θS = tan−1

(
E0,2

E0,1

)
. (49)

033001-11



UDDIPTA GHOSH AND SUMAN CHAKRABORTY PHYSICAL REVIEW E 88, 033001 (2013)

It is clear from Eq. (49) that the present deviation angle
and the one defined in Eq. (45) are not the same, since the
present one is generated in a channel, which is closed sideways.
However, we also note that the genesis of both the deviation
angles is the same, i.e., the anisotropy in the flow as attributable
to the charge and slip modulations on the surfaces and they
essentially reveal the same physics at play. Therefore, it would
be enough to investigate any one of them in an effort to
deduce the extent of anisotropy. In the present study we do
not explicitly seek to investigate the variation in angle θS and
attempt to stick to θd throughout.

III. RESULTS AND DISCUSSIONS

In this section, we attempt to pinpoint the effects of the
prescribed modulations in surface potential and the surface
wettability in particular (represented here as modulated slip on
the surfaces) on the corresponding induced streaming potential
field and the deviation angle. Towards this, we shall sort out
the important parameters that dictate the essential modulation
characteristics, especially the modulated slip on the surface.
Following the analysis presented in the previous section, we
mention the following parameters having major influence
on the modulation characteristics and the induced potential:
channel height to Debye length ratio (λ), patterning frequency
(q), amplitude of wettability modulation (δ), phase difference
between the applied slip and the surface potential (θ ), and the
asymmetry factor (n). It is also important to mention here that
while the results are calculated on the basis of dimensionless
parameters, we ensure that the corresponding dimensional
parameters are within the ranges of interest for microfluidic
transport with liquid water as the flow medium. It is further
important to mention in this context that the value of ζ0 in the
present analysis is restricted by the choice of the parameter m

so as to ensure the validity of the Debye-Hückel linearization,
which holds for surface potential values less than 25 mV.

A. Comparison with numerical estimations

In an effort to verify the extent of validity of the perturbation
analysis adapted herein, we attempt to solve the corresponding
equations numerically to evaluate the resulting streaming
potential and match them with our analytical results. Toward
this, we first recall the expression for the streaming potential
in Eq. (18a) and note that the contribution from the streaming
current generated from the induced field (denoted by Ie in the
expression under consideration) is quite small as compared to
the contributions from the streaming current from the pressure
driven flow (Ip) and the conduction current generated from the
streaming electric field, for low surface potentials, lying within
Debye-Hückel limit. To validate such propositions, we note
that the contribution from Ie is determined by the ratio α1/γ,

which is εζf/zeμ. For typical values of fluid properties and ζ

potential values chosen in the present study (ζ ∼ 10–25 mV,
f ∼ 10−12), this ratio turns out to be ∼10−2–0.1. In the
same spirit we also note that the velocity generated from an
applied pressure gradient is on the order of uref,p ∼ H 2�/μ,

where as the same from an electric field turns out to be in the
tune of uref,e ∼ εζE0/μ. The ratio of the two is given by
R = uref,e/uref,p ∼ εζE0/H

2�. For the preset sub-section,

we have chosen the following values: ε ∼ 6 × 10−10,ζ ∼
1 − 2 × 10−2,H ∼ 10−5, and E0/� ∼ 10−3 − 10−4(as can
be verified from the analytical results and a simple calculation
for a unidirectional flow). Hence, the ratio turns out to
be R ∼ 10−4 − 10−5 
 1, which shows that the velocity
generated from electric field is much smaller as compared
to the pressure gradient. Therefore, in the present section we
neglect the contribution from Ie by dropping the electrical
body force term in the momentum equation while calculating
the streaming potential, for ease of computation. In fact, such
assumptions have already been employed previously by a
number of researchers [35,59]. The final momentum balance
equation can then be expressed in a nondimensional form as
follows:

Re
Du

Dt
= −∂p

∂x
+ ∇2u, (50a)

Re
Dv

Dt
= −∂p

∂y
+ ∇2v. (50b)

The nondimensionalization has been done using the same
scheme adapted in Eqs. (2a)–(2c). Here, Re is the Reynolds
number, expressed as Re = ρuref,pH

μ
. Note that, although these

equations are not exactly the same with Eqs. (1), the effect
of the left-hand side can be nullified by making the Reynolds
number very small. Additionally, in Eq. (50a), − ∂p

∂x
includes

externally applied as well as induced pressure gradient. The
boundary conditions used to solve Eqs. (50) are same as in
Eqs. (3a) and (3b). However, for the sake completeness, we
again mention the boundary conditions:

u⊥
p (0) = ls[1 + δ cos(qx + θ )]

∂u⊥
p (y = 0)

∂y

and

u⊥
p (1) = −ls[1 + nδ cos(qx + θ )]

∂u⊥
p (y = 1)

∂y
, (3a)

v⊥
p (0) = 0, and v⊥

p (1) = 0. (3b)

Equations (50) are solved numerically using the boundary
conditions (3) to obtain the velocity profiles. We have used
the commercial software package FLUENT in order to solve
the corresponding equations by employing a control volume
based finite difference method. The domain for the numerical
simulation was taken to be of the size H = 1 and L = 2.
The domain was discretized into 100 × 100 equally sized
computational cells. We have used Re = 0.001, in an effort
to make the effect of inertia negligible as assumed in the
analytical solutions. The net streaming current was calculated
by averaging the total cross-sectional charge throughput in the
following way:

Ip = 1

L

∫ L

0

∫ H

0
ρeudydx. (51)

The charge density is given by the expression (9):

ρe = βψ, where β = −zeζ0

kT
. (9)

Following Eqs. (13) and (23) we evaluate the streaming
potential to be (note that Ie has been neglected, as mentioned
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FIG. 2. (Color online) Comparison of analytical and numerical
results for evaluation of streaming potential. Analytical (green line)
and numerical (blue dots) results for Es/� vs δ have been plotted in
the present figure. The other parameters have been taken as n = 1,
m = 1, θ = 0, ls = 0.05, H = 10−5 m, ζ0 = 25 mV, λ = 40, and q = π .
It is clear from the plot that good agreement between the numerical
and analytical solution is observed.

earlier)

Es

�
= −Ip

γ
, where γ = zeμ

f H 2
. (52)

In an effort to validate the analytical results, the same
quantity, as given in Eq. (52) (i.e., −Ip/γ ) has been calculated
from the analytical perturbation method, although in the
analytical solutions the inertia terms have been identically
equated to zero.

Figure 2 depicts the comparative results for the variation
of the quantity Es/�, upscaled by 104 with δ. The values of
the other relevant parameters are mentioned in the caption.
We observe good agreement between the numerical and the
analytical results. As expected, better agreement is observed
when value of the parameter δ (the perturbation parameter)
is small. However, for the range of δ as considered in the
present figure, the relative percentage error always stays well
below 0.5% (close to 0.2%), which falls within the acceptable
limit of error. Following the present figure, it can thus be
inferred that the present perturbation method offers accurate
results within a small limiting error for the induced streaming
potential.

B. Implications of modulated wettability: Variations in induced
streaming potential

We start our discussion with variations in the streaming
potential with the surface modulations under consideration. In
order to assess the relative importance of the slip modulation
on the surfaces, we attempt to plot the ratio of the streaming
potential with and without slip modulation on the surfaces.
For determining the pertinent quantities we assume the slip
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FIG. 3. (a) E⊥
0 vs λ for different values of m = 0, 2, 3. The other

parameters are given by θ = 0
◦
, n = 1, q = 1, δ = 0.4. (b) E

‖
0 vs λ

for different values of m = 0, 2, 3. The other parameters are the same
as in (a).

length to be ls = 0.1 (the value of ls has been assumed to be
0.1 throughout the analysis), which is same as the average
slip for the cases with slip modulations on the surfaces.
Additionally, the channel height has been assumed to be
constant at H = 10−6 m, from here onwards.

Figures 3(a) and 3(b) demonstrate the variations in the
streaming potential ratios in perpendicular (x) and parallel
(z) directions with λ, respectively, for different values of
m = 0, 2, 3. The values taken for the other parameters
are mentioned in the caption. These figures indicate that the
relative augmentation in the induced field in the x direction
attains a maximum value for a certain value of λ and then
diminishes again, whereas that for the z direction increases
monotonically, although the rate of increment is arrested for
high values of λ. The figures show that there is a decline in
the induced streaming electric field, when the axially periodic
part of the surface potential is made zero, i.e., when m = 0.
Higher values of m significantly augment the induced fields,
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FIG. 4. (a) E⊥
0 vs δ for different values of θ = 0

◦
, 90

◦
, and 180

◦
,

while the other relevant parameters are given by λ = 50, m = 3, n =
1, q = 1. (b) E

‖
0 vs δ for different values of θ = 0

◦
, 90

◦
, and 180

◦
,

with other parameters same as in (a).

which underlines the effects of modulated slip on the surfaces
as apparent from Eqs. (14c) and (36b). The maximum relative
augmentation in the x-direction field is obtained at values of λ

close to 200, which signifies a Debye layer thickness of around
5 nm in a 1-μm channel.

Figures 4(a) and 4(b) show the variation in the streaming
potential ratios in the x and z directions, respectively, with δ

for different values of θ = 0, 90
◦
, and 180

◦
; the values of the

other relevant parameters are mentioned in the caption. The
present figures prominently showcase the effects of modulated
slip on the streaming potential. Quite intuitively, it follows
from the expressions (14a)–(14d) and (36a)–(36c) that the
streaming potential should increase with the amplitude of
patterning for values of m greater than zero. Although the
modulated slip also augments the streaming current due to
the electric field, its value is much smaller as compared to the
conduction current and the streaming current due to pressure.
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FIG. 5. (a) E⊥
0 vs q for different values of n = −1, 0,1, with the

other parameters being λ = 200, θ = 0
◦
, m = 3, δ = 0.4. (b) E

‖
0 vs

q for different values of n = −1, 0,1. The other parameters are the
same as in (a).

Hence, the variation of the pressure driven streaming current
is predominantly reflected in the behavior of the induced field.
It is interesting to note that, for a value of phase shift angle
θ > 90

◦
, the streaming potential drops significantly and the

ratio becomes smaller than 1. This becomes apparent on
reviewing Eqs. (14c) and (36b), where the sign of the O(δ) term
changes, thus making the streaming potential decrease with δ.

Figures 5(a) and 5(b) depict the variation in the streaming
potential ratios in x and z directions, respectively, with q for
different values of n = −1, 0, 1; the other relevant variables
are mentioned in the caption. Note that a negative value
of n indicates that the wettability modulation on the upper
surface is out of phase with that of the lower surface. The
values of the streaming electric field decrease with increasing
patterning frequency, whereas higher values of n augment
the induced field. It should be noted that, for low patterning
frequencies the values remain almost constant. This indicates
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the regime of lubrication approximation [35,52], where the
characteristic length scale of variation in the axial direction is
much larger as compared to the variation length scale across the
channel. In cases of lubrication approximation, the flow char-
acteristics have been shown by previous researchers [35,52]
to be independent of the length scale of axial variation. As
previously shown by Ajdari [35,52], under such assumptions,
the equations of motion in ith direction can be written in the
following form (nondimensional):

− ∂p

∂xi

+ ∂2ui,p

∂y2
= 0 and

∂2ui,e

∂y2
+ λ2ψ = 0. (53)

Here subscripts p and e denote contributions from
the pressure driven and electro-osmotic flow, respectively,
and x1 ≡ x; x2 ≡ z. The boundary conditions are given by
Eq. (3a). The solutions to Eq. (53) can be expressed as
(with n = 1)

ui,p = 1

2

(
− ∂p

∂xi

)
[y(1 − y) + ls{1 + δ cos(qx + θ )}], (54a)

ui,e = 1 − ψ + λ tanh(λ/2)ls{1 + δ cos(qx + θ )}. (54b)

Note that the potential can be approximately expressed as

ψ ≈ cosh[λ(1/2 − y)]

cosh(λ/2)
(1 + m cos qx). (55)

Note that for the flow in the z direction − ∂p

∂xi
= 1, although

for flow in x direction, the same is periodic in nature, with
〈− ∂p

∂x
〉 = 1, where, 〈〉 denotes an average over the x direction.

The streaming current can be calculated following the same
method as in Eqs. (14a)–(14d) and the net effect can be
extracted by taking average along the x direction.

For further clarity, we attempt to express our results in terms
of experimentally realizable values. Toward this, we consider
a typical microchannel setup with a height H ∼ 1 μm and ζ

potential ζ ∼ 25 mV (hence, we have considered m = 1). We
further note that typically reported slip length values lie in the
order of tens to hundreds of nanometers [45,63,64], although
much higher values of slip lengths have also been reported
elsewhere [46,65–68]. Therefore, we consider a value of slip
length ls ∼ 100 nm and δ = 0.4 (with n = 1, i.e., equal
slip patterning on both the walls). Additionally, we take the
Debye layer thickness to be in the order of ∼100 nm and
patterning frequency qH ∼ 1–5. Previously, Van der Heyden
et al. [20] executed experiments on generation of streaming
potential with applied external pressure gradients in the order
of ∼1 bar/mm, i.e., 108 Pa/m. However, in the present study,
we consider applied pressure gradients to be much smaller,
on the order of 105–106 Pa/m and the resulting streaming
potential values lie in the range of ∼10–300 V/m, the values
of E‖ being slightly higher than those of E⊥. Nevertheless,
for higher pressure gradients, such as 107 Pa/m (although
strictly speaking, the analysis is not quantitatively accurate
for such high pressure gradients for flows in perpendicular
direction), keeping other parameters constant, we obtain
streaming potential in the tune of 2–3 kV/m.
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FIG. 6. θd (in degrees) vs q, for different values of n = −1, 0, 1,
with other parameters taken as θ = 0

◦
, m = 3, δ = 0.4, λ = 200.

θd is the deviation angle, i.e., the angle between the applied pressure
gradient and the induced streaming potential.

C. Implications of anisotropy: Variations in the deviation angle

After a thorough discussion on the variation and relative
augmentation of streaming potential, we now aim to study the
implications of anisotropy induced by the surface modulations
considered in the present study. Since the extent of anisotropy
in the flow can be quantified through the deviation angle,
we attempt to plot the same with the parameters dictating
the modulation characteristics. As mentioned in the previous
section, the effects of δ and m on the deviation angle are
somewhat intuitive as higher values of these parameters
would lead to increased deviation angle. However, it might be
interesting to investigate the effects of other relevant variables
on the deviation angle to extract the extent of anisotropy. Note
that we have taken the value of θ1 to be π/4 throughout the
present section.

We start with variation in θd with patterning frequency q

for different values of n = − 1, 0, 1 (the other parameters are
mentioned in the caption) in Fig. 6. This figure clearly shows
the regime of lubrication approximation as the deviation angle
remains virtually constant until q ∼ 1. For higher values of q,
anisotropy gets augmented drastically as the deviation angle
reaches a value of almost 18

◦
for n = −1. Interestingly, for

n > 0, the deviation angle is negative, where the same is
positive for n < 0, indicating the fact that for n > 0, the field
in the parallel direction (E‖

0) is higher than the field in the
perpendicular direction (E⊥

0 ) for the same applied pressure
gradient, whereas for n < 0 the reverse is true. Again, this can
be attributed to the fact that the O(δ) terms in expressions (14c)
and (36b) change their sign when n changes its sign, which
ultimately results in a drastic change in the induced streaming
potential.

Figure 7 depicts the variation in θd with λ for different
values of m = 0, 1, 3, while the other relevant parameters have
been mentioned in the caption. It can be observed that, for the
presence of the axially varying component of surface potential
the magnitude of deviation angle steadily increases, whereas
the deviation angle, without the surface potential modulation,
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FIG. 7. θd (in degrees) vs λ, for different values of m = 0, 1, 3.
The other parameters have been taken as θ = 0, n = 1, δ = 0.4,
q = 4.

is small (∼1
◦
) and asymptotically tends towards a constant

value for the range of λ taken for the present figure. Note that
for m = 0, the O(δ) term in Eqs. (14c) and (36b) disappears,
which results in a reduced anisotropy. For the present figure,
the induced field in the parallel direction remains slightly
higher than that in the perpendicular direction.

Figure 8 demonstrates the variation in the deviation angle
with θ , the phase shift angle for different values of λ = 10,
50, 100, 300 (other parameters have been mentioned in the
caption). The most interesting feature in the present diagram is
that, for every λ there exists a certain θ , i.e., a certain phase shift
angle, which results in zero deviation angle; i.e., the induced
streaming potential is exactly oriented along the direction of
the applied pressure gradient, albeit only for θ1 = π/4. We
call this phase shift angle θ0 and observe that, for θ < θ0, the
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FIG. 8. θd (in degrees) vs θ (in radian), for different values of
λ = 10, 50, 100, 300. The other parameters are given by m = 3, n =
1, δ = 0.4, q = 4.
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FIG. 9. θ0(in degrees) vs λ, for different values of q = 1, 3, 5,
7. The other parameters are given by m = 3, n = 1, δ = 0.4. Note
that θ0 is the value of the phase shift angle θ for which the streaming
potential is oriented along the applied pressure gradient, for a value
of θ1 = π/4.

field in the parallel direction remains stronger, whereas for θ

> θ0, that in the perpendicular direction becomes stronger.
In Fig. 9 we plot θ0 with λ for different values of

q = 1, 3, 5, 7. Interestingly, θ0 shows two distinct kinds of
behaviors here: First, for low values of patterning frequency,
θ0 increases with λ, reaches a maximum, and then drops slowly
and monotonically; second, for high values of patterning
frequency, θ0 drops with increasing λ, then increases again
before decreasing slowly for higher values of λ. It can be
observed from the present figure that the values of θ0 stay
close to 90

◦
, for a choice of θ1 = π/4. This figure reveals

the fact that the streaming potential can be oriented along the
applied pressure gradient by manipulating the concentration
of the electrolyte in the solution and the phase shift angle
between the wettability modulation and the surface potential
modulation. One can also conclude from the present figure
that by simply varying geometric parameters, like the channel
height, the deviation angle can be removed. Thus, in essence,
the presence of axial modulation of wettability and surface
potential offers us great controllability over the directions and
values of induced streaming potential.

IV. CONCLUSIONS

In the present study, we have evaluated the streaming
potential induced by virtue of modulated sip and potential at
the substrates of a fluidic confinement along the two orthogonal
directions of the channel. We have also given an expression
for the induced potential for an applied pressure gradient along
any general direction. We have shown that in selective cases,
the induced streaming electric field in both the directions are
augmented with this combined modulation acting in tandem,
whereas in other cases values for the same are decreased.
By a careful review of the present analysis, the following
conclusions can be drawn.

(i) The streaming electric field is augmented in the pres-
ence of axially modulated slip as compared to constant slip,
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when only an axially varying component of the potential is
applied at the walls.

(ii) Best attenuation in the induced field is obtained when
the slip modulation and the modulations in the surface potential
are in phase, whereas there is a relative drop in the same when
the phase difference becomes π . However, this holds only for
values of m, n > 0.

(iii) For selective cases, with n> 0 (i.e., when the wettability
modulations on the two surfaces are in phase) and θ close to
0

◦
, the induced potential along the parallel direction is stronger

than that in the perpendicular direction, whereas the situation
reverses when n < 0. One can thus control the direction of the
streaming potential by finely tuning these parameters.

(iv) Higher patterning frequencies generally produce signif-
icantly higher values of deviation angle, which might reach as
high as 20

◦
or more for suitable choice of parameters.

(v) Taking n > 0, for each λ, i.e., for a given channel
height to Debye length ratio, there exists a certain value of
the phase shift angle θ0, for which the streaming potential
is oriented along the applied pressure gradient, even if the

pressure gradient does not work along one of the orthogonal
directions.

Implications of the results summarized as above may be
far ranging. It has been well established in the literature
that energy conversion efficiencies in microfluidic channels
(having relatively thinner EDLs as compared to channel
height) are comparatively poorer as compared to those realized
for nanofluidic channels. The situation may get substantially
worse when channels with modulated surface charges are
employed, perhaps with the charge modulation obtained as
an undesirable fabrication artifact. However, the present study
indicates a possibility of augmenting the energy conversion
efficiencies of such narrow fluidic channels to a considerable
extent through a corresponding increase in the streaming po-
tential, by remaining in the nonoverlapped EDL regime itself,
with an exploitation of the combined interactions of modula-
tions in surface potential and interfacial slip. In addition to this,
anisotropic modulations also allow one to control the direction
of the streaming potential by tuning various flow parameters
finely, thus bearing huge scientific and technical implications.
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