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Deformation of a Peregrine soliton by fluctuating backgrounds
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A generalized Peregrine soliton moving on a fluctuating background is constructed. The agreement with the
experimental results is improved compared to the standard Peregrine soliton. It has a deformed shape asymmetric
with respect to time, and the peak values are not always 3.
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I. INTRODUCTION

The Peregrine soliton [1] models the rogue wave [2]
based on nonlinear dynamics. It is a solution of the nonlin-
ear Schrödinger equation (NLSE), localized both in space
and time. It has a large-amplitude peak of 3 above the
background wave [3]. Recent studies realized the Peregrine
solitons in various areas of physics, including in fiber
optics [4], in a water wave [5,6], and in multicomponent
plasma [7].

Figure 1 (solid line) shows a rogue wave produced in a
15 m × 1.6 m × 1.5 m water tank with 1 m water depth [5]. A
single-flap paddle located at one end of the tank is displaced
according to the surface height of the Peregrine soliton and
provides the proper initial condition. The experimental results
(solid line) were very close to the analytic predictions from
the standard Peregrine soliton (dotted line). However, we can
see some asymmetry in the surface elevation with respect to
time in Fig. 1. There also appears a small fluctuation of the
amplitude of the background wave. These small discrepancies
between the experiments and theories seem ubiquitous in
rogue wave phenomena. They could be generated by various
causes, for example, by the irregular motion of the paddle
in providing the initial condition. Similar types of discrep-
ancies between the theories and experiments are observed
in [6,7].

Motivated by the above observations, we will construct a
generalized Peregrine soliton (dashed line). It has asymmetry
in time and resides on a fluctuating background. It can describe
the rogue wave observed in a water tank more correctly than
the standard Peregrine soliton.

II. FORMULATION

Deep water waves are described by the following nonlinear
equation [8]:
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where t and x are time and longitudinal coordinates. The
wave number k0 and the frequency of the carrier wave ω0

satisfy the dispersion relation of the linear deep water wave,
ω0 = √

gk0, with the gravitational acceleration g. The group
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velocity is cg = dω
dk0

= ω0
2k0

. Then the surface elevation η(x,t) is
given by

η(x,t) = Re{a(x,t)exp[i(k0x − ω0t)]}. (2)

The solution of Eq. (1) can be obtained from that of the
following standard NLSE:

i∂̄ψ + ∂2ψ + 2|ψ |2ψ = 0 (3)

by substituting

z̄ = −k2
0a

2
0ω0

4
t, z =

√
2k2

0a0(x − cgt),

ψ(z,z̄) = a(x,t)/a0 (4)

(∂ ≡ ∂
∂z

,∂̄ ≡ ∂
∂z̄

). One should note that z̄ is the rescaled variable
of time and is not complex conjugate to z, which is the rescaled
variable of coordinate. We use the notation ψ0(z,z̄)∗ to denote
the complex conjugation of ψ0(z,z̄) as in Eq. (7).

We generalize the Peregrine soliton such that it is a localized
solution lying on a fluctuating background ψ0(z,z̄) such that

ψ0(z,z̄) = −i [1 + ε cos Y ] e
2iz̄−iε σ

�2 sin Y
, (5)

where

Y = �z + σ z̄ + θ, σ = ±�
√

�2 − 4, (6)

and �,θ are arbitrary parameters. ψ0(z,z̄) is an approximate
solution up to order O(ε1) of the NLSE (3). There occurs
a modulational instability for ψ0 for 2 > � > −2, and we
should take |�| � 2 [9,10]. (When a modulational instability
occurs, it is difficult to observe a rogue wave lying on this
type of background. This case includes the higher order rogue
waves.) In the present work, we take � ≈ 2, which shows
distinctive features of the fluctuating backgrounds without
invoking the instability.

III. DERIVATION OF THE ROGUE WAVE WITH
FLUCTUATING BACKGROUND

To obtain a superposed solution of a rogue wave plus
a fluctuating background using the Darboux transformation,
we first need to find a solution for ψi,i = 1,2, of the
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following associated linear equation (Lax pair):

∂

(
ψ1

ψ2

)
=

( −iλ iψ0(z,z̄)
iψ0(z,z̄)∗ iλ

)(
ψ1

ψ2

)
,

(7)

∂̄

(
ψ1

ψ2

)
=

( −2iλ2 + i|ψ0(z,z̄)|2 2iλψ0(z,z̄) − ∂ψ0(z,z̄)
2iλψ0(z,z̄)∗ + ∂ψ0(z,z̄)∗ 2iλ2 − i|ψ0(z,z̄)|2

)(
ψ1

ψ2

)
.

A. Solution of Eq. (7) from the modified squared
wave function approach

A general solution of Eq. (7) was constructed in [11,12]
using the modified squared wave function approach. It is
expressed in terms of four parameters, V0,A,k,λ, as follows:

ψ0(z,z̄) = −i
√

ν0e
iβ0 z̄+iφ0(z),

(8)
ψi(z,z̄) = √

νie
iβi z̄+iφi (z), i = 1,2,

where

νi = Vi + A2cn2(κz,k), i = 0,1,2,
(9)

φ0(z) =
∫

C0

ν0
dz, φi(z) =

∫
Ci

νi

dz ± λz, i = 1,2,

with κ2 = A2/k2 and

Vi = κ2/2 − V0/2 − A2 − 2λ2 ± 2
√

P , i = 1,2,

β0 = −κ2 + 3V0 + 2A2, βi = ±β0/2 + 2
√

P , i = 1,2,

C0 = −
√

−V0(V0 + A2)(V0 + A2 − κ2), (10)

Ci = ±4λ(λ2 + β0/4 ∓
√

P ) ∓ C0, i = 1,2,

P = λ4 + β0

2
λ2 − C0λ + (κ2 − A2 − V0)

× (κ2 + A2 + 3V0)/16 + A4/16,
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FIG. 1. (Color online) Comparison of measured surface height
at the position of maximum rogue wave amplitude (solid blue line)
with the theoretical standard Peregrine solution (dotted red line) and
the generalized Peregrine solution (dashed black line), adapted from
Chabchoub et al. [5]. Copyright 2011 by the American Physical
Society.

where the upper sign is for i = 1 while the lower sign is for
i = 2 in ± and ∓ symbols. Here cn is the standard Jacobi
elliptic functions, and k ∈ (0,1) is the modulus of the Jacobi
function.

B. Specific limit of Eq. (8) for the rogue wave

To obtain a solution corresponding to the generalized Pere-
grine soliton of a rogue wave plus a fluctuating background,
we need to take a specific limit on λ in the solution in Eq. (8).
(General λ values give the standard soliton on a fluctuating
background; see more details in [11].) The key observation of
the present paper is in taking the limit on λ such that P → 0.
Then the O(

√
P ) term in the series expansion of ψi,i = 1,2

with respect to
√

P gives

ψi =
√

S(z)

(
± 1

S(z)
+ 2iz̄ − 4iλ

∫
dz

S(z)
− 2iCp

∫
dz

S(z)2

)

× e
±iβ0 z̄/2±iλz±iCp

∫
dz

S(z) , i = 1,2, (11)

where

S(z) = κ2/2 − V0/2 − A2 − 2λ2 + A2cn2(κz,k),
(12)

Cp = 4λ(λ2 + β0/4) − C0,

and λ is a solution of P = 0 in Eq. (10). ψ0 remains unchanged
as in Eq. (8), and this new set ψi,i = 0,1,2, is a solution of the
linear equation in Eq. (7) with three parameters, V0,A, and κ ,
with k2 = A2/κ2.

C. Specific limit of Eqs. (8) and (11) for a small
fluctuating background

Now by taking a limit on the three parameters in Eqs. (8)
and (11) such that

V0 = 1 − 2ε, A2 = 4ε, κ = �

2
+ 2

�
ε, (13)

with ε → 0, we can obtain a solution which can describe the
Peregrine soliton on a small fluctuating background. Explicitly,
the solution which satisfies the associated linear equation (7)
up to O(ε1) is (we multiply an irrelevant factor

√
2� to ψ1,ψ2)

ψ0 = −i(1 + ε cos �z)exp

[
i

(
3 − �2

4

)
z̄

− iη

(
z − 2ε

�
sin �z

)]
,
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ψi =
[
±1 − 2z + 4i�z̄ − ε

2�
(∓1 − 2z + 4i�z̄) cos �z

− 2iεη

��
sin �z

]
exp

[
±i

(
3
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8
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, i = 1,2, (14)

with

λ = −i + η

2
, (15)

where

η =
√

�2

4
− 1, � = 1 + i

√
�2

4
− 1. (16)

By inserting Eqs. (13) and (15) into P in Eq. (10), we can find
P = 0 up to O(ε1) (the rogue wave condition in Sec. III B).
Equation (14) has two parameters, � and ε, and has the merit
of being expressed in terms of the elementary functions.

D. Solution of Eq. (7) for the rogue wave
with a fluctuating background

Finally, by replacing the variable in the trigonometric
functions as �z → �z + σ z̄ + θ and adjusting the phase of
the exponential factor, we can obtain the solution ψ0 in Eq. (5)
instead of ψ0 in Eq. (14). Similarly, we obtain ψ1,ψ2 as follows
[instead of those in Eq. (14)]:

ψ1 =
[

1 − 2z + 4iz̄ − ε�

2� − iσ
(1 + 2z − 4iz̄) cos Y + 2iεσ

�(2� − iσ )
sin Y

]
eiz̄+ ε

�
sin Y ,

(17)

ψ2 =
[
−1 − 2z + 4iz̄ − ε�

2� − iσ
(−1 + 2z − 4iz̄) cos Y + 2iεσ

�(2� − iσ )
sin Y

]
e−iz̄− ε

�
sin Y .

ψ0 in Eq. (5) and ψ1,ψ2 in Eq. (17) satisfy the associated linear equation (7) up to O(ε1) with

λ = −i. (18)

As the solution in Eq. (17) is crucial in obtaining the generalized Peregrine soliton, we check the solution using MATHEMATICA

by explicitly substituting λ,ψ0,ψ1,ψ2 into Eq. (7). We note that the modified squared wave function approach can provide a
more generalized form of solution than those in Eq. (8), which has five parameters. Starting from this more generalized solution,
we can obtain the solution in Eq. (17) directly without the need of above variables replacement procedure.

E. Peregrine soliton with a small fluctuating background

Then, a generalized Peregrine soliton ψr−c (a rogue wave plus a fluctuating background) is constructed using the Darboux
transformation [13] [it is correct up to O(ε1)]:

ψr−c(z,z̄) = ψ0(z,z̄) − 2(λ − λ∗)

(
ψ2

ψ1
+ ψ∗

1

ψ∗
2

)−1

= ie2iz̄

[
1 − ε cos Y + iε

σ

�2
sin Y − 4 + 16iz̄ − ε 16

�2 (cos Y + �z sin Y ) − iεσ 16
�4 (�z cos Y − sin Y )

1 − ε 4
�2 cos Y + (4z2 + 16z̄2)

(
1 + ε 4

�2 cos Y
) − ε 32

�4 (�z − σ z̄) sin Y

]
. (19)

The Darboux transformation guarantees the correctness of
the solution in Eq. (19) when ψ0,ψ1,ψ2 satisfies the linear
equation in Eq. (7). A direct check of the solution in
Eq. (19) is accomplished by using MATHEMATICA. The solution
was plugged back into the NLSE and satisfies it up to
O(ε1).

IV. DISCUSSION

Figure 2(a) shows the standard Peregrine soliton which
is obtained by taking ε = 0 in Eq. (19). Figure 2(b) shows
a generalized Peregrine soliton lying on a fluctuating back-
ground. It is obtained from Eq. (19) with the parameters
ε = 0.15,� = 2.3 (thus σ = 2.61), and θ = −3π/4.

The plot in Fig. 2(a) (standard Peregrine soliton) has
a peak value of 3 at z = z̄ = 0. On the other hand, the
peak values of the generalized Peregrine solitons are dif-
ferent from 3. For example, when � = 2.3,ε = 0.15,θ =
−3π/4, the peak value of |ψr−c| is 2.913 and occurs at
z = −0.0018,z̄ = 0.033, while |ψr−c(z = z̄ = 0)| = 2.896.
When � = 2.3,ε = 0.15,θ = −π/4, the peak value 3.116
occurs at z = −0.005,z̄ = 0.0167, while |ψr−c(z = z̄ = 0)| =
3.108. For θ = 0, the peak value is 3 + ε, which occurs at
z = z̄ = 0. Interestingly, |ψr−c(z = z̄ = 0)| = 3 + ε even for
θ = π .

The experimental observation of the surface elevation
η(x,t) in the rogue wave is described by Eqs. (19), (4), and (2).
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Explicitly,

η(x,t) = Re

[
ia0e

i(k0x−ω0t− k2
0a2

0ω0
2 t)

(
1 − εC(x,t) + iε

σ
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2
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{
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} − ε 16

�

√
2k2

0a0(x − cgt)
{
S(x,t) + i σ

�2 C(x,t)
}

1 − ε 4
�2 C(x,t) + {

8k4
0a

2
0(x − cgt)2 + k4

0a
4
0ω

2
0t

2
}{

1 + ε 4
�2 C(x,t)

} − ε 32
�4 M(x,t)S(x,t)

)]
, (20)

where

C(x,t) = cos

(√
2�k2

0a0(x − cgt) − σ
k2

0a
2
0ω0

4
t + θ

)
,

S(x,t) = sin

(√
2�k2

0a0(x − cgt) − σ
k2

0a
2
0ω0

4
t + θ

)
, (21)

M(x,t) =
√

2�k2
0a0(x − cgt) + σ

k2
0α

2
0ω0

4
t.

Figures 1 and 3 show plots for η(x,t) in Eq. (20) with
parameters a0 = 0.01 m, k0 = 11.63 m−1, ω0 = 10.7 s−1

(which are those of the experiment in [5]). We take t → t − 6
and a(x,t) → ia(x,t) in Eq. (20) for comparison with the
experimental curve in Fig. 1 (such that 0 < t < 12), and the
observation point is at x = 0.

Careful examination of Fig. 1 shows that there is a small
concave in the amplitude for 1 < t < 3.5 for both the solid
and dashed lines, while the dotted line shows nearly constant
amplitude. For 3.5 < t < 5, both the solid and dashed lines
drop sharply, while the dotted line shows a mild decrease.
This phenomenon is most prominent at t ∼ 5. The dashed line
from the generalized Peregrine soliton fits the experimental
data (solid line) better than the dotted line from the standard
Peregrine soliton for 0 < t < 7. The two theoretical curves
(dashed and dotted) show discrepancies with the experimental
data (solid line) for t > 7. Especially, the amplitude of the solid
line seems locked for almost 1 s around t ∼ 8. After that time,
the solid line increases sharply for 9 < t < 10.5. The dashed
line shows the corresponding sharp increase for 8 < t < 9.5,
while the dotted line shows a mild increase at that time. For
t > 10.5, the solid line starts developing a small concave,
while the corresponding concave of the dashed line appears
for 9.5 < t < 12. The dotted line shows no such concave.
It can be concluded that the generalized Peregrine soliton
describes the rogue wave more accurately than the standard

FIG. 2. (Color online) (a) The standard Peregrine soliton with
ε = 0 and (b) the generalized Peregrine soliton with the parameters
ε = 0.15,� = 2.3,σ = 2.61,θ = −3π/4.

Peregrine soliton. But the two theoretical curves cannot explain
the locking behavior of the experimental data around t ∼ 8.

Regarding the description of the fluctuating background,
there could be two possible approaches: (i) the first one applies
well when the fluctuations are developed from background
irregularities which spread all over the region of wave propa-
gation. The irregularities are, for example, the defects and/or
refractive index changes spread all over the optical fiber or a
variation of the water depth in the ocean in water waves. In this
case, the fluctuating backgrounds (or noises) can be described
by an equation which includes these irregularities and thus
becomes some kind of generalized NLSE (the so-called
inhomogeneous NLSE). (ii) The second one is for the cases
where the irregularities are confined to some restricted regions
or boundaries. Examples are the irregular paddle motion in the
water tank experiment and a junction of two different refractive
indices in the optical fiber. Then, the confined irregularities
develop fluctuating waves, and these waves propagate to an
adjacent “regular” region where there are no irregularities. In
this case, one can use the standard NLSE and its solution to
describe the propagation of fluctuations in the regular region.
The propagating fluctuation is described by the cnoidal wave
solution of the standard NLSE, which is ψ0 in Eq. (8). ψ0 in
Eq. (5) is the approximate solution obtained from Eq. (8) by
taking the small amplitude limit (see Secs. III C and III D).

In nature, we can expect both effects to be present
simultaneously. In this case, the generalized Peregrine soliton
of an inhomogeneous NLSE should describe the rogue wave
with fluctuating backgrounds in an “irregular” region. But
we can arrange the experimental environment such that rogue
waves develop in the regular region. Especially, the constant

2 4 6 8 10 12
Time t s

0.02
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0.01

0.02

0.03

Surface elevation m

FIG. 3. (Color online) Surface height at x = 0. The standard
Peregrine soliton with ε = 0 (red solid line) and the generalized
Peregrine soliton (θ = 0 for the blue dotted line, θ = −π/2 for the
green dash-dotted line, and θ = −3π/4 for the black dashed line)
with the parameters ε = 0.15,� = 2.3 are shown.
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depth and width of the water tank provide an ideal experimental
environment for the regular region, which essentially has
no irregularity. Then, the irregular paddle motion develops
fluctuations, and they propagate through the water tank and
develop a rogue wave. In this case, the generalized Peregrine
soliton can describe many portions of the rogue wave better
than the standard Peregrine soliton, as was seen in Fig. 1.
However, the limited experimental data do not permit a
concrete conclusion on the nature of irregularities.

In Fig. 3, the red solid line corresponds to the standard
Peregrine soliton, obtained with ε = 0. The blue dotted, green
dash-dotted, and black dashed lines show the plots of the
generalized Peregrine soliton, from Eq. (20), with θ = 0,

−π/2, and −3π/4, respectively (other common parameters
are ε = 0.15,� = 2.3,σ = 2.61). The dotted line (θ = 0)
shows the fluctuating background and is symmetric with
respect to time, as expected. The dashed and dash-dotted
lines show asymmetry in time and fluctuating backgrounds,
which are observed in the experiment in Fig. 1. The fluctuating
background of the dashed line (θ = −π/2) is shifted to the left

compared to that of the dash-dotted line (θ = −3π/4). Thus
agreements between experiments and theoretical predictions
can be improved by suitably choosing the parameters: ε for
the fluctuating width, � for the fluctuating period, and θ for
the fluctuating phase.

Finally, a more refined description of the fluctuating
background is possible with a generalized form of ψ0 as
follows:

ψ0(z,z̄) = −i

[
1 +

N∑
i=1

εi cos Yi

]
e

2iz̄−i
∑

εi
σi

�2
i

sin Yi

, (22)

where

Yi = �iz + σi z̄ + θi, σi = ±�i

√
�2

i − 4, (23)

and �i,θi are arbitrary parameters. Summation on i = 1,N

means the fluctuation is described by the superposition of
N cosine waves of different wavelengths and phases. All εi

should be small. ψ0 in Eq. (22) can have various forms of
fluctuating backgrounds, including those of the noisy type.
Then the corresponding Peregrine soliton is given by

ψr−c(z,z̄) = ie2iz̄

[
1 −

∑
εi cos Yi + i

∑
εi

σi

�2
i

sin Yi

−
4 + 16iz̄ − ∑

εi
16
�2

i

(cos Yi + �iz sin Yi) − i
∑

εiσi
16
�4

i

(�iz cos Yi − sin Yi)

1 − ∑
εi

4
�2

i

cos Yi + (4z2 + 16z̄2)
(
1 + ∑

εi
4

�2
i

cos Yi

) − ∑
εi

32
�4

i

(�iz − σi z̄) sin Yi

]
. (24)

It was checked explicitly using MATHEMATICA that ψ0 in Eq. (22) and ψr−c in Eq. (24) are approximate solutions of the NLSE (3)
up to order O(εi).

Conclusively, defects and/or noisy boundaries confined to a finite region generate the fluctuating or noisy background. Then,
it propagates and develops the rogue wave in the regular region. Under this scenario, the rogue wave resides on the fluctuating
background and is described by the generalized Peregrine soliton.
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