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Ginzburg-Landau equation

J. B. Gonpe Tafo,1,* L. Nana,2,† and T. C. Kofane1,‡
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We investigate the effectiveness of a Global time-delay autosynchronization control scheme aimed at stabilizing
traveling wave solutions of the cubic-quintic Ginzburg-Landau equation in the Benjamin-Feir-Newell unstable
regime. Numerical simulations show that a global control can be efficient and also can create other patterns such
as spatiotemporal intermittency regimes, standing waves, or uniform oscillations.
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I. INTRODUCTION

During the past three decades, considerable progress has
been made in our understanding of the spontaneous emergence
of patterns in spatially extended nonequilibrium systems.
The existence of simple spatial or spatiotemporal patterns
has been rigorously established on the basis of equivariant
bifurcation theory [1]. However, these simple patterns are
often unstable in a given system, which evolves instead to
a state of spatiotemporal chaos [2–5]. Spatiotemporal chaos
(STC) exists abundantly in nature and is a crucial influence on
the behavior of various systems. The investigations of the STC
have attracted continual attention for more than a century in a
large variety of fields of natural science, e.g., hydrodynamic
turbulence [6], chemical turbulence [7,8], electrical turbulence
in the cardiac muscle [9], and wave propagation in nonlinear
optical fibers with gain and spectral filtering [10]. In some
cases, STC arises in the proximity of the threshold and can
be described within the context of weakly nonlinear theories.
The model of the complex Ginzburg-Landau equation (CGLE)
has been extensively used for the study of spatiotemporal
chaos. The study of the CGLE, i.e., a universal description of
oscillatory systems close to the onset, reveals complex patterns
and underlying principles relevant for all oscillatory systems
[1,5,11–13]. This complexity is often considerable. In response
to this challenge, the control of STC has emerged in recent
years as a problem of increasing fundamental and applied
value. A current challenge in pattern-formation research is to
develop control schemes that stabilize the patterned states so
that a desired, otherwise unstable, solution may be realized.
Since the pioneering work of Ott, Grebogi, and Yorke [14],
controlling chaos has been extensively investigated. A variety
of approaches, such as the Ott-Grebogi-Yorke (OGY) scheme,
a feedback technique [15], a nonlinear diffusion effect [16,17],
and an adaptive method [18,19], have been developed for the
purpose of chaos control. Ott, Grebogi, and Yorke suggested
a method to stabilize an unstable periodic orbit. The main
idea of Ott, Grebogi, and Yorke consisted in waiting for
a natural passage of the chaotic orbit close to the desired
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periodic behavior and then applying a small disturbance in
order to stabilize such periodic dynamics (which would in fact
be unstable for the unperturbed system).

It is generally difficult to apply the OGY idea to high-
dimensional systems such as turbulence. This has suggested
the development of some alternative approaches. The first
was introduced by Pyragas, who has proposed an empirical
control method based on implementing a delayed feedback
loop called time-delay autosynchronization (TDAS) [15]. It
consists in designing a proper feedback line through which a
state variable is directly perturbed such as to control a periodic
orbit. This method has a number of attractive properties and
has been implemented successfully in a variety of experimental
systems including electronic [20,21], laser [22], plasma [23],
and chemical [24] systems.

The feedback can be either local [25] (at each spatial point
the field at the same point at previous times is fed back) or
global (at each spatial point a term proportional to the integral
of the field over the spatial variable is fed back) [26]. In spite
of the widespread use of the CGLE, investigations of TDAS in
the context of the CGLE are relatively few. In the following,
we mention some publications relevant in this context: Bleich
and Socolar studied the control of STC by traveling waves
for the CGLE without global terms (but in the extended
TDAS scheme with multiple delay times) [27]. Harrington
and Socolar investigated the corresponding two-dimensional
case [28]. Moreover, control of spatiotemporal chaos has
been shown to be effective in stabilizing traveling waves in
CGLE in one and two spatial dimensions [29–31]. Based
on previous works on the CGLE under the influence of
global feedback [26,32] and on TDAS in the CO oxidation
reaction [33], Beta and Mikhailov investigated global TDAS
in the CGLE, focusing on the question of why for global
TDAS noninvasive stabilization of uniform oscillations is not
possible [34]. Aranson et al. [35] suggested a method of
turbulence control in the CGLE without gradient force by
developing a spiral wave with local feedback injection. They
stabilized a structurally unstable topological defect, whose
analytical expression is known, by adding an extra term in the
CGLE. Boccaletti et al. [17,18] used another method called an
adaptive method in CGLE to control turbulence.

In a recent work [36], by using the cubic-quintic CGLE
to study the wave patterns in a spatially extended system,
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we found many types of spatiotemporal regimes. We found
that when the Benjamin-Feir-Newell (BFN) criterion is met,
the dynamics becomes chaotic and three types of chaotic
behavior can be distinguished. Below the BFN line, stable
and spatiotemporal intermittency states are found. We then
controlled the defect turbulence regime by using the nonlinear
diffusion technique [16]. We have shown that an unstable
traveling hole can be stabilized in the chaotic regime.

The present work extends current research on the control
of STC in extended systems. We show that the developed
turbulence, in particular the defect turbulence in the system
described by the one-dimensional cubic-quintic CGLE, can be
suppressed by introduction of delayed global feedback. We
show that in this case of turbulence there are two parameters
whose variation is sufficient to suppress the chaos in the
system: the intensity of the control signal and the delay time.
By varying these parameters, turbulence can be suppressed.

This paper is organized as follows. In Sec. II we review
some properties of the cubic-quintic CGLE and present a
modified form of the model equation. In Sec. III we analyze
the stability of the traveling wave. The numerical simulations
of the control problem are carried out in Sec. IV. We discuss
the results in Sec. V and summarize in Sec. VI.

II. MODEL EQUATION

In this section we review some properties of wave solutions
of the cubic-quintic CGLE. The cubic-quintic CGLE repre-
sents an important prototypical equation since it arises generi-
cally as an envelope equation for a weakly inverted bifurcation
associated with traveling waves. The one-dimensional form
of this equation including dissipation and dispersion can be
written as

∂A

∂t
= (1 + ic1)

∂2A

∂x2
+ μA + (1 − ic3)|A|2A

− (1 − ic5)|A|4A, (1)

where A(x,t) is a complex field. In writing Eq. (1) we have
already transformed it into the moving frame. The value c1

represents the linear dispersion term, while c3 and c5 represent
the nonlinear dispersion of wave patterns; μ is the criticality
parameter, t and x are evolutional and spatial variables, re-
spectively. We consider a system in which we impose periodic
boundary conditions, which can be constructed experimentally
in one-spatial-dimension geometries [37].

We consider that Eq. (1) admits the periodic solution
A(x,t) = A0e

i�0t with

|A0|2 = 1
2 (1 ±

√
4μ + 1) (2)

and

�0 = −|A0|2(c3 − c5|A0|2). (3)

In the BFN unstable regime, all the solutions are unstable.
As we have seen in [36], when the condition 1 − c1c3 −
2|A0|2(1 − c1c5) > 0 of the BFN instability is satisfied,
uniform oscillations are unstable and the spatiotemporal chaos
spontaneously develops in the system. To control the different
turbulence regimes observed in the domain, a global feedback
term can be introduced. The modified cubic-quintic CGLE is

given by

∂A

∂t
= (1 + ic1)

∂2A

∂x2
+ μA + (1 − ic3)|A|2A

− (1 − ic5)|A|4A + F, (4)

where F is a feedback term given by

F (t) = αei(χ0+ωτ )A(t − τ ) (5)

with

A(t) = 1

L

∫ L

0
A(x,t)dx. (6)

Here A(t) is the spatial average of the complex oscillation
amplitude, L is the length of the system, α is the feedback
intensity factor, χ0 determines the phase shift between A and
F , ω is the frequency of the oscillation, and τ is the time
delay. When the time delay is short (τ � 1), the slowly varying
average amplitude A(t) does not significantly change within
the time delay and the delays in this term could be neglected.
Then we obtain the following equation:

∂A

∂t
= (1 + ic1)

∂2A

∂x2
+ μA + (1 − ic3)|A|2A

− (1 − ic5)|A|4A + αeiχA(t), (7)

where χ = χ0 + ωτ . The principal effect of the delays here
is providing an additional phase shift �χ = ωτ between the
average slow oscillation amplitude and the signal, which can
be easily manipulated by changing the delay time. Below we
analyze how the phase shift variations influence the properties
of the system.

III. LINEAR STABILITY ANALYSIS

The presence of the global feedback term in Eq. (7)
modifies the frequency and the amplitude of traveling waves.
By injecting again the periodic solution A(x,t) = A1e

i�t in
the modified cubic-quintic CGLE, the amplitude and the
frequency of oscillations are given by

μ + |A1|2 − |A1|4 + α cos(χ ) = 0,
(8)

� = −c3|A1|2 + c5|A1|4 + α sin(χ ),

where A1 and � are the new values of frequency and amplitude,
respectively. The resolution of Eq. (8) leads to

|A1|2 = 1
2 {1 ±

√
1 + 4[μ + α cos(χ )]} (9)

and

� = −|A1|2(c3 − c5|A1|2) + α sin(χ ). (10)

Thus global feedback shifts the solution of Eq. (10) and can
be constructed by writing

α = � + |A1|2(c3 − c5|A1|2)

f (χ )
, (11)

where f (χ ) = sin(χ ). Generally, the function f (χ ) is 2π

periodic and satisfies the condition f (0) = f (2π ) and for each
frequency � of the oscillation it determines the respective
value of the feedback intensity α. Equation (9) shows that
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when the condition

α > −
1
4 + μ

cos(χ )
(12)

is satisfied, uniform oscillations become impossible in the
system and the uniform steady state A = 0 becomes stable
in the class of uniform solutions. We notice that when the
feedback term is suppressed (α = 0), the frequency of uniform
oscillation becomes � = �0.

The linear stability of uniform oscillations is investigated by
considering the evolution of small perturbations in the periodic
solution, that is, we look for solutions of Eq. (7) of the form

A(x,t) = A1e
i�t [1 + εB(x,t)]. (13)

Inserting Eq. (13) into Eq. (7), we obtain upon linearization in
B

∂B

∂t
= μB + (1 + ic1)

∂2B

∂x2
− B|A1|2[2(−1 + ic3)

+ 3(1 − ic5)|A1|2] − |A1|2B∗[(−1 + ic3)

+ 2(1 − ic5)|A1|2] + αeiχB(t). (14)

Using the ansatz

B = B1(t)eikx + B2(t)e−ikx (15)

one gets a closed system of equations for B1(t) and B∗
2 (t),

setting B1(t) ∝ B10e
λt and B2(t) ∝ B20e

λt , where λ = λ1 +
iλ2 is a complex value. After substituting Eq. (15) into Eq. (14)

we obtain the eigenvalue equation

E = (C + iD − iλ2)(C − iD − iλ2), (16)

where

E = |A1|4[(1 − 2|A1|2)2 + (c3 − 2c5|A1|2)2], (17)

C = −k2 + μ − λ1 + 2|A1|2 − 3|A1|4,
(18)

D = � + |A1|2(2c3 − 3c5|A1|2) − c1k
2.

Equation (16) must be solved numerically for a given
set of parameters. The system behavior is found depending
on the values of λ1 and λ2. The sign of λ1 determines the
stability. When λ1 > 0, unstable groups of modes are observed
and the uniform oscillations are unstable; in contrast, for
λ1 < 0, uniform oscillations remain stable. The last unstable
group of modes in the considered system has λ2 = 0 and
its wave numbers are close to a certain wave number k �= 0
[see Figs. 1(a) and 1(b)]. In this case, standing waves appear
because the spatial profiles of the real amplitude A and phase
are periodic in space but do not undergo temporal oscillations.
For a value of k, the instability corresponds to a periodic
pattern with a wavelength of 2π/kc. A different bifurcation
scenario exists wherein standing and traveling waves are
observed as primary bifurcating solutions. In addition to
standing waves, the system has oscillatory modes with λ2 �= 0
that correspond to periodic spatiotemporal modulation of the
uniform oscillations. The value of λ(k) is given by

λ(k) = −(k2 − μ − 2|A1|2 + 3|A1|4) ±
√

|A1|4[(1 − 2|A1|2)2 + (c3 − 2c5|A1|2)2] − [� + |A1|2(2c3 − 3c5|A1|2) − c1k2]2.

(19)

The increment of growth of these modes is

λ1(k) = −(k2 − μ − 2|A1|2 + 3|A1|4). (20)

Substituting Eq. (9) into Eq. (20) leads to

λ1(k) = −2μ − 3α cos(χ ) − A2
1. (21)

Here the instability will occur by periodic spatiotemporal
modulations of uniform oscillations since λ2 �= 0 and the
most unstable modes have wave numbers close to k0 = 0 [see

Fig. 1(c)]. They are observed beyond the critical value

αf = − 1

9 cos(χ )
(1 + 6μ −

√
1 + 3μ). (22)

Here the instability can occur only if cos(χ ) < 0. Note that
the critical value for the feedback intensity does not depend
on the parameters c1, c3, and c5. Supposing that � = �0 leads
|A1| = |A0|. Inserting these two values into the expression in
Eq. (19), we obtain

λ(k) = −(k2 − |A0|2 + 2|A0|4) ±
√

|A0|4[(1 − 2|A0|2)2 + (c3 − 2c5|A0|2)2] − [|A0|2(c3 − 2c5|A0|2) + c1k2]2. (23)

Then, by resolving the equation λ(k) = 0, we deduce the wave
number k given by

k =
√

2|A0|2[1 − c1c3 − 2|A0|2(1 − c1c5)]

1 + c2
1

. (24)

This equation is possible if 1 − c1c3 − 2|A0|2(1 − c1c5) > 0
is satisfied. This condition is the BFN criterion [36].

IV. NUMERICAL SIMULATION

In this section we present the results of a numerical study of
Eq. (7). We analyze the stability of the unstable wave patterns
by using the global feedback term. All simulations were carried
out for a one-dimensional system of length L = 250. Our
numerical simulations are made by using a finite-difference
scheme in space and the standard fourth-order Runge-Kutta
algorithm in time [38]. The discrete form of the periodic
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FIG. 1. Growth rate λ1(k) of the traveling wave as a function of wave number k for (a) α = 3.9,χ = π/2; (b) α = 5.5,χ = 3π/4; and
(c) α = 9.2,χ = 5π/4 with c3 = 0.5, c1 = 2.5, c5 = 1.1, and μ = 1.0.

boundary condition that we used is A1 = An and An+1 = A2.
The precision of the numerical results is examined by testing
several steps of integration in space and in time. We have
chosen a grid spacing dx = 0.25 and the typical time step was
dt = 0.01. We apply periodic boundary conditions and use as
the initial condition a traveling hole [36]. The parameter values
are chosen as in Ref. [36] in order to be in the BFN unstable
region specifically in the case of defect turbulence regimes.
We investigate the effects of the feedback intensity value and
the phase shift on the system. A sufficiently strong feedback
suppresses turbulence and establishes uniform oscillations. We
show that for an appropriate choice of the global feedback term
and the delay time we can show that the spatiotemporal chaos
becomes completely stable.

After numerical simulations we found five different types
of regimes in the domain depending on the values of α and χ .
These regimes are summarized in the state diagram of Fig. 2.
The five regimes observed are defect turbulence, spatiotempo-
ral intermittency, phase turbulence, standing waves, and plane
waves.

Figure 3, obtained for the value of α = 0, displays the
defect turbulence regime. It is similar to the one found
without feedback [36]. The wave field fluctuates irregularly
and the modulus of the amplitude |A| drops down to zero

frequently (black areas on the right-hand side of Fig. 3). As
the feedback intensity is increased starting from zero, global
oscillations set in and defect turbulence regimes are replaced

0 0.5 1 1.5
0

5

10

15

20

25

χ/π

α

PW

SW

PT

PW

STI

DT

FIG. 2. Phase diagram of (χ,α) showing different types of
dynamical regimes: defect turbulence (DT), spatiotemporal intermit-
tency (STI), phase turbulence (PT), standing wave (SW), and plane
wave (PW) for c1 = 2.5, c3 = 0.5, c5 = 1.1, and μ = 1.0.
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FIG. 3. Space-time variation of the wave pattern amplitude |A|
for α = 0.0, χ = π/6, c1 = 2.5, c3 = 0.5, and c5 = 1.1, denoting
defects in the system and μ = 1.

by other interesting regimes until the appearance of the laminar
state.

For certain values of α, amplitude defects disappear
from some parts of the system and thus an intermittent
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FIG. 5. Phase turbulence regime of the wave pattern amplitude
|A| obtained for α = 6.0, χ = 7π/4, c1 = 2.5, c3 = 0.5, c5 = 1.1,
and μ = 1.0.

state is developed. Figure 4 illustrates three examples of
intermittent regimes depending on the values of α and χ of
the wave amplitude |A| in a one-dimensional system [36,39].
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(c)

FIG. 4. Transition from defect turbulence to the spatiotemporal intermittency regime of the wave pattern amplitude |A| for c1 = 2.5,
c3 = 0.5, c5 = 1.1, χ = π/6, and μ = 1.0 when (a) α = 8.0, the coexistence between STI and PT is showing; (b) α = 12.0, the interchange
between STI and SW is showing; and (c) α = 15, the space-time denotes the coexistence between STI and PW.
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FIG. 6. Space-time variation of the wave pattern amplitude |A|
for α = 9.0, χ = 7π/4, c1 = 2.5, μ = 1.0, c3 = 0.5, and c5 = 1.1,
displaying a standing wave regime where bright stripes repeatedly
develop from the dark uniform state.

In Fig. 4(a), turbulent bursts occupy most of the system and
laminar areas are relatively rare, while Figs. 4(b) and 4(c)
show the coexistence of turbulence and laminar states filled
with standing waves [Fig. 4(b)] or plane waves [Fig. 4(c)].
By further increasing the feedback intensity from the states of
intermittency turbulence, uniform oscillations are observed for
the phase shift in the interval 0 < χ < 3π/4. For appropriate
values of α and χ , the domain is still always turbulent, but
the defects disappear completely; this is the phase turbulence
regime (illustrated in Fig. 5). In this regime, the amplitude is
always bounded away from zero; it never reaches zero and
remains saturated.

Standing waves are displayed in Fig. 6. In this type
of pattern, bright stripes repeatedly develop from the dark
uniform state. The stripes are only visible during relatively
short intervals of each oscillation cycle. They form a spatially
periodic array. Standing waves with similar properties have
been observed in the model of CO oxidation under intrinsic gas
phase coupling [40,41]. For appropriate values of α, standing
waves and spatiotemporal intermittency disappear, the system
becomes laminar, and uniform oscillations are observed (not
shown).

V. DISCUSSION

Motivated by the research on the cubic-quintic CGLE,
in Ref. [16] we controlled the spatiotemporal chaos in the
domain [36] by using the nonlinear diffusion control term. In
the present paper we study the control of spatiotemporal chaos
in a spatially extended system described by a cubic-quintic
CGLE with global time-delay feedback. A model of Eq. (7)
was obtained by a reduction of the global feedback system in
Eqs. (4) and (5) valid for relatively short delay times τ � 1,
as studied in Ref. [26]. Nonetheless, it also may be interesting
to consider the global control problem without assuming that
the delay time is short.

The global control implemented in the reduced model
(7) and the original (4) is invasive. This means that when

turbulence is suppressed and uniform oscillation is stabilized,
the control signal does not vanish and effectively the system
is then under the action of a uniform periodic driving force. It
is known that in the chaotic dynamical systems, described by
a small number of variables, stabilization of unstable periodic
orbits can be achieved in a noninvasive way by using the
time-delay autosynchronization proposed by Pyragas [14]. In
order to show the influence of a longer time delay τ for a better
comparison with previous work [34] we solve the cubic-quintic
CGLE in the scaled form

∂A

∂t
= (1 + ic1)

∂2A

∂x2
+ (μ − iω)A + (1 − ic3)|A|2A

− (1 − ic5)|A|4A + F, (25)

where F is a feedback term given by

F (t) = αeiχ [A(t − τ ) − A(t)] (26)

and

A(t) = 1

L

∫ L

0
A(x,t)dx. (27)

The new values of the amplitude and frequency are given by

|A1|2 = 1
2 (1 ±

√
1 + 4{μ + α[cos(χ − �τ ) − cos(χ )]})

(28)

and

� = −ω − |A1|2(c3 − c5|A1|2) + α[sin(χ − �τ ) − sin(χ )].

(29)

A cubic CGLE with a similar feedback scheme was
investigated in Refs. [26,34]. Motivated by experiments [33]
on the control of chemical turbulence in the CO oxidation
reaction on Pt(1 1 0), Beta et al. used the cubic CGLE as
a model for spatially extended oscillatory systems to study
common aspects of the control of diffusion-induced chemical
turbulence by applying TDAS [34]. They showed how the
strongly disordered state can be stabilized in the system.
The initially unstable state undergoes several transformations
successively: defect turbulence, phase turbulence, standing
wave state, and uniform oscillations. The results of our
numerical study of Eq. (25) are given in Fig. 7, which shows
the effects of a longer time delay on the system; it displays
the progressive transition from defect turbulence to a plane
wave state. In the absence of feedback α = 0 [Fig. 7(a)], the
defect turbulence is observed. For small α, the weak turbulence
is observed [Fig. 7(b)]. When the feedback term grows,
the system displays a disordered state of phase turbulence
[Fig. 7(c)], stationary standing wave patterns [Fig. 7(d)], and
uniform oscillations [Fig. 7(e)], respectively. The main result is
the presence of a weak turbulence regime during the transition
from the defect turbulence regime to the plane wave regime.
This state is not obtained in Ref. [34]. Equation (25) is used
to control spatiotemporal chaos in many applications such as
binary fluid convection [42], the spiral waves in the Couette-
Taylor flow between counterrotating cylinders [43], chemical
turbulence [7,8], electrical turbulence in the cardiac muscle [9],
and the electrohydrodynamic instabilities in nematic liquid
crystal [44].
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FIG. 7. Space-time variation of the wave pattern amplitude |A|, χ = π/2, c1 = 2.5, c3 = 0.5, μ = 1.0, c5 = 1.1, and τ = 1.2 for
(a) α = 8.0, showing DT; (b) α = 12.0, the weak turbulence regime; (c) α = 15.0, PT, (d) α = 18.0, SW; and (e) α = 22.0, PW.

VI. CONCLUSION

We have investigated the behavior of traveling waves in
the defect turbulence regime described by the cubic-quintic
complex Ginzburg-Landau equation influenced by the global
feedback term through a TDAS scheme. This investigation is of
general importance since the CGLE is generally derived from
an amplitude expansion near the threshold of a bifurcation and

higher-order perturbations appear naturally. We have shown
that the chaotic dynamics that emerged from this prototypical
equation, with periodic boundary conditions, can be controlled
by a global feedback scheme.

We presented the model equation of a cubic-quintic CGLE
and then the modified cubic-quintic CGLE with a feedback
term. We showed analytically that the stabilization of the wave

032911-7



J. B. GONPE TAFO, L. NANA, AND T. C. KOFANE PHYSICAL REVIEW E 88, 032911 (2013)

patterns in the turbulence regime depends on its growth rate.
By using hole solutions as initial conditions, we simulated
the modified cubic-quintic CGLE in the case of the defect
turbulence regime. Then the spatiotemporal chaos regime
previously obtained with the original cubic-quintic CGLE [36]
was stabilized by introducing delayed global feedback in the
cubic-quintic CGLE. We note that control of STC can be
achieved by varying only two parameters, i.e., the intensity
of the control and the delay time. These two parameters
have a simple physical interpretation and could be relatively
easily manipulated in an experiment. We considered the
case in which the time delay is longer. As a result we

also controlled the defect turbulence regime. In the scheme’s
transition to a plane wave regime, we observed the presence
of weak turbulence in the system. Our numerical results
are in good agreement with the analytical predictions of
the linear stability analysis and many previous experiments.
This work should prove beneficial for the development of
many significant technological applications such as mixing,
optical fiber manufacture, and chemical reactions leading to
complex spatiotemporal dynamics. We leave for further study
the examination of the possibility of stabilizing traveling waves
of the cubic-quintic CGLE in two spatial dimensions using the
global feedback scheme.
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