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We reconsider the collisional dynamics of bright solitons in the coupled nonlinear Schrödinger equation. We
observe that apart from the intensity redistribution in the interaction of bright solitons, one also witnesses a
rotation of the trajectories of bright solitons. The angle of rotation can be varied by suitably manipulating the
self-phase-modulation (SPM) or cross-phase-modulation (XPM) parameters. The rotation of the trajectories of
the bright solitons arises due to the excess energy that is injected into the dynamical system through SPM or
XPM. This extra energy contributes not only to the rotation of the trajectories, but also to the realignment of
intensity distribution between the two modes. We also notice that the angular separation between the bright
solitons can also be maneuvered suitably. The above results, which exclude quantum superposition for the field
vectors, may have wider ramifications in nonlinear optics, Bose-Einstein condensates, and left- and right-handed
metamaterials.
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I. INTRODUCTION

The potential of solitons to carry information in optical
fibers, which was theoretically predicted by Hasegawa and
Tappert [1] in 1973, was experimentally realized in 1980 by
Mollenauer et al. [2]. Since then, the propagation of temporal
optical solitons in long-distance optical fiber communication
and optical switching devices [3] has been investigated.
Mathematically speaking, the propagation of an electro-
magnetic wave through a single-mode optical fiber when
the Kerr nonlinearity [self-phase-modulation (SPM)] exactly
counterbalances the group velocity dispersion is governed
by an integrable “soliton” possessing nonlinear Schrödinger
(NLS) equation [1,3]. A single-mode fiber can also support
two orthogonal directions. Under ideal conditions of perfect
cylindrical geometry and an isotropic material, a mode excited
with its polarization in one particular direction would not
couple to the mode with the orthogonal state. However, in
practice, small departures from cylindrical geometry or small
fluctuations in material anisotropy result in mixing up of the
two polarization states, thereby breaking the mode degeneracy
[4]. In conventional single-mode fibers, birefringence is not
a constant parameter along the fiber but changes randomly
because of fluctuations in the core shape and stress-induced
anisotropy. Thus, it is clear that when two or more optical
waves copropagate inside a fiber, they interact with each
other through the fiber nonlinearity. This provides a coupling
between the incident waves through the phenomenon called
cross-phase-modulation (XPM). XPM occurs because the
effective refractive index of a wave depends not only on
the intensity of that wave, but also on the intensity of
the copropagating wave. XPM is always accompanied by
SPM. When the two waves have orthogonal polarizations, the
XPM-caused coupling induces a nonlinear birefringence in
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the fiber. Hence, the propagation of solitons through nonlinear
birefringent fibers is governed by coupled NLS equations [5]
of the form

iq1t + q1xx + 2(g11|q1|2 + g12|q2|2)q1 = 0, (1a)

iq2t + q2xx + 2(g21|q1|2 + g22|q2|2)q2 = 0, (1b)

where qi(x,t) (i = 1,2) are the envelopes of the field com-
ponents. In the above equation, g11 and g22 account for the
strengths of self-phase-modulation while g12 and g21 represent
the strengths of cross-phase-modulation. It has been found
that Eq. (1) is integrable if either (i) g11 = g12 = g21 = g22 or
(ii) g11 = g21 = −g12 = −g22. The first choice corresponds
to the Manakov model [4,6–10] which has been investigated
[7,8] and the intensity redistribution of the bright solitons
identified. The second choice corresponds to the modified
Manakov model [9,10] and its soliton dynamics has been
explored. Bright solitons that are the localized solutions
of the coupled NLS equations (1) continue to attract the
attention of researchers even today in nonlinear optics [11]
and Bose-Einstein condensates (BECs) [12]. While it has
been shown that soliton radiation trapping occurs due to
cross-phase-modulation in the former case, vector soliton
out-coupling occurs due to the intra(interspecies) scattering
lengths in the latter case. However, it should be mentioned that
since the solitons lie in the high-kinetic-energy regime [13],
quantum superposition is forbidden.

In addition to the above physical interpretation, for handling
more channels at high bit rate, it is necessary to achieve
wavelength division multiplexing (WDM) [3] using coupled
nonlinear Schrödinger equations through optical soliton trans-
mission. This is possible by propagation through different
channels with different carrier frequencies. In either case, two
or more fields are to be propagated in the fiber. Hence, the
dynamics of the fiber system is governed by the above coupled
system of equations which are not integrable in general. In
addition, the dynamics of higher-order coupled NLS equations
including the third-order dispersion, Kerr dispersion, and
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FIG. 1. Intensity distribution in the coupled NLS equations for
the parametric choice a = 1, b = 1, ε

(1)
1 = 0.85i, and ε

(2)
1 = 0.5.

stimulated Raman scattering has also been analyzed [14]. In
addition to the above situations, coupling is also possible in a
system of two parallel waveguides coupled through evanescent
field overlap, the coupling of two polarization modes in
uniform guides, nonlinear optical waveguide arrays, and
nonlinear distributed feedback structures [3]. Also, nonlinear
couplers use solitons as ideal tools for performing all-optical
switching operations [15].

At this juncture, it should be mentioned that the coupled
NLS and coupled higher-order NLS type equations discussed
above have been associated with the concept of intensity redis-
tribution of solitons, a property which has wider ramifications
in optical fiber communications such as providing intensity
pump sources, soliton switching [15], etc. Can one identify
other properties or signatures of the coupled NLS or NLS type
equations which could come in handy in the propagation of
solitons in optical fibers? The answer to this question assumes
great significance for improving the efficiency of soliton-based
communication systems. In the present paper, we unearth some
additional signatures of coupled NLS equations, which include
the rotation of the trajectories of bright solitons, realignment of
intensity distribution between the two modes, and the variation
of angular separation between the bright solitons. We show that
all the above occur at the expense of additional energy pumped
into the dynamical system by virtue of the variation of SPM
and XPM.

II. BRIGHT SOLITONS AND THEIR
COLLISIONAL DYNAMICS

Invoking the constraint g11 = g12 = g21 = g22 or g11 =
g21 = −g12 = −g22, Eq. (1) can be linearized as

�x + U� = 0, (2)

�t + V � = 0, (3)
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FIG. 2. Trajectories of bright solitons in the two modes.
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FIG. 3. Realignment of intensity distribution for the parametric
choice a = 1.5, b = 1.5, ε
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where � = (φ1,φ2,φ3)T and

U =
⎛
⎝

−2iζ
√

aψ1

√
bψ2√

aψ∗
1 iζ 0√

bψ∗
2 0 iζ

⎞
⎠ , (4)

V =
⎛
⎝

−(B + J ) A K

A∗ B G

K∗ H J

⎞
⎠ , (5)

with

A = i
√

aψ1x + 3
√

aζψ1,

K = i
√

bψ2x + 3
√

bζψ2,

A∗ = −√
aiψ∗

1x + 3
√

aζψ∗
1 ,

K∗ = −
√

biψ∗
2x + 3

√
bζψ∗

2 ,

B = 3iζ 2 + iaψ1ψ
∗
1 ,

J = 3iζ 2 + ibψ2ψ
∗
2 ,

G = i
√

a
√

bψ2ψ
∗
1 ,

H = i
√

a
√

bψ1ψ
∗
2 ,

where ζ = μab and μ is the so called “hidden complex
isospectral parameter,” while a and b are real parameters. The
compatibility condition Ut − Vx + [U,V ] = 0 generates the
following equations:

iψ1t + ψ1xx + 2(a|ψ1|2 + b|ψ2|2)ψ1 = 0, (6a)

iψ2t + ψ2xx + 2(a|ψ1|2 + b|ψ2|2)ψ2 = 0. (6b)

The above equations, when a = b, reduce to the Manakov
model [7,8] while for a = −b, one obtains the modified
Manakov model [9,10].

To generate the bright vector solitons of the above coupled
nonlinear Schrödinger equations (6), we now consider the
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FIG. 4. Rotation of the trajectories of bright solitons.
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FIG. 5. Further realignment of intensity distribution for the
choice a = 2.5, b = 2.5, ε
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vacuum solution (ψ (0)
1 = ψ

(0)
2 = 0) and employ the gauge

transformation approach [16] to obtain the bright soliton
solutions in the following form:

ψ
(1)
1 = ε

(1)
1 β1sech(θ1)ei(−ξ1), (7)

ψ
(1)
2 = ε

(1)
2 β1sech(θ1)ei(−ξ1), (8)

where

θ1 = 2β1x + 8α1β1t − 2δ1,

ξ1 = 2α1x + 4
(
α2

1 − β2
1

)
t − 2χ1,

with α1 = α10ab, β1 = β10ab, while ζ1 = α1 + iβ1 and ζ̄1 =
ζ ∗

1 . In the above equation, δ1 and χ1 are arbitrary parameters
while ε1,2 represent coupling parameters.

From the bright soliton solution, one understands that their
amplitude depends not only on the coupling parameters ε

(1)
1

and ε
(1)
2 , but also on the self-phase-modulation and cross-

phase-modulation parameters a and b. This means that the
impact of self-phase-modulation and cross-phase-modulation
can be represented suitably in the collisional dynamics of
bright solitons.

To understand the impact of SPM and XPM in the coupled
NLS equations, we now consider the two-soliton solution
obtained by employing the gauge transformation approach [16]
in the following form:

ψ
(2)
1 = ψ

(1)
1 − 2i(ζ2 − ζ̄2)

P̃12

R
, (9)

ψ
(2)
2 = ψ

(1)
2 − 2i(ζ2 − ζ̄2)

P̃13

R
, (10)
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FIG. 6. Enhanced rotation of the trajectories of bright solitons.
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FIG. 7. Collisional dynamics of bright solitons for the modified
coupled NLS equations for a = −b = 0.9, and ε
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where ζ2 = ζ̄2 = α2 + iβ2. The explicit forms of P̃12 and P̃13

are given by

P̃ 1
12 = −{

M
(1)
12

[(
τ + γM

(1)
11

)
M

(2)
11 + γ
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M
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+M
(1)
13 M
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31
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11
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13
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12 M
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33
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and

τ = M
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(1)
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,
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FIG. 8. Diagonally opposite trajectories of bright solitons in the
modified coupled NLS equations.
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FIG. 9. Enhancement of angular separation between the soli-
tons by varying μi, i = 1,2, for α10 = −0.1, β10 = −0.2, α20 =
0.15, β20 = 0.3 with the other parameters as in Fig. 3.
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22 γ ∗)/τ 2,

P̃ 1
33 = M

(1)
13

[
γM

(2)
11 M

(1)
31 + γM

(2)
21 M

(1)
32

+M
(2)
31

(
τ + γM

(1)
33

)]
γ ∗/τ 2 + M

(1)
23

[
γM

(2)
12 M

(1)
31

+ γM
(2)
22 M

(1)
32 + M

(2)
32

(
τ + γM

(1)
33

)]
γ ∗/τ 2

+ [
γM

(2)
13 M

(1)
31 + γM

(2)
23 M

(1)
32 + (
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(1)
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M
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11 = e−θj

√
2, M
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1 , M
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13 = e−iξj ε
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2 ,

M
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21 = eiξj ε

∗(j )
1 , M
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√
2, M
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M
(j )
31 = eiξj ε

∗(j )
2 , M

(j )
32 = 0, M

(j )
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√
2,

where j = 1,2 and

θj = 8αjβj t + 2xβj − 2δj ,

ξj = 4
(
α2

j − β2
j

)
t + 2xαj − 2χj .

It should be mentioned that the densities of the two modes are
connected by the relation |ε(j )

1 |2 + |ε(j )
2 |2 = 1 (j = 1,2).

III. RESULTS AND DISCUSSION

Figure 1 shows the intensity distribution in the coupled NLS
equations while the contour plot displayed in Fig. 2 shows
their trajectories. When one changes the strengths of SPM and
XPM, one observes a rotation of the trajectory of the bright
solitons in addition to the intensity distribution between the
two modes as shown in Fig. 3. The contour plot shown in
Fig. 4 confirms this observation. The angle of rotation of the
trajectories can be further changed by varying the parameters
a and b as shown in Fig. 5, and the corresponding contour plot
is displayed in Fig. 6. Comparing the density profiles shown in
Fig. 1 with Figs. 3 and 5, one understands that in addition to the
rotation of trajectories of bright solitons, one also witnesses
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FIG. 10. Further enhancement of angular separation between the
solitons for α10 = −0.1, β10 = −0.25, α20 = 0.2, β20 = 0.3 with
the other parameters as in Fig. 3.

a realignment of intensity distribution between the modes ψ1

and ψ2. The rotation of the trajectories of bright solitons arises
due to the extra energy that is being pumped into the dynamical
system by varying the SPM and XPM parameters. This excess
energy contributes not only to the rotation, but also to the
realignment of intensity distribution.

It should be mentioned that the rotation of the trajectory
of bright solitons is witnessed in the modified coupled NLS
equations themselves. For the intensity profile of the modified
coupled NLS equations shown in Fig. 7, one observes shape-
changing collisional dynamics of bright solitons similar to
that in the coupled NLS equations. In addition, the trajectory
of bright solitons is diagonally opposite (as shown in Fig. 8)
to that observed in the coupled NLS equations (Fig. 2).
The angular separation between the bright solitons can also
be changed as desired by manipulating the complex hidden
spectral parameter μ as shown in Figs. 9 and 10. It is worth
noting that the variation of the angular separation of bright
solitons occurs in the coupled NLS equations themselves.
From the above, one understands that the variation of SPM
or XPM parameters injects extra energy into the dynamical
system which results not only in the rotation of the trajectories
of the bright solitons, but also in the realignment of their
intensity distribution.

IV. CONCLUSION

In summary, the collisional dynamics of bright solitons in
the coupled NLS equations shows that apart from the intensity
redistribution, one witnesses the rotation of the trajectories
of bright solitons and realignment of intensity distribution
between the two modes by varying the self-phase-modulation
or cross-phase-modulation parameters. In addition, the angular
separation between the bright solitons can also changed
suitably. We believe that these results may stimulate a lot of
experiments in nonlinear optics, Bose-Einstein condensates,
and left- right-handed metamaterials.
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