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Solitons and kinks in a general car-following model
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We study a general car-following model of traffic flow on an infinitely long single-lane road, which assumes that
a car’s acceleration depends on time-delayed values of its own speed, the headway between it and the car ahead,
and the rate of change of headway, but makes minimal assumptions about the functional form of that dependence.
We present a detailed characterization of the onset of linear instability; in particular we find a specific limit on
the delay time below which the marginal wave number at the onset of instability is zero, and another specific
limit on the delay time above which steady flow is always unstable. Crucially, the threshold of absolute stability
generally does not coincide with an inflection point of the steady-state velocity function. When the marginal
perturbation at onset has wave number 0, we show that Burgers and Korteweg–de Vries (KdV) equations can
be derived under the usual assumptions, and that corrections to the KdV equation “select” a single member of
the one-parameter set of its one-soliton solutions by driving a slow evolution of the soliton parameter. While in
previous models this selected soliton has always marked the threshold of a finite-amplitude instability of linearly
stable steady flow, we find that it can alternatively be a stable, small-amplitude jam that occurs when steady
flow is linearly unstable. The model reduces to the usual modified Korteweg–de Vries (mKdV) equation only in
the special situation that the threshold of absolute stability coincides with an inflection point of the steady-state
velocity function; in general, near the threshold of absolute stability the model reduces instead to a KdV equation
in the regime of small solitons, while near an inflection point it reduces to a Hayakawa-Nakanishi equation. Like
the mKdV equation, the Hayakawa-Nakanishi equation admits a continuous family of kink solutions, and the
selection criterion arising from the corrections to this equation can be written down explicitly.
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I. INTRODUCTION

One approach to investigating the collective behavior of
vehicular traffic is to start with a “car-following model,” which
is a set of equations describing the response of each individual
car to what neighboring cars are doing. (For reviews of other
approaches to the theory of vehicular traffic, see [1–3].) A
typical car-following model describes a single line of cars
traveling along a long, uniform, straight or circular road, with
all drivers taken to behave identically. An important prototype
of this class of models is the “optimal velocity model” (OVM)
of Bando et al. [4], which is embodied in the equations

τ
dvn

dt
= Vs(xn+1 − xn) − vn, vn = dxn/dt.

Here the cars move in the positive x direction, they are
numbered consecutively, with car n + 1 ahead of car n, and xn

denotes the position of, say, the back of car n. The “optimal
velocity” function Vs(h) is the speed at which a driver prefers
to drive when the next car is ahead by a distance, or “headway,”
of h. The model assumes that each driver relaxes his or her
car’s speed to that preferred velocity with some fixed time
constant τ .

A model like the OVM, of course, ignores many features of
the behavior of real human drivers, who not only have different
reaction times, but also have individual preferred velocity
functions which can change because of road conditions,
fatigue, distractions, and the like. However, such a model
would give a better description of a line of cars controlled
by on-board adaptive cruise control systems, which would
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use a small radar to monitor the headway to the next car.
The equation of motion would then be implemented by the
programming of the cruise control.

The OVM was quickly generalized [5] to account for the
fact that the proper response to make to a car that is a distance
h ahead must also depend on that car’s speed—the response
of car n must be very different if the next car in line is stopped
than it would be if that car is moving at some speed near vn.
A particularly simple model that incorporates this effect is the
“full velocity difference model” (FVDM) of Jiang et al. [6],
given by

τ
dvn

dt
= Vs(xn+1 − xn) − vn + λ (vn+1 − vn),

where λ is a constant which specifies the relative importance
of the size of the headway and its rate of change in determining
the response of car n. Tian, Jia, and Li [7] suggested replacing
the vn+1 − vn in the FVDM with a general function of
vn+1 − vn, naming their model the “comprehensive optimal
velocity model” (COVM); they carried out calculations in
the specific case where the function was a hyperbolic tan-
gent. A number of specific car-following models have been
proposed in the literature, some incorporating finite time
delays [8], look-ahead [9,10], look-back [11], and a depen-
dence on the acceleration of the next car [12]. For reviews,
see [1,2,13].

All these models have a one-parameter family of solutions
that describe uniform traffic flow, with the headway in front of
each car being a constant � (the free parameter) and all cars
traveling at speed Vs(�). Most studies begin by analyzing the
linear stability of this uniform steady flow, and many [7–12,
14–22] then reduce the model to a Burgers, Korteweg–de Vries
(KdV), or modified Korteweg–de Vries (mKdV) equation in
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various parameter ranges. These analyses yield results which
are strikingly similar from model to model:

(1) Steady, uniform flow with spacing � is linearly stable
if and only if V ′

s (�), the derivative of the preferred velocity
function, is below some critical value which depends on the
parameters of the model. (The preferred velocity function is
often taken to have a sigmoidal, hyperbolic-tangent-like shape,
in which case this means that light traffic, with a large spacing
�, is stable, and very heavy traffic, with small �, is also stable
albeit slow, while instability can happen for intermediate traffic
densities.) “Absolute stability”—linear stability for all �—is
obtained when the slope V ′

s (�) never exceeds the critical value.
Otherwise, when V ′

s (�) just reaches the critical value, the
marginal perturbations have vanishingly small wave numbers.

(2) If the headway between cars varies only slightly from
the uniform spacing �, and only varies slightly from car to
car, then one can derive a Burgers equation for headway as a
function of time and car number, with the diffusion coefficient
proportional to the difference between V ′

s (�) and its critical
value. When uniform traffic is linearly stable, the diffusion
coefficient is positive, and the Burgers equation then describes
how slowly varying deviations from uniformity diffuse away
(via an interesting intermediate-asymptotic evolution [23]).
When uniform flow is linearly unstable, the diffusion coeffi-
cient is negative, so the Burgers equation becomes a backwards
diffusion equation. Smooth initial perturbations then grow
sharper, rapidly invalidating the assumptions under which the
Burgers equation is derived.

(3) When V ′
s (�) is close to critical, one can reduce the

model to a KdV equation for the headway, plus small correc-
tions. Of the one-parameter family of one-soliton solutions of
the KdV equation, only a single “selected” member remains
a solution once the correction terms are applied, and this
only when uniform flow is linearly stable. Thus the selected
soliton seems to mark the threshold of a nonlinear instability
of linearly stable traffic.

(4) Near the threshold of absolute stability—that is, when
the derivative of Vs at its inflection point is close to the
critical value—the headway is described by a mKdV equation,
plus correction terms. The mKdV equation has kink solutions
which represent transition zones between regions of different
traffic densities. As for the one-soliton solutions of the KdV
equation, there is a continuous family of these one-kink
solutions, and the correction terms select a single member
of this family.

The above results are often regarded as universal features of
near-uniform traffic flow, yet some caution is called for. The
reduced equations (Burgers, KdV, and mKdV) are obtained
from rather long perturbation series, which may well be
sensitive to “higher-order” effects that are typically left out
of the models. For instance, the derivations would be sensitive
to a nonlinearity in the dependence of the acceleration of car
n on its velocity. Would this lead to any important changes
to the results, or is the term (Vs − v)/τ in the OVM an
adequate representation of the tendency of a driver to relax
to the preferred velocity, as the models implicitly assume? Is it
important to allow the time constant τ to depend on headway,
as suggested by Gasser et al. [24]? The λ parameter in the
FVDM surely should depend on headway—the speed of car
n + 1 must be irrelevant if it is, say, several kilometers ahead

of car n. Does this have consequences? Are there other effects
that are relevant?

To address these questions, we analyze a very gen-
eral car-following model with time delay, embodied in the
equation [25]

dvn(t + td )

dt
= A(xn+1 − xn,vn+1 − vn,vn). (1.1)

Here td is a fixed delay time, and the acceleration function
A(h,ḣ,v) is a general function of the speed v = vn of the car
under consideration, the headway h = xn+1 − xn between it
and the next car ahead, and the rate ḣ = vn+1 − vn at which
the headway is changing. Thus in this model each driver
responds, at time t , to the position and velocity of the next car
relative to his own, and his own velocity, at some fixed reaction
time td earlier. To be a realistic model of driver behavior, the
acceleration function must satisfy some minimal conditions
which we will discuss in Sec. II. Note that the model still
assumes a single line of cars, so that the behavior of car n

depends only on the single car ahead of it, and it also assumes
a uniform road, in that there is no position dependence in the
acceleration function. The model does not include look-ahead
or look-back effects (viz., a dependence of the behavior of car
n on car n + 2 or car n − 1).

We find that many, but not all, of the results found in specific
car-following models to date are in fact universal at the level of
generality of (1.1), provided the delay time td is not too large,
in a sense that will be made precise in Sec. II. Specifically,
the onset of linear stability is correctly given by the results
from the FVDM, given appropriate definitions of the steady
velocity function Vs(�) and the parameters τ and λ, and the
derivations of the Burgers and KdV equations go through as
described above. On the other hand, some of the results above
are not universal; rather, the equation of motion (1.1) can
lead to behavior that has not been seen in specific models
in the literature that are of that general form. Most of these
new possibilities arise from the fact that the linear stability
parameters τ and λ, and therefore the critical value of V ′

s , can
be nontrivial functions of the uniform traffic spacing �.

While (1.1) still reduces to the KdV equation plus higher-
order corrections when parameters are near the onset of linear
instability, the increased generality leads to an extra term in
the coefficient of one of the correction terms, which can lead
to qualitatively different behavior. With this term absent, we
show that the corrections “select” a soliton only when uniform
traffic flow is linearly stable, and they then lead to slow
evolution of the other one-soliton solutions away from the
selected soliton. Thus the onset of linear instability is a reverse
bifurcation, and the selected soliton marks the threshold of
a finite-amplitude instability of the linearly stable flow. With
the new term, however, it is possible for this to reverse: the
corrections can select a soliton when uniform flow is linearly
unstable, with the slow evolution of other soliton solutions
taking them toward the selected soliton. The onset of linear
instability then becomes a forward bifurcation to a state with
small-amplitude jams.

The generic situation near the threshold of absolute stability
is quite different than that which has been observed previously
in specific models of the general form (1.1). Since the critical
value of V ′

s generally depends on the traffic spacing �,
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the threshold of absolute instability, where the maximum
difference between V ′

s (�) and its critical value is zero, does
not generally occur at an inflection point of Vs . The model
only reduces to a mKdV equation when these two things
do coincide. When they differ, different reduced equations
are found at the two points. Near the threshold of absolute
stability, the model reduces to a KdV equation, in the regime
that leads to small solitons. Near an inflection point of Vs , the
leading-order reduced equation is a mKdV equation plus an
extra term. The possibility of having such an extra term in this
context was anticipated by Komatsu and Sasa [18], and the new
equation was derived from a model including look-back by
Hayakawa and Nakanishi [11]. Like the mKdV equation, the
Hayakawa-Nakanishi equation admits a one-parameter family
of one-kink solutions, and the correction terms select a single
member of this family.

In Sec. II we discuss the conditions that the acceleration
function A(h,ḣ,v) must satisfy in order for (1.1) to be a
reasonable model of traffic flow, and we carry out the linear
stability analysis of steady traffic flow with a uniform spacing
� with and without a time delay. We identify the linear stability
parameters, and give general results for the onset of instability
of steady, uniform traffic flow, including the wave number of
the marginal perturbation at onset. We show that the onset
condition is identical to that with zero time delay, and the
marginal wave number is zero, when the delay time td is below
a specific limit. In Sec. III we expand (1.1) about the uniform
steady state, assuming that the headway varies only slowly
from car to car. From the leading order of this expansion we
find that the Burgers equation appears exactly as described
above. In Sec. IV we modify the expansion from Sec. III to
apply when conditions are close to the onset of instability,
deriving the KdV equation and its leading-order corrections.
We then carry out a multiple-time-scales analysis of the
one-soliton solutions of the leading-order KdV equation. In
Sec. V we again modify the expansion from Sec. III, this time
to apply to a uniform steady state that is close to an inflection
point of the steady-state velocity function. In previous models,
this has corresponded to the threshold of absolute stability,
but at the level of generality of (1.1) this correspondence
breaks down. We derive the Hayakawa-Nakanishi equation
and its corrections, and carry out the solvability analysis of the
one-kink solutions of this equation. We discuss our results in
Sec. VI.

II. STEADY STATES AND LINEAR STABILITY

Before deriving and analyzing the steady states of the model
embodied in (1.1), we first set forth some conditions which a
realistic acceleration function A(h,ḣ,v) must satisfy [25]. Here
and throughout this paper we will assume that A(h,ḣ,v) is
differentiable as many times as necessary. For a given headway
h and a given rate of change of headway ḣ, a driver will be
more prone to decelerate or less prone to accelerate the faster
his or her car is traveling. Similarly, other things being equal
a driver is more prone to accelerate the larger the headway is,
or the more rapidly it is increasing. Thus we expect to have

∂A

∂v
� 0,

∂A

∂h
� 0,

∂A

∂ḣ
� 0. (2.1)

We will in fact assume slightly more, namely that ∂A/∂v is
strictly negative, or at least that there are no finite ranges of v

over which A(h,0,v) is constant.
To find simple steady-state solutions of the model, we

assume that the cars are equally spaced, and that they all
cruise at the same speed, so they remain equally spaced. If
the headway in front of each car is �, then this uniform flow is
a steady state provided the common speed of the cars is Vs(�),
which is defined implicitly by

A(�,0,Vs(�)) = 0. (2.2)

From the first inequality in (2.1) we see that A(�,0,v) is a
nonincreasing function of v; given our assumption above that
A(h,0,v) does not remain constant over any finite range of
v, the steady flow speed for a given � will then be unique.
Thus we have a one-parameter family of steady states of the
model, labeled by the spacing �; of course, these steady-flow
solutions may be stable or unstable.

The linear stability analysis of steady-flow solutions with
no delay (td = 0) has been carried out at this level of generality
by Wilson [25] and by Orosz et al. [26], while the analysis with
nonzero delay has been considered by Orosz et al. [27]. Here
we will review the zero-delay analysis and characterize the
onset of instability with finite delay. As usual, we begin by
taking the initial positions of the cars to differ infinitesimally
from the exact steady-flow solution. Since the underlying
model is translationally invariant, we take the deviation of
xn to be a linear combination of Fourier modes exp(ikn), and
since it is time-translation invariant we take each mode to
vary exponentially in time, as exp(σ t). Substituting into the
equation of motion (1.1) and linearizing yields an equation for
the (complex) linear growth rate σ (k) of the mode of wave
number k,

σ 2τ (�)eσ td + σ = [V ′
s (�) + λ(�)σ ](eik − 1). (2.3)

The new parameters τ and λ are defined by

1

τ
= −Av(�,0,Vs(�)),

λ

τ
= Aḣ(�,0,Vs(�)), (2.4)

and differentiating the definition (2.2) of Vs with respect to �

leads to

V ′
s (�) = τAh(�,0,Vs(�)). (2.5)

Here and henceforth, primes denote derivatives with respect
to �, and subscripts denote partial derivatives of A, e.g.,
Ah ≡ ∂A/∂h, evaluated in the steady state (h = �,ḣ = 0,v =
Vs(�)). We see from the inequalities (2.1) that τ , λ, and V ′

s

must all be positive (or at least non-negative). The definitions
(2.4) agree with the notation of Ou et al. [15] for the FVDM,
but unlike in that paper λ and τ can be nontrivial functions of
the spacing �.

With no time delay, the analysis of (2.3) is straightforward
and well known. One finds that steady flow is linearly unstable
if V ′

s (�) is greater than

�c(�) ≡ 1 + 2λ(�)

2τ (�)
. (2.6)

Note that it is possible to have absolute stability if V ′
s never

exceeds �c for any �. Otherwise, one finds that as V ′
s is

increased past �c, the first perturbation to become unstable
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has wave number k = 0. Expanding (2.3) as a power series
in k shows that the linear growth rate for small k then obeys
σ (k) = ikV ′

s (�) + O(k2), so that as the perturbation grows or
decays, it moves at a rate (in cars per unit time) of V ′

s (�) in
the upstream direction relative to the cars. Since the cars are
a distance � apart, at least before the perturbation develops,
this is a distance per unit time of �V ′

s (�) relative to the cars.
And since the cars are moving in the downstream direction
at Vs(�) relative to the road, the perturbation moves relative
to the road at a velocity of approximately Vs(�) − �V ′

s (�),
which may be positive (downstream) or negative (upstream).

We will show below that a small delay time does not change
this picture; on the other hand, a moderately large delay time
can change it dramatically. To see an extreme example of
the latter, consider the basic stability relation (2.3) for k = 0
perturbations. These satisfy either σ = 0 or

(σ td )eσ td = −td/τ. (2.7)

When there is no time delay, this equation describes a linearly
stable perturbation with growth rate σ = −1/τ , but it is
straightforward to show that it has roots with positive real
parts if td/τ exceeds π/2. Thus for a delay this long, steady
flow is unstable no matter what the values of V ′

s and λ are.
For shorter delay times, we identify the onset of instability

of steady flow by first looking for conditions under which
a perturbation with a given wave number k is marginally
unstable, and then seeking the minimum value of the control
parameter V ′

s /�c for which some perturbation is marginal.
Specifically, we first set the linear growth rate in (2.3) to
something purely imaginary, σ td = iθ , then separate the real
and imaginary parts to obtain

tan
k

2
= θ cos θ

(1 + 2λ)(td/τ ) − θ sin θ
, (2.8a)

V ′
s

�c

= τ 2θ2 − 2(1 + λ)tdτθ sin θ + (1 + 2λ)t2
d

(1 + 2λ)t2
d cos θ

. (2.8b)

These can be regarded as parametric equations for the
critical curves: given a θ , and with set values of the delay time
td and the parameters λ and τ (determined from the traffic
spacing �), they give the wave number k of the perturbation
whose linear growth rate is −iθ/td and the critical value of
the control parameter V ′

s /�c at which it becomes unstable. A
plot of the critical control parameter versus k typically has a
minimum which occurs for some θ below π/2. The value at
this minimum marks the onset of linear instability of steady
flow: when the control parameter is below it, no perturbation
is marginal, but rather all perturbations decay.

For small θ , we find from (2.8a) and (2.8b) that perturba-
tions with small wave numbers,

k = 2τ

(1 + 2λ)td
θ + O(θ3), (2.9)

are marginally unstable for

V ′
s

�c

= 1 + P τ 2

(1 + 2λ)t2
d

θ2 + O(θ4), (2.10)

where

P = 1 − 2(1 + λ)(td/τ ) + 1 + 2λ

2
(td/τ )2. (2.11)

If P is positive, then the critical control parameter has a local
minimum at θ = 0. This occurs provided the delay time is
sufficiently short, specifically if it satisfies

td

τ
< 2

1 + λ −
√

1
2 + λ + λ2

1 + 2λ
. (2.12)

In fact, with some algebraic effort we can show that when
td/τ is below this limit, θ = 0 gives the global minimum of the
critical control parameter. Thus when (2.12) holds, the results
for onset of linear stability are identical to the results with no
delay: it occurs at V ′

s = �c, with k = 0 perturbations being the
first to go unstable and the linear growth rates of long-wave
perturbations going as σ ≈ i�ck.

Otherwise, we find the θ at which the critical control
parameter is minimized by setting the θ derivative of (2.8b) to
zero, which yields

0 = (2θ cos θ + θ2 sin θ ) − 2(1 + λ)(td/τ )(θ + cos θ ) sin θ

+ (1 + 2λ)(td/τ )2 sin θ. (2.13)

Our results for the onset of instability are shown in Fig. 1,
which plots the parameters λ on the horizontal axis and td/τ

on the vertical axis. Solid and dotted lines show, respectively,
values of the control parameter above which steady flow is
linearly unstable for given λ and td/τ , and the wave numbers
at which the first instability appears.

The lowest solid curve marks the upper boundary of the
region given by (2.12), in which instability sets in at V ′

s = �c

and k = 0. Higher solid curves are found by solving (2.8b) and
(2.13) simultaneously for λ and td/τ with successively smaller
values of V ′

s /�. Along the topmost curve, the minimum
critical control parameter is zero, and above this curve it would
be negative. Since both V ′

s and �c must be positive, above this

λ(Δ)

td/τ(Δ)

0

π/6

π/3

π/2

0 0.5 1.0 1.5 2.0

FIG. 1. Stability diagram for steady traffic flow with a uniform
spacing �. The delay time is td and the parameters τ (�) and λ(�)
are defined in (2.4). Solid curves mark parameter values for which
steady flow first becomes linearly unstable when the control parameter
V ′

s (�)/�c(�) equals (upwards from the bottom) 1.0, 0.75, 0.50, 0.25,
and 0.0. Dashed curves mark parameter values for which the first
mode to become unstable has wave number (upwards and left from
the bottom) π/3, π/2, 2π/3, 3π/4, tan−1(−2/π ) = 0.819 546π , π ,
and 7π/6. For all parameter values below the lowest solid curve,
instability sets in at V ′

s (�)/�c(�) = 1 with wave number 0. Above
the highest solid curve, steady flow is always linearly unstable.
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topmost curve steady flow would be absolutely unstable: it
would be linearly unstable no matter how small V ′

s is.
The dotted curves mark points in parameter space at which

the first instability occurs at a given wave number, found by
solving (2.8a) and (2.13) simultaneously for λ and td/τ . For
k → 0 the curve coincides with the lowest solid curve, and
for higher k the curves shift upward and to the left. Each
curve crosses the absolute instability boundary V ′

s = 0, up to
k = tan−1(−2/π ) = 0.819 546 π . From this wave number up
to k = tan−1(π/2) = 1.319 546 π , the dotted curves approach
the point λ = 0, td/τ = π/2 asymptotically as θ → π/2. Note
that there is nothing special about the “pairing” mode k = π .

We see, then, that simple car-following models like the
FVDM [15] do capture the important results of linear stability
analysis for the much more general model embodied in (1.1),
provided the delay time satisfies (2.12): steady traffic flow with
constant spacing � is linearly stable when V ′

s (�) is less than
�c(�), defined by (2.6) and (2.4); at the onset of instability it
is the long-wavelength (k = 0) perturbations that first become
unstable; at onset these perturbations move upstream through
the line of cars at a rate of V ′

s (�). This is not too surprising,
since the FVDM is essentially the general model (albeit with no
time delay) expanded to linear order in the car velocities. What
is different here, however, is the possibility that the stability
limit �c can be a nontrivial function of �. In particular, the
criterion for absolute stability—in which steady flow is linearly
stable for all �—is that the maximum value of V ′

s (�) − �c(�)
be negative, not that the slope of Vs at its inflection point be less
than �c. This will turn out to have important consequences for
the reduced equations that approximate the full model, both
near the onset of stability and near the threshold of absolute
stability.

III. LONG-WAVE PERTURBATIONS

As we saw from the linear stability analysis, when traffic
conditions are such that steady flow is just on the verge
of instability and the delay time is not too large, it is the
long-wavelength perturbations that are the first to grow. It is
therefore of interest to approximate the full model in a way that
focuses on these perturbations. To this end, we assume that the
deviation of the cars’ actual positions from their steady-flow
positions varies slowly from one car to the next. By expanding
(2.3) for small wave number k, we find that the corresponding
linear growth rate is given by

σ (k) = V ′
s (�)[ik + (V ′

s − �c)τk2 + O(k3)], (3.1)

so that each mode grows or decays at a rate proportional to k2,
while moving relative to traffic at a rate (in cars per unit time)
of −V ′

s (�). Motivated by these considerations we write

xn = n� + Vs(�)t + f (z,T ), (3.2)

where

z ≡ ε[n + V ′
s (�)t], T ≡ ε2t. (3.3)

Here, ε is a small but otherwise arbitrary parameter and f and
its derivatives are taken to be of order unity. Thus in order for
f to change by an amount of order unity, the car number n

must change by an amount of order ε−1, so that ε measures
the slowness of the variation of the position deviation f along
the line of cars. This ansatz amounts to assuming that there is

a pattern of deviations of headway from the uniform spacing
�, that this pattern propagates upstream through the line of
cars at a rate V ′

s (�), and that its shape changes slowly as it
propagates.

If f is of order unity, then the velocities of the cars and the
spacings between them deviate from their steady-flow values
by order ε,

vn = Vs(�) + εV ′
s (�)fz + ε2fT , (3.4)

xn+1 − xn = � + εfz + 1
2ε2fzz + · · · , (3.5)

where subscripts again denote partial derivatives. As we see,
the function

g(z,T ) ≡ fz(z,T ) (3.6)

then gives the leading-order deviation in both headway and
velocity from the exact steady state; we will have occasion to
express many of our results in terms of it.

To derive an evolution equation for f , we substitute the
ansatz (3.2) and (3.3) into the equation of motion (1.1)
and expand in powers of ε. The calculation is lengthy but
straightforward; carrying it out to fourth order yields (after
canceling an overall factor ε2)

fT = Dfzz + 1
2V ′′

s f 2
z + ε

[
C11T fzT + C11fzzz + C12T fzfT

+C12fzfzz + C13f
3
z

] + ε2
[
C21fzzzz + C22afzfzzz

+C22bf
2
zz + C23f

2
z fzz + C24f

4
z + · · · ] + O(ε3).

(3.7)

The omitted terms in the ε2 correction all involve T derivatives
of f , and turn out not to affect any of our analysis. The various
coefficients are given by

D = (�c − V ′
s )τV ′

s , (3.8a)

C11T = λ − 2τV ′
s , (3.8b)

C11 =
(

1 + 3λ

6
− τ tdV

′2
s

)
V ′

s , (3.8c)

C12T = τ (Ahv + AvvV
′
s ) = τ ′

τ
, (3.8d)

C12 = τ

2

[
Ahh + (Ahv + 2Ahḣ)V ′

s + 2AḣvV
′2
s

]

= 1

2
(V ′′

s + 2τV ′
s �

′
c), (3.8e)

C13 = τ

6

(
Ahhh + 3AhhvV

′
s + 3AhvvV

′2
s + AvvvV

′3
s

)

= 1

6

(
V ′′′

s − 3τ ′

τ
V ′′

s

)
, (3.8f)

C21 =
(

1 + 4λ

24
− 1

2
τ t2

dV ′3
s

)
V ′

s , (3.8g)

C22a = τ

6

[
Ahh + (Ahv + 3Ahḣ)V ′

s + 3AḣvV
′2
s

]

= 1

6

[
V ′′

s + τV ′
s

(
1 + 3λ

τ

)′]
, (3.8h)

C22b = τ

8

(
Ahh + 4AhḣV

′
s + 4AḣḣV

′2
s

)

= 1

8

[
V ′′

s + 4τV ′
s �

′
c + τV ′2

s (Avv − 4Aḣv + 4Aḣḣ)
]
,

(3.8i)
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C23 = τ

4

[
Ahhh + 2(Ahhv + Ahhḣ)V ′

s + (Ahvv + 4Ahḣv)V ′2
s

+ 2AḣvvV
′3
s

]

= 1

4

[
V ′′′

s − 3τ ′

τ
V ′′

s + 2τV ′
s �

′′
c + τV ′

s V
′′
s (Avv − 2Aḣv)

]
,

(3.8j)

C24 = τ

24

(
Ahhhh + 4AhhhvV

′
s + 6AhhvvV

′2
s + 4AhvvvV

′3
s

+AvvvvV
′4
s

)

= 1

24

[
V ′′′′

s − 4τ ′

τ
V ′′′

s + 6τ

(
1

τ

)′′
V ′′

s + 3τAvvV
′′2
s

]
,

(3.8k)

where all derivatives of A are evaluated in the steady state, and
derivatives of Vs , τ , λ, and �c = (1 + 2λ)/2τ are evaluated at
�. In the OVM and FVDM, the acceleration function A(h,ḣ,v)
is taken to be linear in the velocities ḣ and v, with coefficients
that are independent of h. For these models, then, τ , λ, and �c

are constants, and many of the coefficients above simplify
considerably. As we will soon see, the fact that C12 then
reduces to V ′′

s /2 will prove particularly consequential. On the
other hand, features that arise due to nonzero � derivatives of
τ , λ, and �c will be novel.

According to (3.7), the position deviation f obeys a Burgers
equation with corrections,

fT = Dfzz + 1
2V ′′

s f 2
z + O(ε), (3.9)

or, after differentiating with respect to z and using the definition
(3.6),

gT = Dgzz + V ′′
s ggz + O(ε). (3.10)

This result has been obtained previously for the OVM [14],
the FVDM [15], and the COVM [7]; the present calculation
shows that the derivation of the Burgers equation as well as the
identification of the coefficients in terms of the steady velocity
function Vs continue to be valid even at the level of generality
of (1.1).

Near the onset of instability of steady traffic, D is small.
Thus, in this regime, the neglected order-ε corrections might
have effects comparable in size to those of the linear term in
the Burgers equation. We turn next to an examination of this
situation.

IV. NEAR THE ONSET OF INSTABILITY

Suppose the delay time is short enough to satisfy (2.12),
and parameters are near the onset of instability. Specifically,
we write

V ′
s (�) = �c(�) + ε2δ, (4.1)

where ε is small and δ is arbitrary; we could (but will not)
choose δ to be +1 when steady flow is slightly unstable or
−1 when it is slightly stable, which would then give a specific
meaning to the previously arbitrary small parameter ε. The
unstable perturbations then have wave numbers of order ε,
and from the expansion (3.1) we see that their amplitudes
grow at rates of order ε3. Thus we retain the definition of z in

(3.3), but replace the definition of T by

T ≡ ε3t. (4.2)

We see from (3.8a) that D is of order ε2, so in (3.7), either f

must grow without bound or the f 2
z term must eventually be

balanced by the correction terms; in the latter case, the size of
f must then be of order ε. Thus we modify the original ansatz
(3.2) to read

xn = n� + Vs(�)t + εf (z,T ). (4.3)

We may now substitute this new ansatz into the equation
of motion (1.1) and expand to fifth order in ε. Equivalently,
however, we can simply note that the new scalings have the
effect of multiplying each f in (3.7) by an additional factor of ε

and also multiplying each T derivative by an additional ε. After
canceling an overall factor of ε2, this then gives, to order ε,

fT = C11fzzz + 1

2
V ′′

s f 2
z + ε

[
− 1 + 2λ

2
δfzz

+C11T fzT + C12fzfzz + C21fzzzz

]
. (4.4)

The leading order of this evolution equation is related to the
Korteweg–de Vries equation. To put it in the standard KdV
form, we first take its z derivative and rewrite it in terms
of g ≡ fz. In the corrections, we then replace gT with the
leading-order terms, substitute the explicit expressions for the
coefficients, and use the fact that V ′

s is close to �c. This gives

gT = C11gzzz + V ′′
s ggz − 1 + 2λ

2
ε

×
[
gδ + 1 + 2λ

4
PV ′

s gzz + 1

2
(V ′′

s − �′
c)g2

]
zz

, (4.5)

where P , given by (2.11), is positive for delay times short
enough to satisfy (2.12); one can show that C11 is then positive
as well.

One-soliton solutions of the KdV equation—the leading
order of (4.5)—describe local increases or decreases in the car
density that preserve their form while propagating along the
line of cars. There is a one-parameter family of these solutions,
given explicitly by

g(0)(z,T ; q) = Mq2sech2(qz + q3uT ), (4.6)

where the soliton parameter q is free, and

M = 12C11

V ′′
s

, u = 4C11. (4.7)

Recall that z specifies the location of the soliton in a reference
frame moving upstream at a rate (cars per unit time) of V ′

s ,
so the effect of the u in this expression is to increase that rate
by ε2q2u. The amplitude M is positive if V ′′

s is positive; in
this case the soliton represents a local rarefaction of traffic,
with both the headway and speed being higher in the center
of the sech2 lump. On the other hand, if V ′′

s is negative,
then the soliton describes a local jam, a region where cars
move more slowly and are closer together than average. For
larger q the disturbance is larger in amplitude but smaller
in spatial extent, and moves more rapidly through the line
of traffic. The arbitrariness of q reflects the invariance of
the KdV equation under the simultaneous rescalings z → qz,
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T → q3T , g → q2g. This invariance, in turn, reflects the
arbitrariness of the small parameter ε: replacing ε with qε

implements the rescalings.
The correction term εgzzδ in (4.5) breaks the invariance

of the equation under rescaling, and so one might expect that
the corrections may break the continuous family of solutions
(4.6) down to a discrete set, or possibly a single solution.
That is, we expect that only a discrete subset of the family
of ε = 0 solutions actually represents the ε → 0 limits of
solutions of the full equation (4.5). Typically, one derives a
solvability condition by linearizing (4.5) about the zero-order
solution, and the surviving solutions have q values that satisfy
that solvability condition. However, it is more instructive to
calculate instead how the correction terms cause the value of
q to evolve in time [28,29]. The solvability condition gives no
indication of whether the “selected” q is stable or unstable,
while this multiple-time-scales approach does have something
to say about this.

To begin the calculation, we assume that we can write the
first-order solution to (4.5) in the form

g(z,T ) = g(0)(z,T ; q(εT )) + εg(1)(z,T ). (4.8)

That is, we allow the soliton parameter q to evolve slowly in
time. Substituting this into (4.5) and expanding to first order
gives

Lg(1) + ∂g(0)

∂q
q̇ = −1 + 2λ

2

[
g(0)δ + 1 + 2λ

4
PV ′

s g
(0)
zz

+ 1

2
(V ′′

s − �′
c)g(0)2

]
zz

, (4.9)

where q̇ denotes the derivative of q with respect to the slow
time variable εT , and the linear operator L is given by

L = ∂

∂T
− C11

∂3

∂z3
− V ′′

s

∂

∂z
g(0). (4.10)

The fact that there is a continuous family of solutions g(0) of
the zero-order problem suggests that there will be a function
that is annihilated by the adjoint operator L†, and in fact this
function turns out to be g(0) itself. Explicitly, with an inner
product that consists of integrating over all z and averaging
over all T , the adjoint operator is

L† = − ∂

∂T
+ C11

∂3

∂z3
+ g(0)V ′′

s

∂

∂z
. (4.11)

Applying this to g(0) gives zero because g(0) satisfies (4.5) to
leading order. Thus if we take the inner product of g(0) with
both sides of (4.9), the term involving g(1) vanishes; evaluating
the remaining inner products then yields

q̇ = 4[1 + 2λ(�)]

15
q3δ + 4[1 + 2λ(�)]

105

×
{
−5[1 + 2λ(�)]PV ′

s (�)+48C11
V ′′

s (�) − �′
c(�)

V ′′
s (�)

}
q5.

(4.12)

The usual solvability condition is simply the right hand side of
this set equal to zero; it locates the “selected” q values which
are not moved by the correction terms. Keeping the q̇ term
on the left reveals whether q’s near those values are driven

toward or away from them. If we set �′
c = 0 and td = 0 in this

equation, then the selected q agrees with the solvability result
of Ou et al. [15] for the FVDM.

Note that V ′′
s drops out of (4.12) completely if �′

c vanishes.
This is because for �′

c = 0, both the quadratic terms in (4.5),
and none of the linear terms, carry factors of V ′′

s . As a result,
V ′′

s can be scaled out of the equation completely. For nonzero
�′

c, on the other hand, there is a role for V ′′
s to play.

In the OVM, the FVDM, and the COVM, �c is a constant, so
�′

c = 0 and the coefficient of q5 on the right side of (4.12) can
be shown to be positive when the delay time satisfies (2.12).
Thus for δ > 0—the range for which steady traffic flow is
linearly unstable—(4.12) always drives the value of q higher
and higher, in fact diverging in finite time. This means that the
actual pattern of traffic flow evolves out of the regime in which
the KdV equation (4.5) is valid. On the other hand, for δ < 0
there is a nontrivial fixed point of (4.12) with q ∝ |δ|1/2. If q

starts below this, then it decreases, decaying to zero as T −1/2,
while if q starts above the fixed point, then it is again driven
to infinity. Thus the “selected” q actually marks the threshold
of a finite-amplitude instability of steady traffic, even when
steady flow is linearly stable.

New possibilities arise when �′
c is nonzero, because the

coefficient of q5 in (4.12) can be negative. Should that be
the case, there would be a nontrivial fixed point when δ is
positive. Thus when steady traffic flow is (slightly) linearly
unstable, the instability would lead to small-amplitude jams
described by soliton solutions of the KdV equation (4.5). When
steady flow is linearly stable, so δ < 0, then (4.12) would have
q decay to zero no matter where it started; there would be no
hint of a finite-amplitude instability in this case.

Note that at the threshold of absolute stability we have V ′′
s =

�′
c. In this case the coefficient of q5 in (4.12) is manifestly

negative. In general, the calculation above then predicts that
traffic will be in the regime where small-amplitude jams are
seen. This fails, however, if the threshold of absolute stability
is at or near an inflection point of Vs , as is the case in the OVM,
the FVDM, and the COVM, since one of the coefficients in the
leading-order equation would then be small.

V. NEAR AN INFLECTION POINT

The picture changes dramatically if, in addition to being
near the onset of instability, the traffic spacing � is near an
inflection point �i of the steady-state velocity function Vs .
Suppose V ′

s (�i) is within order ε2 of the instability limit,

V ′
s (�i) = �c(�i) + ε2δi . (5.1)

Let � itself be within order ε2 of the inflection point, say

� = �i + ε2β. (5.2)

It follows that V ′′
s (�) is also small, specifically

V ′′
s (�) = ε2V ′′′

s (�i)β. (5.3)

Note that if V ′
s has a maximum at �i , then V ′′′

s (�) is negative.
Since V ′′

s (�i) vanishes, it follows that V ′
s (�) differs from

V ′
s (�i) only by order ε4. From (3.8a) we then find

D = −1 + 2λ

2
ε2δ with δ = δi − �′

cβ (5.4)
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with corrections of order ε4. As before, steady flow is linearly
unstable for positive δ, stable for negative δ.

From the expansion (3.7) we see that if both D and V ′′
s

are of order ε2, then fT is of order ε, and the leading-order
terms are the three order-ε terms on the right side that do
not contain T derivatives. It is appropriate, then, to return to
the original ansatz (3.2) for xn, but retain the new definition

(4.2) of the slow time T . As in the preceding section, we
may substitute all this into the equation of motion (1.1) and
expand (to fifth order in ε), or we may simply take the
general expansion (3.7) and multiply each T derivative by
an additional factor ε. After substituting (5.4) for D and (5.3)
for V ′′

s and canceling an overall factor of ε, this yields, to first
order,

fT = C11fzzz + C12fzfzz + C13f
3
z + ε

[
− 1 + 2λ

2
fzzδ + β

2
V ′′′

s f 2
z + C11T fzT + C12T fzfT + C21fzzzz

+C22afzfzzz + C22bf
2
zz + C23f

2
z fzz + C24f

4
z

]
. (5.5)

To simplify the corrections, we again substitute the leading-order terms for each fT in the correction. We then differentiate with
respect to z and write the resulting equation in terms of g to obtain

gT = C11gzzz + 1 + 2λ

4
�′

c(g2)zz + 1

6
V ′′′

s (g3)z + ε

[
− 1 + 2λ

2
gzδ + β

2
V ′′′

s g2 − (1 + 2λ)2

8
PV ′

s gzzz + C̃22aggzz + C̃22bg
2
z

+ C̃23g
2gz + 1

24
V ′′′′

s g4

]
z

, (5.6)

with the new coefficients given by

C̃22a = C22a + C12T C11 + C11T C12

= − (1 + 2λ)2

4

(
1 + λ

τ

)′
− �3

c tdτ
′, (5.7a)

C̃22b = C22b + C11T C12

= (1 + 2λ)2

4

[
− �′

c + Avv − 4Avḣ + 4Aḣḣ

8τ

]
, (5.7b)

C̃23 = C23 + 3C11T C13 + C12T C12

= 1 + 2λ

4

[
(�c − V ′

s )′′ + 2
τ ′

τ
�′

c

]
. (5.7c)

Note that C̃22a and C̃22b vanish under the assumptions
underlying the OVM and FVDM.

The leading order of (5.6) was derived by Hayakawa and
Nakanishi [11] for a model that includes look-back. Note that
it reduces to the modified Korteweg–de Vries equation only
if �′

c vanishes or is at most of order ε. Thus, the mKdV
equation only appears when both V ′′

s and �′
c are small for a

given �. That is, the mKdV equation is not a generic feature
of car-following models. Rather, it appears only in those cases
for which the threshold of absolute stability occurs at or near
an inflection point of the steady-state velocity function. If
the inflection point and the threshold of absolute stability are
not close together, then we obtain a KdV equation near the
former (as we found in the preceding section) and the more
general Hayakawa-Nakanishi equation (5.6) near the latter.
Equation (5.6) does, however, share some important features
of the mKdV equation.

In those cases where the mKdV equation does apply, its
hyperbolic-tangent “kink” solutions are of particular interest.

In the context of traffic, a one-kink solution describes a
“domain wall” separating regions of uniform traffic flow with
different speeds and densities. The mKdV equation has a
one-parameter family of such solutions, and one can carry out
a solvability calculation to determine which are preserved by
the correction terms. Like the mKdV equation, the Hayakawa-
Nakanishi equation (5.6) also admits a one-parameter family
of kink solutions. Remarkably, in the general case it is also
possible to carry out the perturbation calculation to find
members of the family that persist when the order-ε corrections
are included [11].

One-kink solutions of the leading order of (5.6) are given
by

g(0)(z,T ; q) = Mq tanh(qz + q3uT ), (5.8)

where M and u are given by

V ′′′
s M2 − 3(1 + 2λ)�′

cM + 12C11 = 0, u = 1
6V ′′′

s M2.

(5.9)

Since V ′′′
s is negative and C11 is positive, there are two

solutions for M , one positive and one negative. With u being
negative, both move relative to traffic slightly more slowly
than V ′

s . As was the case for the KdV solitons, the various
powers of q in (5.8) reflect the invariance of the leading-order
evolution equation under the simultaneous rescalings z → qz,
T → q3T , g → q−1g, which in turn reflects the arbitrariness
of the small parameter ε.

To see the effect of the order-ε corrections on the kink
solutions, we would like to carry out a perturbation calculation
analogous to the one in the preceding section. That is, we write
the first-order solution as

g(z,T ) = g(0)(z,T ; q(εT )) + εg(1)(z,T ), (5.10)
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allowing the parameter q to evolve slowly in time, and
substitute into (5.6). The linear operator L acting on g(1) is
now

L = ∂

∂T
− C11

∂3

∂z3
− (1 + 2λ)

2
�′

c

∂2

∂z2
g(0) − 1

2
V ′′′

s

∂

∂z
g(0)2.

(5.11)

Next we seek the function s(z,T ) which is annihilated by the
adjoint operator L†,

0 = L†s = −sT + C11szzz − (1 + 2λ)

2
�′

cg
(0)szz

+ 1

2
V ′′′

s g(0)2sz. (5.12)

This equation can, in fact, be solved using standard techniques;
we find that s is given by

s = s(qz + q3uT ) with
ds(y)

dy
= sech2+py, (5.13)

the exponent p being given by

p = −M(1 + 2λ)�′
c

2C11
. (5.14)

Note that for �′
c = 0 we have simply p = 0, so s reduces to

g(0) as in the preceding section.
We now expand (5.6) about the one-kink solution and take

the inner product of the resulting equation with s to obtain
the evolution equation for the parameter q. To evaluate the
various inner products, we change variables to y = qz + q3uT

and integrate by parts, noticing that the boundary terms do
not vanish because neither s nor the g(0)2 and g(0)4 terms
in the correction vanish at infinity. The resulting integrals
can be evaluated explicitly in terms of gamma functions.
Unfortunately, the inner product of ∂g(0)/∂q with s diverges—
whether or not �′

c vanishes. Thus the best we can do is write
down the solvability condition, which identifies the single q

value for which the g(0) given by (5.8) is the ε → 0 limit of
the perturbed solution. Specifically, this yields

(1 + 2λ)δ + V ′′′
s Mβ = q2

5 + 2p

{
(1 + 2λ)2(1 + p)V ′

s + 4[(2 + p)C̃22b − C̃22a]M + 2C̃23M
2 − 1

6
(3 + p)V ′′′′

s M3

}
. (5.15)

For the FVDM, p, C̃22a , and C̃22b all vanish, and C̃23 is equal
to −(1 + 2λ)V ′′′

s /4. The result above then agrees with that of
Ou et al. [15], provided we set β and V ′′′′

s to zero, as they do
(explicitly for β and implicitly for V ′′′′

s ).
For q values which do not satisfy the solvability equation,

the above perturbation calculation is unable to determine what
effect the correction terms have on the solution. Thus the
solvability approach is silent on the question of how, and
indeed whether, the “selected” kink is established.

VI. DISCUSSION

We have examined a very general car-following model
embodied in (1.1), in which each car’s present acceleration
is some general function of its speed, the headway between
it and the next car ahead of it, and the rate of change of
the headway, all evaluated at some time td before the present
moment. The model is subject to monotonicity assumptions
(2.1) that rule out unreasonable descriptions of driver behavior,
and an assumption that sufficiently many derivatives exist. This
form subsumes many of the specific car-following models that
have been studied in the past, but allows for features that are
seldom accounted for. For example, the acceleration function is
usually taken to be linear in the car velocities, with coefficients
that are independent of headway [4,6]; the model here relaxes
these assumptions.

Our aim has been to investigate the extent to which the
results which have been obtained from specific car-following
models in the past are generic; that is, which of these results
continue to hold at the level of generality of (1.1). In particular,
a number of results have been obtained by reducing these
models to Korteweg–de Vries (KdV) or modified Korteweg–de

Vries (mKdV) equations in particularly important parameter
ranges. The reductions, however, proceed from rather long
perturbation series, which may well be sensitive to features
such as nonlinear velocity dependence that have been left out
of the models.

We find that a number of the results of specific car-following
models are in fact universal, provided the delay time td is not
too large. The full velocity difference model (FVDM) of Jiang
et al. [6,15] is sufficiently general to capture many of these
results; no further car-following models within the framework
of (1.1) can reach conclusions different than these:

(1) Flow with a uniform spacing � between cars can
proceed at a steady speed Vs(�), which in general is defined
implicitly from the acceleration function via (2.2).

(2) Uniform flow is linearly stable provided the steady-
state velocity function Vs(�) satisfies V ′

s (�) < �c(�) ≡ (1 +
2λ)/2τ , where the �-dependent parameters λ and τ are given
by (2.4). It is then possible to have “absolute stability,” where
steady flow is stable, at least linearly, for all �. Otherwise,
at the onset of instability, where V ′

s = �c, the marginal
perturbation has wave number k = 0 and moves backward
through the line of traffic at a rate, in cars per unit time, of
V ′

s (�).
(3) On a long spatial scale, the model can be reduced to a

Burgers equation, with a diffusion coefficient proportional to
�c − V ′

s and a quadratic coefficient proportional to V ′′
s (�).

(4) Near the onset of instability, when V ′
s (�) is close to

�c(�), the model can be reduced further to a KdV equation
plus higher-order corrections. If we restrict our attention to
the family of one-soliton solutions of the KdV equation, we
find that the correction terms drive an evolution of the soliton
parameter, with at most a single member of the family being a
fixed point of that evolution.
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All these conclusions, as well as the new ones discussed
below, hold when there is no time delay, or when the delay
time is shorter than the limit given in (2.12). For delay
times longer than this, we have given a full accounting of
the onset of linear instability. Figure 1 shows the value
of the control parameter V ′

s /�c at which steady uniform
flow becomes linearly unstable, and the wave number of the
marginally unstable mode, for given delay time and values of
the parameters λ and τ . The curves are found parametrically
from (2.8a), (2.8b), and (2.13). This analysis complements the
results of Orosz et al. [27]. We find in particular that if the delay
time is too long, then we can have absolute instability, where
steady uniform flow is always linearly unstable no matter how
small V ′

s (�) is. For a specific spacing, the delay time above
which this occurs is � dependent, but is at most πτ (�)/2.

In addition to showing that the conclusions above are
generic at the level of (1.1), we have found a number of new
possibilities that are made possible by the greater generality of
the model. Most of these results are consequences of the fact
that the linear stability parameters λ and τ can be nontrivial
functions of the spacing �. Most models in the literature are
special cases of (1.1) which make these parameters constant
as part of the formulation of the model, so they have been
incapable of producing the results we describe.

Near the onset of instability, the possibility of �c having
a nontrivial � dependence leads to a crucial change in the
coefficient of one of the correction terms to the KdV equation.
When �c is a constant, the “selected” one-soliton solution
exists only when steady flow is linearly stable, and the
correction terms drive the soliton parameter away from its
“selected” value—toward zero if it starts out lower, toward
infinity if it starts higher. Thus the selected soliton marks
the threshold of a finite-amplitude instability of the linearly
stable steady flow. When �′

c/V ′′
s is large enough, on the other

hand, we have the reverse situation: the selected soliton exists
only when steady flow is linearly unstable, and the corrections
drive the soliton parameter toward its selected value. In such a
case the onset of linear instability of steady flow is a forward
bifurcation to a state which has small-amplitude jams. Again,
this will not be seen in models in which the linear stability
parameters are constants independent of spacing.

In this connection it is worth pointing out that a multiple-
time-scales approach [28,29] can be more illuminating than a
simple solvability calculation. The latter detects the selected
soliton, but the former also gives information about the
evolution of other, nonselected solitons and directly speaks to
whether the selected soliton is stable or unstable. Note also that
the rate at which the soliton parameter evolves is proportional
to the square of V ′

s − �c. Thus, even if a soliton is in the slow
process of decaying to zero, it can appear to be a persistent
feature of the traffic flow.

Absolute stability, i.e., linear stability of all uniform
steady-flow solutions, occurs if V ′

s (�) − �c(�) is negative
for all �, and the threshold of absolute stability is where
the maximum value of V ′

s (�) − �c(�) is zero. If the linear
stability parameters are constants, then this is where the
value of V ′

s at an inflection point of Vs is equal to the
presumed-constant �c, and near this point the model can then
be reduced to a mKdV equation. In the more general case,

however, the threshold of absolute stability does not coincide
with an inflection point of Vs . When the two differ, we find that
the mKdV equation does not apply near either point. Instead,
near the threshold of absolute stability the model continues
to reduce to a KdV equation, with parameters automatically
in the range that leads to stable, small-amplitude jams. Near
the inflection point, on the other hand, there is a different
reduced equation, which is the mKdV equation plus an extra
quadratic term. This equation has been found by Hayakawa
and Nakanishi [11] in a model that includes look-back. Again,
the fact that most models in the literature make �c a constant
has led to the misleading appearance that the mKdV equation is
a universal description of traffic near the threshold of absolute
stability.

Like the mKdV equation, the Hayakawa-Nakanishi equa-
tion admits a one-parameter family of kink solutions, and the
correction terms select a single one of these solutions that
is preserved by the dynamics. When applying the correction
terms to either equation, however, the multiple-time-scales
approach fails, so it is not straightforward to see how evolution
happens within the family of one-kink solutions. This comes
about because the slow time derivative of the kink parameter
is multiplied by a coefficient that turns out to diverge. This
divergence, in turn, seems to come from the fact that changing
the kink parameter involves changing the asymptotic values of
the kink, i.e., changing the traffic spacing infinitely far from the
location of the kink itself. This, and other aspects of the mKdV
equation, will be the focus of future work.

It is rather remarkable that although the model allows all
sorts of effects that have been left out of car-following models
in the past, it turns out that almost all the generality of the
reductions of the model to Burgers, KdV, and mKdV-like equa-
tions can be captured by merely allowing the linear stability
parameters λ and τ to depend on the spacing �. That is, all
the coefficients in the Burgers equation, the KdV equation
and its first-order corrections, and the Hayakawa-Nakanishi
equation can be written in terms of these parameters and the
steady-state velocity Vs , and their derivatives with respect to
�. The only exception is that one of the correction terms to
the Hayakawa-Nakanishi equation involves nonlinear velocity
dependencies, i.e., second derivatives of the acceleration
function in (1.1) with respect to the velocities of the cars, that
do not combine to form � derivatives of the linear stability
parameters.

In conclusion, we wish to point out that although the forms
of the terms appearing in reduced equations like the KdV
and mKdV are determined only by the scalings that go into
their derivation, the coefficients of those terms are sensitive
to details of the model. The behavior of the solutions of
those reduced equations can be sensitive to the values, and
especially to the signs, of those coefficients. Thus implicit
assumptions made when formulating the model can constrain
the coefficients (often constraining them to be zero!), and this
can then have important quantitative and qualitative effects
on the kind of behavior predicted by the resulting reduced
equations. Without analyzing a general model like (1.1) it is not
clear which assumptions have important effects, and common
results coming from specific models may misleadingly appear
universal.
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