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Bistability in a stochastic RNA-mediated gene network
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Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes.
A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription
factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets
the first gene’s transcript. Here, we investigate the properties of this motif in a stochastic model which takes
the low copy numbers of the RNA components into account. First, we examine the conditions for stability
of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals,
mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve
long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of
the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though
sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that
asymmetry between the two interactions forming the switch allows an external input to induce the transition from
“high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize
that this asymmetric switching property allows these circuits to be more sensitive to one external input, without
sacrificing the stability of one of the noisy attractors.
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I. INTRODUCTION

Small noncoding regulatory RNAs (srRNAs) have been
found targeting the majority of eukaryotic genomes [1], and
are abundant in prokaryotes as well [2,3]. In bacteria, srRNAs
generally modify the expression of their target genes by
binding to the 5′ region of the messenger RNA, and inhibit
translation by blocking the ribosome binding site [3], usually
resulting in the degradation of the target mRNA and often
also the srRNA [3]. This regulation scheme differs from
transcription factor (TF) based regulation in several aspects,
the most important being that when the target is expressed
at a lower rate than the srRNA, it is nearly fully silenced [4],
while above the srRNA production rate, the target’s expression
increases linearly. This regulatory function is highly nonlinear
and is believed to be responsible for several complex behaviors
in genetic circuits [5].

TF-based and srRNA-based regulatory mechanisms func-
tion together in gene regulatory networks, and a number of
such mixed motifs have been identified including various
feedforward and feedback loops [6]. Of interest is the srRNA-
mediated double feedback loop (SMDFL), which is present in
both eukaryotic and prokaryotic organisms (see, for example,
[6–12]). In this motif, a srRNA represses a gene, whose protein
is a TF which represses transcription of the srRNA. This
network has been shown to exhibit bistability [7], and can
thus operate as a switch, similar to the genetic Toggle Switch
motif in which two TFs mutually repress each other [13].

Some bistable circuits are involved in cell fate decisions
[14,15], including the SMDFL [9–12]. Such switches must
remain in a state for long periods of time [16]. On the
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other hand, cell populations can take advantage of unstable
switches to generate phenotypic diversity and increase fitness
in unpredictable environments [17]. One source of instability
is noise in gene expression.

srRNA-mediated repressive interactions have interesting
noise properties [4]. When the srRNA production rate is
significantly below the target mRNA production rate, the noise
in the protein numbers over time, as measured by the Fano
factor, is as in the unrepressed system. On the other hand,
when the srRNA production rate is significantly above the
production rate of the target mRNA, the protein Fano factor
decreases to 1, since the srRNA decreases the protein burst
size from each mRNA and, consequently, protein production
becomes Poissonian [4]. When the two rates are approximately
equal, near-critical phenomena increase the noise in the protein
numbers beyond the level in the nonrepressed case [18]. This
noise is, in turn, dependent on the initiation kinetics at the
promoter, for which evidence exists for a range of kinetics,
from bursty [19,20], to sub-Poissonian [21,22]. Given the
above, it is nonobvious how low RNA copy numbers affect
the dynamics of the SMDFL.

Here, we study the behavior of a stochastic model of
the SMDFL within realistic parameter ranges. We focus on
how the behavior of the switch is affected by low copy
numbers, TF repression strengths, srRNA production rates,
and different promoter initiation kinetics. Finally, we study
how asymmetries between the two interactions forming the
switch affect its sensitivity to external inputs.

II. METHODS

A. Stochastic model of the srRNA-mediated
double feedback loop

We use a stochastic version of the srRNA-mediated double
feedback loop model presented in [7]. This model, depicted in
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FIG. 1. Cartoon of the model. (a) mRNA (dark gray) and srRNA
(light gray) are transcribed from the DNA with mean rates αm and
αs , respectively, degrade via first-order reactions with rates βm and
βs , respectively, and irreversibly bind to one another with rate γ .
The mRNA is translated into transcription factors with mean rate αp ,
which degrade as a first-order reaction with rate βp , and can bind
to the srRNA gene’s promoter, repressing it. (b) Telegraph model
of transcription regulation [19]. The gene stochastically switches
between OFF and ON states. RNA polymerase (ball) can transcribe
the gene only when it is ON. (c) Multistep model of transcription
initiation [25]. The RNA polymerase (ball) must perform a series
of time-consuming steps (here two) to initiate transcription. The
parameters are explained in Table I.

Fig. 1(a), consists of reactions (1)–(9):

Prom

αm−→ Prom + Rm, (1)

Rm

βm−→ Ø, (2)

Rm

αp−→ Rm + P, (3)

P
βp−→ Ø, (4)

Pros

αs−→ Pros + Rs, (5)

Rs

βs−→ Ø, (6)

Rm + Rs

γ−→ Ø, (7)

Pros + P
kr−→ Pros • P, (8)

Pros • P
ku−→ Pros + P. (9)

Here, m and s are the genes producing the TF and the
srRNA, respectively. Prox and Rx are the promoter of gene x

and its transcript, respectively. P is the TF and Pros • P is the
repressed promoter.

It is worth mentioning that srRNA regulation is achieved
in a number of ways. Firstly, srRNA can bind to the target

and actively promote degradation of both the target and
regulatory RNAs [reaction (7)]. Alternatively, the srRNA may
bind to the target and prevent translation, but not promote
degradation. If this binding is strong and the srRNA cannot
dissociate from the mRNA, this is dynamically equivalent to
the first scenario since, in both cases, the mRNA is unable
to produce proteins after the srRNA-mRNA binding event.
The weak-binding scenario is not considered here, due to its
requiring modifications in the model that are beyond the scope
of this work. A third option exists, also not considered here for
similar reasons, whereby the srRNA promotes the degradation
of the target, but is not itself consumed [23].

Most parameters of the model were set to realistic values
(Table I). The remaining ones were reparametrized to introduce
three dynamically relevant, but not necessarily physically
relevant parameters: θ , R, and λ. θ controls the system size,
which scales the mean copy numbers of RNA and proteins
in the model, and was arbitrarily chosen to represent the
mean number of mRNA molecules if there were no srRNA
regulation (specifically, αm = θβm). Decreasing θ increases
low-copy-number effects, while increasing θ makes the system
more similar in behavior to the deterministic solution (see
Supplemental Material [24]). R controls the strength of the
TF’s repression of the srRNA gene’s promoter by setting
the dissociation constant TF-promoter interactions to μP R−1,
where μP is the mean amount of TF produced with no sr-
RNA interaction (specifically, Kd = μP R−1 = αmBβ−1

p R−1).
Thus, a value of 2 sets Kd to one half of the unrepressed TF
mean. Lastly, λ controls the srRNA repression efficiency, and
is equal to the ratio between srRNA production and mRNA
production, in the absence of TF regulation (specifically,
αs = λαm). Higher λ increases the repression strength of the
srRNA. λ must be at least 1 in order to fully silence the
gene. Note that since αs is a multiple of αm, the mean srRNA
production rate also scales with θ .

In this model, only a single TF represses the srRNA
promoter [reactions (8) and (9)]. Since it does so as a monomer,
the repression does not introduce nonlinear effects. Nonlinear
mechanisms, such as cooperativity and multimerization, can
greatly enhance the stability of a switch, though they are not
necessary [25]. If bistability is observed in the present model,
it should also be observable and enhanced in a model with
these properties [25]. We therefore do not consider these cases
here.

The deterministic kinetic equations corresponding to the
reactions given above are presented in the Supplemental
Material [24], along with the analysis methods to determine
the regions of bistability.

B. Promoter initiation dynamics

To test the effects of different RNA production dynamics,
we employ two extra models of initiation. We characterize the
amount of noise that these alternate RNA initiation models will
produce in the RNA time series by the coefficient of variation
(η, defined as the variance over the squared mean) of the
distribution of time intervals between RNA production events.
Except for very narrow, near-deterministic distributions, which
is not the case here, the η2 of this distribution captures the
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TABLE I. Model parameters, values, and sources.

Parameter Meaning Value Source

θ Mean mRNA numbers 10−3–1 Reference [20]
R TF repression strength
λ srRNA repression strength
αm mRNA production rate θβm s−1 See Methods
αs srRNA production rate λαm s−1 See Methods
βm mRNA degradation rate 600−1 s−1 Reference [34]
βs srRNA degradation rate 3000−1 s−1 Reference [41]
γ mRNA-srRNA binding rate 0.1θ−1 s−1 Reference [42]
αp Protein production rate Bβm s−1 Set to match B

B Protein burst size per mRNA 4.2 Reference [43]
βp Protein degradation rate 36 000−1 s−1 References [35,36]
ku Unrepression rate 25−1 s−1 Reference [44]
kr Repression rate kunrepK

−1
d s−1 Set to match Kd

Kd TF-promoter dissociation constant αmBβ−1
p R−1 See Methods

contribution of the initiation dynamics to the fluctuations in
the numbers of RNA and protein molecules over time [21].

The default reactions modeling RNA production are reac-
tions (1) and (5). These result in an exponential distribution
of time intervals between RNA production intervals, and
thus have a η2 of 1. Since this distribution produces a
Poisson-distributed number of production events in a fixed
time window, this initiation dynamics is termed Poissonian.
Noisier-than-Poissonian production kinetics are achieved by a
promoter that can randomly transition between an OFF and an
ON state, and which only allows transcription when ON [19],
producing bursts of RNA production. The reactions modeling
this promoter are depicted in Fig. 1(b), and are as follows,
where x is replaced by m or s when replacing reactions (1) or
(5), respectively:

ProON
x

kOFF−→ ProOFF
x , (10)

ProOFF
x

kON−→ ProON
x , (11)

Prox + ProON
x

kt−→ Prox + ProON
x + Rx. (12)

Here, reaction (12) should not be confused for a bimolecular
reaction. The notation only implies that the promoter must
be ON and unrepressed for transcription to occur. We assume
that bursts take a very short amount of time compared to the
interburst time (i.e., kON � kOFF), and thus set kOFF to 1 s−1. It
can be shown (see Supplemental Material [24]) that reactions
(10)–(12) produce a η2 of 2S + 1, where S = kt/kOFF

is the mean number of RNA molecules produced in each
burst. To obtain a specific η2 in Fig. 5(a), we therefore
set kt = (η2 − 1)/2, and kON = αx/S to match the mean
production rate.

Sub-Poissonian dynamics is achieved with a promoter
model that requires a series of Poissonian steps to be completed
before an RNA is produced [26,27]. The reactions modeling
this promoter dynamics are depicted in Fig. 1(c), and are as
follows, where N > 1 is the total number of steps involved,
1 < n < N , and x is replaced by m or s when replacing

reactions (1) or (5), respectively:

Prox
k1−→ Pro1

x, (13)

Pron−1
x

kn−→ Pron
x, (14)

ProN−1
x

kN−→ Prox + Rx. (15)

It can be shown (see Supplemental Material [24]) that
reactions (13)–(15) produce a η2 of 1/N . To obtain a specific
η2 in Fig. 5(a), we therefore set N = 1/η2, and ki = Nαx for
1 � i � N to match the mean production rate.

C. Characterization of noisy attractors

Stable states do not technically exist in the stochastic model
above, since the probability that the system will leave any
state after reaching it approaches 1 as time goes to infinity.
We therefore use the term “noisy attractor” to refer to a set
of microstates from which the system is unlikely to leave
for a physiologically relevant time frame [28]. These noisy
attractors correspond roughly, but not always, to the stable
states found in the corresponding, deterministic model. For
example, unstable steady states of the deterministic model
will vanish in the stochastic model while stable steady states
either remain the same or can vanish or settle around different
mean molecule concentrations.

Since the system is not symmetric as in a toggle switch
of two mutually repressing TF-coding genes, it is not im-
mediately clear how to group the microstates of the system
into noisy attractors. Here, the categorization was performed
by examining the overall joint distribution of TF and srRNA
populations for each value of θ and selecting a threshold in
this plane that separated the two modes. States for which
P − 10Rs − 10θ > 0 were classified as part of the TF-high
noisy attractor, while other microstates were categorized as
part of the srRNA-high noisy attractor.

The stability of a noisy attractor is defined as the mean time
that the system will remain in that region of the state space
before stochastically leaving it (and in this case, traveling to the
other noisy attractor). For both noisy attractors, this quantity
was measured by initializing a simulation with RNA and/or
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protein populations set to the mean amount that would be
produced with no repression (i.e., Rm = θ and P = αmBβ−1

p

for TF-high and Rs = αs/βs for srRNA-high) and simulating
until it switched to the other noisy attractor, sampling every
hour, limited to 1 month of simulation time. Simulations were
conducted in SGNS2 [29], a stochastic molecular dynamics
simulator based on the stochastic simulation algorithm [30].

III. RESULTS

The bistable regions of the parameter space of the determin-
istic version of the SMDFL have been studied previously [7].
The regions of bistability found in the deterministic solution
are recovered in the high-copy-number limit of the present
model (Fig. S1 in Supplemental Material [24]), i.e., in the
high-θ limit. Since θ was chosen to represent the mean RNA
numbers of the unrepressed TF-encoding gene, we can use
genome-wide measurements in cell populations of Escherichia
coli to place it within a realistic range, measured to be
∼10−3–1 [20].

A. Robust bistability

We first study what TF and srRNA repression strengths
(parameters R and λ, respectively) are required to achieve
robust bistability in the stochastic model with θ = 1, at the
higher end of the realistic range. We define “robust bistability”
as when the system can remain in either noisy attractor for at
least 1 month of simulation time, on average. Results are shown
in Fig. 2(a). In this case, robust bistability is achieved when
λ > 2.75 and R is sufficiently strong for the chosen λ. This
is shown in Fig. 2(b), where the TF population from two
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FIG. 2. (a) Bifurcation diagram with λ and R as control parame-
ters and θ = 1. Hatched areas indicate where a noisy attractor is not
robustly stable (i.e., stable for less than 90% of 1 month of simulation
time, on average). Upwards and downwards hatching indicates the
srRNA-high and TF-high noisy attractors are unstable, respectively.
Shaded areas indicate that the unstable noisy attractor is less stable
than 5% of 1 month of simulation time (i.e., the switch is monostable
or unstable). This diagram and all subsequent ones are from 500 runs
per tested parameter pair and initial state. The solid line indicates the
extent of the region where the deterministic model is bistable (see
Supplemental Material [24]). Example time series of TF populations
alone are shown from two independent simulations with (b) R = 17,
λ = 4 (robustly bistable), (c) R = 6, λ = 2.5 (weak bistability), and
(d) R = 15, λ = 2 (monostable), with initial conditions set to start in
the TF-high (black line) and in the srRNA-high, TF-low (gray line)
noisy attractors. Note that in (b), the gray line remains very low for
the duration of the simulation.

independent runs holds its initial state (high or low) for
the duration of the simulation. Meanwhile, Fig. 2(d) shows
monostability, where the system is unable to stay in the srRNA-
high, TF-low noisy attractor due to insufficient λ, despite
lying within the parameter region of deterministic bistability.
Figure 2(c) shows the classic stochastic toggle switch behavior
where the switch stochastically jumps between the two noisy
attractors.

The region of robust bistability appears to be a subset of the
region of deterministic bistability in Fig. 2(a). Interestingly,
outside the region of deterministic bistability, it is possible
for one or both of the noisy attractors to be only transiently
stable. That is, the system remains in a noisy attractor for
5%–90% of 1 month of simulation time. When both noisy
attractors are only transiently stable, the switch stochastically
transitions unbiasedly between them [double-hatched region
in Fig. 2(a)].

The highest value of R shown, 20, corresponds to a
dissociation constant between the promoter and the TF of
approximately Kd = θβmBβ−1

p R−1 = 12 molecules, which is
within realistic ranges for TF-promoter interactions [31]. Thus,
the TF repression strength required to achieve robust bistability
is within realistic bounds. We are not aware of measurements
of srRNA production rates. Nevertheless, using transcription
rates of protein-coding genes [20] as a guide, the values of
λ required to achieve robust stability are high, since the high
value of θ already places the mRNA production rate at the
upper limit of the range observed in E. coli [20]. Thus, we
next study how the bifurcation diagram changes for lower θ .

B. Low copy numbers

Low-copy-number effects, i.e., when θ is lowered, are
expected to significantly affect the stability of the noisy
attractors of the switch. This is shown in Fig. 3, as θ is
lowered from 1 to 0.5, 0.2, and finally 0.1. Robust bistability
(i.e., existence of two distinct noisy attractors) is observable
within realistic ranges for a limited range for θ = 0.5. The
likely cause for this is that srRNA-based repression is based
on the interaction between two species with few copies in the
cell at any given time. Consistent with this explanation, the
strength of TF repression required to stabilize the TF-high
noisy attractor is largely unchanged from the θ = 1 case.

For θ = 0.2 and θ = 0.1, robust bistability is lost for the same
parameter range. Worse, the same value of R corresponds to
increasing repression strength as θ is decreased, and with R =
20 and θ = 0.1 this corresponds to a TF-promoter dissociation
constant of less than ∼ two molecules, which is extreme but
realizable [32]. The region where both noisy attractors are
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FIG. 3. Bifurcation diagram with λ and R as control parameters,
with (a) θ = 0.5, (b) θ = 0.2, (c) θ = 0.1.
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FIG. 4. Bifurcation diagram using γ and λ as control parameters,
with θ = 1 and R = 17.

stable on an intermediate time scale grows as θ is reduced,
and begins to cover most of the tested parameter space. Thus,
short-term bistability remains possible in this regime.

C. mRNA-srRNA binding

One parameter for which we could not find measurements is
γ , which was set following a previous model of srRNA regula-
tion. This parameter controls the time it will take for an mRNA
to bind to an srRNA, and therefore affects the effectiveness of
srRNA repression. To understand how this parameter can affect
the switch, we generated the bifurcation diagram of the switch
using λ and γ as control parameters, shown in Fig. 4. Above a
certain critical value, here ∼0.01 s−1 per mRNA-srRNA pair,
the dynamics does not change significantly. Below this value,
the region of bistability shrinks rapidly to a point where small
changes in γ can move the switch from monostable TF-high
to monostable srRNA-high.

We note that γ scales inversely with θ . This scaling allows
the stochastic model to converge to the deterministic solution
in the high-θ limit. We tested whether the changes observed
in Fig. 3 resulted from this scaling. Setting γ to 0.1 (Fig. S2,
Supplemental Material [24]), we found no appreciable change.

D. Promoter kinetics

Since regulation by srRNA has been shown to have
nontrivial noise characteristics [4], it is of interest to study
how a network involving srRNA interactions behaves with
different noise properties. To this end, we varied the level of
noise introduced by transcription initiation and observed how
it affects the stability of the switch, starting from a parameter
set where robust bistability is observed when both promoters
are Poissonian (λ = 4 and R = 17). The level of noise in the
production of an RNA species was adjusted by replacing the
appropriate RNA production reaction [reaction (1) or (5)] with
a set of reactions producing a distribution of intervals between
production events with a given η2 [reactions (10)–(12) for
η2 > 1 or reactions (13)–(15) for η2 < 1; see Methods]. The
results are shown in Fig. 5(a).

10−1 100 101
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100

101

η2
m

η2 s
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1
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3
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6

R

λ

(b)(a)

FIG. 5. (a) Bifurcation diagram with different promoter kinetics.
Control parameters are the η2 (variance over the squared mean) of
the time interval distribution between transcription initiations for the
srRNA production (η2

s ) and for the TF production (η2
m), assuming no

regulation. These were modified by replacing reactions (1) or (5), or
both with reaction sets (10)–(12) or (13)–(15) to obtain a given η2

for both mRNA and srRNA production intervals (see Methods). For
reference, the least noisy interval distribution has N = 10 steps, while
the most noisy has a burst size of S = 9.5. θ = 1, λ = 4, R = 17.
(b) Bifurcation diagram as in Fig. 3(b), with θ = 0.2, and a four-step
promoter for srRNA.

When either promoter is bursty, the srRNA-high noisy at-
tractor loses stability. This is expected, since srRNA regulation
involves interaction between two RNA species, which are both
in low copy number. Consistent with this, the noise in srRNA
production (η2

s ) has the strongest overall effect on the stability,
determining whether it is bistable or monostable in either
noisy attractor. Since it is monostable in the low-noise srRNA
production region, it appears that this allows it to repress its
target more consistently. Given the loss of bistability in the
low-θ region of the parameter space [Figs. 3(a)–3(c)], it is
plausible that this increase in regulation strength with more
deterministic production might allow the switch to operate
more effectively for low θ . We therefore repeated Fig. 3(c)
with four-step, sub-Poissonian srRNA production, shown in
Fig. 5(b). This change was not sufficient to restore robust
bistability in the parameter range tested. Instead, although
the λ required to stabilize the srRNA-high noisy attractor has
decreased, this change came at the cost of the stability of the
TF-high noisy attractor. That is, the R required to stabilize
the TF-high noisy attractor is considerably greater. Note that
no deterministic region of bistability is displayed in Fig. 5(a),
since no parameters affecting deterministic bistability were
varied in this figure.

E. Asymmetric switching

Robust bistability is achievable in noncooperative TF-based
toggle switches as well [25]. Under what circumstances then
would an srRNA-mediated switch be preferable to use in a real
genetic circuit rather than a purely TF-mediated switch? One
difference between the two motifs is that one of the regulatory
molecules (the srRNA) has a much smaller half-life than most
natural proteins, despite its extended lifetime due to the binding
of Hfq [33] in comparison to mRNA [34]. This allows its
level to decrease more quickly in response to regulation. We
therefore expect that the switch is able to change from the
srRNA-high noisy attractor to the TF-high noisy attractor
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FIG. 6. Fraction of SMDFL switches that changed noisy attractor
and remained in the new one after an input pulse of varying duration.
The simulation was started in either the srRNA-high (black line) or
the TF-high noisy attractor (thick gray line), with θ = 1, R = 15, and
λ = 4. The simulation was first run for 100 h, after which an input
pulse of the given duration was applied, where R or λ was scaled
by 0.2, to push the switch into the opposite noisy attractor. After the
pulse, the simulation was run for another 100 h to allow the switch
to settle into its new noisy attractor, and the final state was measured.
Data are from 500 simulations for each tested pulse duration.

much faster than vice versa. To test this, we simulated the
switch, starting in one of the two noisy attractors, in a robustly
bistable region of the parameter space (R = 15, λ = 4, θ = 1)
for 100 h, and applied an input pulse of varying durations. This
pulse moved the system into a region of the parameter space
which is monostable in the other noisy attractor by scaling R

or λ by 1/5. The switch was then simulated for another 100 h
and the final state was recorded.

The fraction of times the switch was found in the other
noisy attractor at that stage is shown in Fig. 6. From the figure,
the switch displays a strong asymmetry in the duration of
the input pulse required to switch noisy attractor. Specifically,
half of srRNA-high simulations ended in the TF-high noisy
attractor after applying a pulse of 15 000 s, while switches in
the TF-high attractor take a much longer input pulse of 50 000 s
for half to change noisy attractors.

IV. CONCLUSIONS AND DISCUSSION

Using a stochastic model of the SMDFL with most param-
eters taken from the literature, we showed that, within realistic
parameter ranges, this model can exhibit robust bistability.
That is, the stochastic fluctuations of RNA and protein numbers
cannot, on average, cause the switch to change noisy attractor
within 1 month of simulation time. Reducing the mean RNA
and protein numbers (i.e., increasing the finite-size effects)
limited the regions of robust bistability, owing to the inability
of the srRNA to reliably repress its target at such low mean
levels. Realistically realizable regions of long-term bistability
exist down to θ = 0.5, despite the absence of cooperative
repression by the TF. Below this, robust bistability is lost
for realistic repression strengths. Similarly, for highly noisy
srRNA production and for noisy mRNA production, the srRNA

loses effectiveness, with the srRNA production variability
having the largest impact. Lower levels of noise in srRNA
production increase the effectiveness of the srRNA regulation,
but decrease the stability of the TF-high noisy attractor, and
thus cannot be used to compensate for low-copy-number
effects to regain bistability in the low-RNA parameter range.
Thus, such switches must operate at the higher end of the mean
RNA number spectrum in order to function reliably, or must
have some additional machinery to strengthen the regulation
such as cooperative repression by the TFs.

One of the parameters for which we could not find
measurements in the literature is γ , which controls the
mRNA-srRNA binding rate. Examining the dependence of the
dynamics on this parameter reveals that there is a point, here
∼0.01θ−1 s−1 per mRNA-srRNA pair, beyond which further
increases do not change the dynamics of the switch. Below this
point, the bistability of the switch is sensitive to changes in
γ . This parameter controls the rate of a bimolecular reaction,
and is therefore likely to be diffusion limited, and will change
with, for example, temperature. Having a slow binding rate and
placing the switch in the lower-right portion of the parameter
space shown in Fig. 4 might therefore be a way to create a
temperature-dependent switch, without the need for a specific
sensing apparatus.

By applying input pulses of varying time length to de-
termine how quickly the switch can change to another noisy
attractor under external control, we determined that the change
from the srRNA-high noisy attractor to the TF-high noisy
attractor is considerably faster than the reverse, due to the
higher degradation rate of the srRNA. This asymmetry allows
rapid changes from one noisy attractor to the other based on a
single, short input, but requires a much longer, sustained input
to change the other way. Most proteins have much longer
half-lives [35,36], making this hard to achieve in switches
relying on TFs alone, though it could be accomplished by
active degradation of the proteins [37], which thus requires a
larger number of interactive players in the system (and, most
likely, additional energy expenditure).

We note that the present model does not include the effects
of cellular growth and division, which act as an increased
degradation rate of all cellular components. This will affect
proteins more than RNAs since they have a longer mean
lifetime. This should cause the asymmetry in switching times
to decrease, but remain, in fast-growing bacterial populations
under optimal growth conditions. However, in natural envi-
ronments, cell populations are not commonly under optimal
conditions meaning that the mean division rates are much
slower. It is also worthwhile to note that, similar to results
from measurements in live cells, our results are expected to
depend, to some extent, on the values of some of the parameters
not varied in the present study. Our choice of parameters
to vary was based on our observations of which were more
prone to cause behavior modifications. Nevertheless, future
studies may provide additional insight into the currently
unknown relevance of some of the untested parameters.
Another interesting study would be to investigate how the
kinetics of the model changes with cell growth phase. Finally,
we note that, when considering the effects of cell division,
we also expect that it is necessary to account for the effects
of asymmetries in the partitioning of cellular components,
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including RNA and proteins, as well as for the effects of
cellular aging [38].

Asymmetry in the switching between noisy attractors may
be of use, particularly given the physiologically relevant
difference in the duration of the pulses required to switch
between the noisy attractors. For example, the iron storage
regulator Fur and srRNA RyhB are arranged in the SMDFL
motif in several bacterial species [8]. Since Fur only represses
RyhB transcription when Fe2+ is present, we predict that the
transition from the RyhB-high state (with no iron storage genes
active) to the Fur-high state will require a relatively short time
in an iron-rich environment. Conversely, it will take much
longer to disable the iron storage genes when transitioning to
an iron-deficient environment.

Finally, we note that the model employed here makes
a number of simplifying assumptions, which may limit the
applicability of the results. First, transcription and translation
are assumed to take no time. These processes introduce delays,

which can be non-negligible in the dynamics of a switch [39].
These delays are expected to be longer in eukaryotes, where
several additional processes such as pre-mRNA processing
and nuclear export must take place to produce the TFs and
repress the target [40]. However, these delays have been
shown to generally have smaller effects on the dynamics of
a switch than the delay caused by the open complex formation
at the promoter [39], which was modeled here in the less
noisy promoter model. We thus believe that the results are
reasonably applicable to eukaryotes and to prokaryotes in
stationary phase.
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