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Cell polarization (cued or uncued) is a fundamental mechanism in cell biology. As an alternative to the classical
Turing bifurcation, it has been proposed that the onset of cell polarity might arise by means of the well-known
phenomenon of wave-pinning [Gamba et al., Proc. Natl. Acad. Sci. USA 102, 16927 (2005)]. A particularly simple
and elegant deterministic model of cell polarization based on the wave-pinning mechanism has been proposed
by Edelstein-Keshet and coworkers [Biophys. J. 94, 3684 (2008)]. This model consists of a small biomolecular
network where an active membrane-bound factor interconverts into its inactive form that freely diffuses in the cell
cytosol. However, biomolecular networks do communicate with other networks as well as with the external world.
Thus, their dynamics must be considered as perturbed by extrinsic noises. These noises may have both a spatial
and a temporal correlation, and in any case they must be bounded to preserve the biological meaningfulness
of the perturbed parameters. Here we numerically show that the inclusion of external spatiotemporal bounded
parametric perturbations in the above wave-pinning-based model of cellular polarization may sometimes destroy
the polarized state. The polarization loss depends on both the extent of temporal and spatial correlations and on
the kind of noise employed. For example, an increase of the spatial correlation of the noise induces an increase
of the probability of cell polarization. However, if the noise is spatially homogeneous then the polarization is lost
in the majority of cases. These phenomena are independent of the type of noise. Conversely, an increase of the
temporal autocorrelation of the noise induces an effect that depends on the model of noise.
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I. INTRODUCTION

The formation of two distinct spatial domains enabling two
separate and distinct parts, let us say a “tail” and a “head,” to
be established in a single cell, is called cellular polarization
[1]. This phenomenon lies at the basis of two fundamental
bioprocesses: the asymmetric division of differentiating cells
[2] and the chemotactic motion of certain kinds of cells (for
example, neutrophils) [1].

As far as cell division is concerned, when a stem cell has
divided, in the vast majority of cases the two daughter cells
must be of two different types: one has to be a stem cell, and
the other has to be a more differentiated cell. This kind of
outcome of cell division is termed asymmetric division, by
contrast with the case of symmetric division, where both the
daughter cells belong to the same cellular type (e.g., both stem
cells or both semidifferentiated cells). This implies that the
proteins determining the cellular type must exhibit a spatial
pattern of markedly different concentrations. The cell spatial
pattern associated with asymmetric division has to regularly
repeat until the replicating potential of the proliferating cell is
exhausted (theoretically never for stem cells); thus, it is thought
to be essentially uncued [3]. However, there are models, such
as that by Ortoleva and Ross [4], that postulate a role of random
cues for the onset of asymmetric cellular division.

Chemotaxis is the process by which some cells “sense” the
gradient of a chemical—termed chemoattractant—and start
moving along the direction of increasing concentration of
the attractant. Chemorepulsion is instead the opposite process
by which some cells move away from chemicals, i.e., the
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chemorepellors. As a consequence, unlike in the uncued
phenomenon of asymmetric cell division, the spatial patterning
observed in chemotactically moving cells is induced by an
external cue: the gradient of the chemoattractant to be followed
(or of the chemorepellent to be avoided) [5,6].

Finally, even in the absence of mitosis and of external gra-
dients, a cell can experience spontaneous symmetry-breaking
in the spatial distribution of some proteins and it starts moving
in random directions [7].

In both cases, it is necessary that a head-tail pattern be
formed. From the biophysical point of view, both cases are
classified as pattern onset in nonequilibrium systems. Patterns
formation in biosystems is a fundamental topic of computa-
tional biology, and it is a most influential topic in experimental
biology. This area of investigation was launched by the publi-
cation of Alan Turing’s widely cited paper on morphogenesis
[8], in which he modeled the onset of a pattern for two kinds
of multicellular structures (a ring and a sphere) as a symmetry-
breaking bifurcation driven by a strong difference in the diffu-
sion coefficients of two morphogens. This mechanism is called
the Turing bifurcation. In the early 1970s, the Turing mecha-
nism was biologically substantiated by Gierer and Meinhardt
[9–11], who introduced two possible patterning mechanisms
based on the Turing bifurcation. The first is the activation-
inhibition model, where the pattern is induced by the reaction-
diffusion interplay between a short range self-activating
chemical (which is membrane-bound or, in any case, has a very
low diffusion coefficient) and a long-range inhibitor chemical
(which has a far larger diffusion coefficient). The second model
is the activation-depletion model, where two proteins interact:
the first protein is again a short-range self-activator, but the
second protein is no longer an inhibitor. On the contrary, the
second protein is, instead, depleted by the activator.
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These pioneering studies generated a considerable amount
of literature, which is increasingly linked with experimental
data [3,12–15].

In 2005, Gamba and colleagues [16–19] proposed a stochas-
tic model of chemotaxis-induced spatial symmetry breaking
in a single cell. The core of this model was the interplay
between two membrane-bound molecules and two cytosolic
molecules. The presence of some feedback (with related
bistability) and the difference of diffusion coefficients induced
a mechanism of phase separation, which is different from the
mechanisms based on Turing’s bifurcation. Quite interestingly,
in the supplementary materials of Ref. [16], Gamba et al.
proposed a simplified and mean-field version of their model
whose solution, in one spatial dimension, is a traveling wave
whose velocity decreases until the front of the wave stops.

In 2008, Edelstein-Keshet and colleagues proposed in
Refs. [20–23] a similar but simpler biomechanism leading
to the onset of single-cell polarization due to the “freezing” of
a traveling wave of the density of a membrane-bound protein.
Indeed, this elegant and minimalist mechanism is based on the
interconversion of a membrane-bound active protein “A” in its
cytosolic inactive form “B,” where “A” positively feedbacks on
its activation. Also, this process induces the initial onset of a
wavefront that stops, as in Ref. [16]. This phenomenon is called
in physics “wave-pinning” [24]. The wave-pinning-induced
cellular polarization will here be called WPP.

The WPP process proposed in Ref. [20] has a biological
background, since it fits with the behavior of certain key
proteins involved in cell polarization [20], such as Rho-
GTPases, which switch between active membrane-bound and
inactive cytosolic forms.

Some similarities exist between the WPP and the activation-
depletion induced polarization (ADP) since: (i) in WPP the
two involved molecular forms have very different diffusion
coefficients; and (ii) the positive feedback of “A” on its
activation that depletes “B” is remindful of the depletion
mechanism. However, in WPP the patterning mechanism is
totally different, since in it no Turing bifurcation is observed,
and, conversely, in the Turing-based models no waves are
observed. Moreover, one of the “essential ingredients” [20]
of the WPP model is the presence of bistability (see also
Refs. [16,18]), making it a genuinely nonlinear model, whereas
the Turing bifurcation stems from the linearization of reaction-
diffusion equations. Finally, in WPP the total mass of the two
forms “A” and “B” is conserved.

Summarizing, from a theoretical point of view, although
they are two quite different mechanisms, both ADP and WPP
have equivalent effects of inducing a polarization pattern in
the cell. However, passing from general principles to concrete
numerical simulations in the case of realistic parameters
values, in Ref. [20] it has been shown that the WPP has (at
least for the examined range of parametric values) an important
advantage over ADP: it is extremely rapid. Indeed, in WPP the
prepatterning transient has a characteristic time of more or
less 10 seconds, whereas ADP would require more than 10
minutes [20]. The latter time is too long and would make ADP
unsuitable, especially for chemotaxis-driven polarization.

This temporal difference in the duration of respective
transients makes WPP a very attractive mechanism to be
experimentally validated.

Moreover, from the point of view of theoretical physics,
the WPP model is one of few examples (see also Ref. [24])
of robust wave-pinning. Indeed, the standard wave-pinning
condition is fulfilled for isolated points of a key parameter,
and also for very small parametric changes the wave restarts
traveling.

Very recently, a paper was published by Welther and
colleagues [21] on the robustness of the WPP model with
respect to the intrinsic stochasticity, i.e., by considering the fact
that the molecular distribution is discrete and not continuous.
The main result of the authors’ investigation was that for a
very small number of molecules, the wave collapses and the
WPP is destroyed.

Here we study another and equally important problem: the
robustness of WPP with respect to the unavoidable presence
of extrinsic noise.

As mentioned above, one of the bases of WPP is the pres-
ence of multistability. The interplay between extrinsic noise
and multistability is of fundamental relevance in chemistry
and systems biology [25–27], as has been shown since the
pioneering work by Kramers [28]. In a nonlinear system, the
presence of noise may in fact cause the transition from one
state to another [29] (for other important effects see Ref. [27]).
This transition in the WPP case might mean that the noise
could induce the switch from a polarized to a nonpolarized
molecular distribution. Moreover, the presence of noise may
deeply affect the dynamics of traveling waves, as reviewed in
Ref. [30].

Many studies in the field of noise-induced phenomena in
both zero-dimensional and in spatially extended systems were,
respectively, based on temporal [31] or spatiotemporal white
noises [32–35]. However, extrinsic fluctuations may exhibit
both temporal and spatial structures [36,37], which may induce
new effects [38–40]. These points are of interest in studying
the WPP since the above-mentioned rapid duration of the
transient leading to full polarization suggests that the WPP
might not be sufficiently robust to realistic colored extrinsic
noises representing the interplay of the WPP mini-network
with other biomolecular networks that have the same or even
larger characteristic times.

We investigate here these issues by means of numerical
simulations of the WPP model in the important case where
the external perturbations are not only non-Gaussian and
spatiotemporally colored but also bounded [41]. Indeed, by
imposing the boundedness of the random perturbations in a
biomolecular network, the degree of realism of the model is
increased since external noises must preserve the positiveness
of reaction rates, and they must not be excessively large
[27]. Similar requirements are needed in order to model
other externally perturbed bioprocesses, such as tumor growth
[42], where stochastically fluctuating parameters must remain
strictly positive. These features can only be modeled by
employing bounded noises.

The studies on bounded noises were initially focused on
the properties and applications of Dichotomous Markov Noise
(DMN) [40]. In the past 20 years, however, other classes of
bounded noises were defined and intensively studied in the
statistical physics [41]. As far as spatially extended systems
are concerned, apart from spatial versions of DMN, only a
few kinds of spatiotemporal-bounded noises were defined in
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Refs. [43,44]. The deepening and development of theoretical
studies on bounded noises led to the attention of a vast
readership on new phenomena, such as the dependence of the
noise-induced phenomena on the specific model of noise that
has been adopted [41,45]. This means that, in the absence of
experimental data on the density and spectrum of the stochastic
fluctuations for the problem in study, a scientific work must
compare multiple kinds of possible stochastic perturbations
[41]. Here we adopt this approach, and we employ two of the
above-mentioned spatiotemporal bounded noises: the Cai-Lin
and the sine-Wiener noises [41,45], which both extend two
well-known nonspatial bounded noises [46–48].

This work is organized as follows: in Secs. II and III we
provide some background material on bounded noises and
on the WPP model, respectively; in Sec. IV we propose the
stochastic version of the WPP model, where we include spa-
tiotemporal extrinsic perturbations; in Sec. V we illustrate and,
from a biophysical perspective, comment on our numerical
simulations. We then offer some concluding remarks.

II. UNBOUNDED AND BOUNDED NOISES

Let us consider the well-known zero-dimensional Ornstein-
Uhlenbeck stochastic differential equation:

ξ ′(t) = − 1

τc

ξ (t) +
√

2D

τc

η(t), (1)

where τc > 0,
√

2D is the noise strength, and η(t) is a Gaussian
white noise of unitary intensity 〈η(t)η(t1)〉 = δ(t − t1). The
solution of Eq. (1) is a Gaussian colored stochastic process with
autocorrelation 〈ξ (t)ξ (t1)〉 ∝ exp(−|t − t1|/τc). In Ref. [49],
Eq. (1) was generalized in a spatially extended setting by
including in it the most known and simple spatial coupling,
i.e., the Laplace operator. This yielded the following partial
differential Langevin equation:

∂tξ (x,t) = Dnoise∇2ξ (x,t) − 1

τc

ξ (x,t) +
√

2D

τc

η(x,t),

(2)

where Dnoise > 0 is the spatial correlation strength [49] of
ξ (x,t).

Two strategies have mainly been adopted so far for defining
zero-dimensional bounded noises: (i) applying nonlinear filters
to unbounded noises; (ii) applying bounded functions to
unbounded noises.

The first approach was employed in Refs. [46,47,50], where
the following family of bounded noises was introduced:

ξ̇ (t) = − 1

τc

ξ (t) +
√

B2 − ξ 2

τc(1 + z)
η(t), (3)

where η(t) is a Gaussian white noise. The bounded nature of the
noise described in Eq. (3) easily follows from the fact that ξ =
+B (−B) implies ξ̇ < 0 (>0). The process ξ (t) has zero mean
and the same autocorrelation of the OU process [46,47], and its
stationary probability density is given by: PCL(ξ ) = A(B2 −
ξ 2)z+. For z > 0, the distribution is unimodal and centered
in 0, while for −1 < z < 0 it is bimodal, having a “horned”
distribution with two vertical asymptotes at ξ → ±B.

In order to define spatiotemporal bounded noises based
on the Cai-Lin noises, in Ref. [43] we adopted an approach
analogous to that employed in Eq. (2) to extend the OU process
[49,51]. This yielded the following equation:

∂tξ (x,t) = Dnoise∇2ξ (x,t) − 1

τc

ξ (x,t) +
√

B2 − ξ 2

τc(1 + z)
η(x,t).

(4)

The sine-Wiener noise [48] is obtained by applying the
bounded function h(u) = B sin(

√
2/τcu) to a random walk

W (t) defined as W ′ = η(t), where η(t) is a Gaussian white
noise of unitary intensity, yielding

ζ (t) = B sin

[√
2

τc

W (t)

]
. (5)

The stationary probability density of ζ (t) is given by PSW(ζ ) =
1/(π

√
B2 − ζ 2), thus, Peq(±B) = +∞.

In Ref. [44], as a natural spatial extension of the sine-Wiener
noise, we defined the following spatiotemporal noise:

ζ (x,t) = B sin[2πξ (x,t)], (6)

where ξ (x,t) is defined by Eq. (2).
Detailed studies of the properties of the above-defined

spatiotemporal noises have been reported in Refs. [43,44].

III. BACKGROUND ON THE WPP MODEL

The WPP model describes the interplay of two different
forms (active, “A,” and inactive, “B”) of a biomolecule, of
which the active form is membrane-bound and the other form is
located in the cytosol and has a very large diffusion coefficient.
Denoting with a(x,t) and b(x,t), the concentrations of,
respectively, “A” and “B,” the WPP model reads

∂ta = Da∇2a + f (a,b; p), (7)

∂tb = Db∇2b − f (a,b; p), (8)

where Da and Db are the diffusion coefficients of “A” and
“B,” and p is a vector of parameters (see below). Since “A” is
membrane-bound and “B” is free in the cytosol, the following
condition must hold:

Db 
 Da. (9)

A central hypothesis in Ref. [20] is that “A” positively
feedbacks on its activation. Thus, it is assumed that f (a,b; p)
is of the form g(a; p)b − h(a; p) with ∂ag(a; p) > 0 and
∂ah(a; p) > 0, where g(a; p) and h(a; p) are, respectively, the
activation and the deactivation rates for A. Namely, in Ref. [20]
the following functional form is employed:

f (a,b; p) = b

(
ka + γωa2

K2 + ωa2

)
− δa. (10)

As a consequence, the vector of parameters reads

p = (ka,γ,K,ω,δ). (11)

The boundary conditions are assumed to be of the no-flux type:

∇a(t,0) = ∇a(t,L) = ∇b(t,0) = ∇b(t,L) = 0, (12)
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which, of course, imply the mass conservation:∫ L

0
[a(t,x) + b(t,x)]dx = Q. (13)

Note that the fundamental assumption Db 
 Da ensures the
correct working, and the robustness, of the wave-pinning
mechanism.

In Refs. [20,52] it is assumed that a(x,t), b(x,t), and K are
nondimensional. However, in a more recent work [21], Walther
and coworkers considered the discrete version of the former
model assigning a physical dimensional to all the parameters
and variables. Based on experimental works [53–55], in
Ref. [21]—as well as in all our simulations—the densities
a(t,x) and b(t,x) are expressed in terms of μM and the follow-
ing values for the parameters of the WPP model were adopted:

Da = 0.1 μm2 s−1, Db = 10 μm2 s−1, ω = 1,

δ = 1 s−1, γ = 1 s−1, ka = 0.067 s−1, (14)

K = 1 μM, L = 10 μm.

By employing the above values of parameters, Mori and
coworkers [20] numerically showed that the system Eqs. (7)

and (8) with f (a,b; p) defined by Eq. (10) can generate a
polarization in response to initial transient cues and in the
absence of cues. Moreover, their simulations also showed that
the onset of the generated pattern is faster than in the Turing
mechanism. Namely, they obtained that the time to polarize is
of the order of 1 to 10 s, and the effective time to “complete the
polarization” [20] is of approximately 30 s. Of course, radically
different values of the parameters might induce slower or faster
responses of the system.

IV. INCLUDING EXTRINSIC NOISE IN THE WPP MODEL

We phenomenologically take into the account the interplay
of A and B with other unknown biomolecular networks that
cannot be explicitly included in our model by introducing
spatiotemporal perturbations in our baseline model. Indeed,
the activation and deactivation of A modeled in Ref. [20] by
the function f (a,b; p) are the result of a number of other
bioprocesses of greater and lesser relevance [56–58] that are
not directly taken into the account in the deterministic model,
which is quite standard procedure in systems biology. Namely,
we assume that one of the components of the vector of the

(a) (b)

(c) (d)

FIG. 1. (Color online) Bounded stochastic perturbation of parameter δ. Type of noise: spatially white Cai-Lin noise with temporal correlation
τc = 10 s. Panel (a): scatterplot (�t,〈x〉) for the density a(x,t). For large and intermediate values of �t the system is polarized, see panels (c)
and (d), and the fluctuations of the polarization front are more pronounced for decreasing �t . For �t � 0, the system is not polarized and is
characterized by a (spatially constant) temporal oscillation dynamic; see panel (b). �t and a(x,t) are measured in μM.
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parameters p is perturbed by a spatiotemporal bounded noise.
Let us suppose that the j th component of the parameter of p is
perturbed by an extrinsic noise. Thus, formally we may write:

∂ta = Da∇2a + f [a,b; p̂(x,t)] + kS(x,t)b, (15)

∂tb = Db∇2b − f [a,b; p̂(x,t)] − kS(x,t)b, (16)

where kS(x,t)b is the initial transient cue, which is null after a
short time, and p̂(x,t) is the vector of the perturbed parameters
whose components are:

p̂i(x,t) =
{

pi if i �= j

pi[1 + ξ (x,t)] > 0 if i = j
, (17)

where ξ (x,t) is a bounded noise of the Cai-Lin or sine-Wiener
type. We employ two different kinds of noise in line with the
recent literature on bounded noises [42–45], which in other
contexts showed that the statistical characteristics of a system
perturbed by a bounded stochastic process depend not only on
the bound of the noise, but also on its finer structure.

Unfortunately, no analytical tools are currently available
to investigate the effects of bounded spatiotemporal perturba-
tions. We shall therefore resort to numerical simulations.

We consider two kinds of numerical experiments corre-
sponding to, respectively, cued and uncued polarization of a
cell:
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FIG. 2. (Color online) Spatially white but temporally colored
perturbations of parameter δ: scatterplot (�t,〈x〉). (a) Cai-Lin noise;
(b) sine-Wiener noise. In both cases, τc = 10 s. Number of simulated
systems is 50. �t is measured in μM.

(i) external graded transient cue, modeled by

kS(x,t) = s(t)(1 − x/L), (18)

s(t) =

⎧⎪⎨⎪⎩
S t ∈ [0,t1]

S
(
1 − t−t1

t2−t1

)
t ∈ [t1,t2];

0 t > t2

(19)

(ii) random initial conditions with no external transient cue,
i.e.,

a(x,0) = R η(x)a−, b(x,0) = 2.0, (20)

where a− = 0.2683312 μM corresponds to the lower homo-
geneous steady state of the WPP model and η(x) is a spatial
noise uniformly distributed in [0,1].

In both cases, Mori et al. [20] showed that the transient
lasts less than 200 s, at which time it is well established.
However, the presence of spatiotemporal correlations might
induce slower transients; we therefore simulated all systems
up to time T = 600 s. As a first statistical analysis measured
for each realization of our stochastic process is the following:

〈x〉 =
∫ L

0
x
L
a(x,T )dx∫ L

0 a(x,T )dx
, (21)

which is the average normalized “position” x/L weighted by
the normalized version of a(x,T ). These statistics measure
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FIG. 3. (Color online) Spatially white but temporally colored
perturbations of parameter δ: scatterplot (�t,〈x〉). (a) Cai-Lin noise;
(b) sine-Wiener noise. In both cases, τc = 50 s, B = 0.2. Number of
simulated systems is 50. �t is measured in μM.
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how the polarization is oriented. Of course, in the case of
cued polarization, this measure is mainly relevant to assess
whether the polarization is in line with the cue, or if it is
not present, in the final simulation time. The second and
more important statistical analysis should then measure some
variance of the density. Thus, natural candidate statistics might
be the measures of the variance of the spatial concentration of
A in the final simulation time. However, during our numerical
simulations, we observed cases where the stochastically
perturbed front became uniform and then resumed a polarized
state, in some cases in an oscillating fashion. As a consequence,
the analysis of the variability of the profile of a must also
consider the past history of the system. Namely, based on the
instantaneous “amplitude” of the distribution:

δt = [Maxx∈[0,L]a(x,t)] − [minx∈[0,L]a(x,t)], (22)

we defined the following statistical observable:

�t = mint∈[200,T ]δt . (23)

Note that in the case of noisy initial conditions, we expect an
equiprobable distribution of the polarization and also in cases
where both �t is “large” and 〈x〉 ≈ 0.5, which indicate the
presence of a “central hump” in the distribution of a.

As far as the characteristics of the employed noises are
concerned, we shall assume that their temporal autocorrelation
has a time scale of 10 s. Also, far larger values would be
acceptable, since there is a number of biomolecular processes

that are characterized by long time scales. However, in those
cases the loss of polarization would be almost certain. As far as
the spatial scales of the noises are concerned, we considered
three cases: (i) spatially white noises; (ii) spatially uniform
noises; and (iii) finite spatial correlation.

V. NUMERICAL SIMULATIONS

In this section we summarize the results of our numerical
simulations, both for the case of cells stimulated by an external
short-lived cue and for the case of absence of cues.

Note that for the sake of simplicity, here instead of using
sentences such as “this simulation of the model suggests that
the cell does something” we shall concisely write (with slight
abuse of meaning) “the cell does something.”

As far as the numerical methods are concerned, in all our
simulations the stochastic predictor-corrector algorithm [32]
for Itô partial stochastic differential equations was adopted to
simulate the noise. Moreover, in the case of the Cai-Lin noise
the transformation described in Ref. [43] was also adopted. The
WPP model was then simulated by means of the second-order
Runge-Kutta algorithm.

A. External cues

In the first round of simulations, we stimulated the system
in the presence of the graded external cue, described in
Eqs. (18) and (19), with S = 0.07 m s−1, t1 = 20 s, and
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FIG. 4. Spatially white but temporally colored perturbations of parameter δ: heuristic histograms of the distributions P (�t ). Upper panels,
τc = 10 s; lower panels, τc = 50 s. Panels (a) and (c), response to Cai-Lin noise; panels (b) and (d), response to sine-Wiener noise. In all
panels, B = 0.2. The response to increasing τc is different for the two kinds of noises: the depolarization probability increases for Cai-Lin
noise, decreases for sine-Wiener noise. �t is measured in μM.
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FIG. 5. (Color online) Spatially white but temporally colored perturbations affecting ω (a) and γ (b): heuristic histograms of the distributions
P (�t ). In both cases, Cai-Lin noise with τc = 10 s and B = 0.2. �t is measured in μM.

t2 = 25 s. The initial conditions were: [a(x,0),b(x,0)] =
(a−,b0) ≈ (0.2683 μM,2.0 μM), corresponding to the lower
homogeneous steady state of the unperturbed system [20]. In
the absence of noise we obtained, as in Ref. [20], that the cell
polarizes with time-scales of the order of 50 s.

By introducing an extrinsic noise into one of the relevant
parameters of function f (a,b) via Eq. (17), we obtained a
complex pattern of responses, dependent upon the spatial and
temporal parameters of the noise, as well as of its type.

In some cases, which we shall illustrate, our stochastic
model predicts that the cell polarization is preserved, although,
of course, the wave-front experiences some random fluctua-
tions; in other cases the cell depolarizes. In these cases, the
profile of the concentration of A is flat and oscillating.

In no case was an inversion of the polarization observed,
i.e., the polarized state followed the external cue in all cases.

Typical configurations are shown in Fig. 1, where both
a scatterplot (�t,〈x〉) and three specific realizations are
shown.

We now illustrate the statistical response of the model to
bounded perturbations that are spatially white, i.e., Dnoise = 0.

Initially, we shall consider perturbations in the parameter δ.
In such a case, we observed that the response to the noise

strongly depends on the type of the perturbation. Indeed,
setting τc = 10 s and B = 0.2, both Cai-Lin and sine-Wiener
noises cause depolarization of the cell in many cases. This
is illustrated by the scatterplots shown in Fig. 2, and in the
distribution of �t shown in the upper panels of Fig. 4.

By increasing the temporal autocorrelation τc up to 50 s,
we observed two dichotomous behaviors. If the perturbation is
a Cai-Lin noise then the increase of τc causes a larger number
of depolarizations [see Figs. 3(a) and 4(c)]. Conversely, if
the bounded noise is of sine-Wiener type, then one observes
a larger probability that the cell maintains the polarization
induced by the external deterministic cue [see Figs. 3(b)
and 4(d)].

As far as perturbations in ω and γ are concerned, fluc-
tuations in γ induce effects comparable to the ones caused
by noises affecting δ, whereas perturbations of ω depolarize
to a lesser extent (Fig. 5). Note that the perturbation of ω

may summarize the effect of extrinsic noise in the feedback
mechanism.

We now examine the effects of spatially correlated noises.
In Figs. 6 and 7, we show that the presence of non-null spatial
correlation, i.e., Dnoise > 0, increases not only the probability
of maintaining the cell polarization, but also its intensity (i.e.,
the magnitude of spatial gradient of a). Indeed, in such cases
simulations suggest not only a decrease of the probability of
observing small or null �t , but also a significant increase of
the probability that �t is “large.” For example, if Dnoise = 0.01
the probability P (0) is quite large (in 30% of cases the cell is
not polarized), whereas for Dnoise � 0.1 P (0) is small and it is
a decreasing function of Dnoise.

We also simulated the response of the WPP model to a
noise that is spatially uniform but temporally varying. Namely:
(i) instead of the spatiotemporal Cai-Lin noise, we used a
noise β(x,t) = ξ (t), where ξ (t) is the temporal Cai-Lin noise;
(ii) instead of the sine-Wiener noise we employed a noise
β(x,t) = Bsin[2πξ (t)], where ξ (t) is the OU noise. Since in
this case the spatial correlation length is infinite, we expected
to observe that all the simulated cells could maintain their
polarization. Quite interestingly, we observed that this spatially
uniform noise induces [see Fig. 7(f)] in the model a behavior
that is comparable to that induced by spatially white noises
[compare with previous Fig. 7(a)].
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FIG. 6. (Color online) Spatially and temporally colored noise:
scatterplot (�t,〈x〉) for various values of Dnoise. Here the perturbed
parameter is γ . Type of noise is Cai-Lin. Parameters τc = 10 s, B =
0.2. Number of points for each series is 200. �t is measured in μM.
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Other parameters: τc = 10 s, B = 0.2. �t is measured in μM.

B. Initial random state

Here we illustrate the results of simulations performed
without adding the external deterministic cue, but considering
an initial random distribution of A, following Eq. (20) with
R = 3.

In the absence of noise, we observed three possible kinds
of steady states: polarization (left or right, in this case it does
not matter) or a central “hump.”

As far as spatially white noises are concerned, we observed
a behavior depending on the perturbed parameter but not on
the type of noise. Indeed:

(i) in the case of perturbation of δ (see Fig. 8, where the
noise is of sine-Wiener type): for B = 0.2, solutions with
central hump are not observed, and in some cases the cell

is not polarized. Absence of polarization is always observed if
B = 0.35;

(ii) in the case of perturbation of ω (see Fig. 9) or of γ (not
shown): for B = 0.2, cells seldom are not polarized and the
number of solutions with central “hump” is roughly similar
to that observed if B = 0.05. For B = 0.35, in some cases
the cells remain polarized (and no cells have the “hump”
pattern).

Finally, also here the increase of spatial correlation restores
the polarization.

VI. CONCLUDING REMARKS

Our main aim in this work was to study the robustness to
extrinsic stochasticity of an interesting mechanism explaining
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FIG. 8. (Color online) Random initial conditions and spatially
white sine-Wiener perturbation of δ. Scatterplot (�t,〈x〉) for three
values of B. Other parameters: τc = 10 s. �t is measured in μM.

both cued and uncued cellular polarization: the wave-pinning
[20].

We modeled the above-mentioned extrinsic perturbations
by means of spatiotemporal bounded noises that model
perturbations in a more realistic way than do Gaussian noises,
which are unbounded. In particular, we adopted the following
two noises: the Cai-Lin [43] and the sine-Wiener [44] noises,
which we recently proposed.

The robustness of the WPP model to extrinsic noise was,
in particular, investigated by means of suitable statistics
summarizing the polarization probability, the fluctuations, and
the intensity of the polarization.

An interesting feature of the deterministic WPP model
is that it is deterministically robust, in the sense that most
models exhibiting the wave-pinning phenomenon are such
that the waves “freeze” for a specific isolated value of a given
parameter [20,24]. However, in the WPP model, the system
self-regulates and the wave freezes for an entire range of the
chosen bifurcation parameter [20].

Here we have shown that under extrinsic stochastic per-
turbations, the maintenance or loss of polarization strongly
depends on both spatial and temporal colors, as well as on the
specific kind of noise.

Indeed, in the case of Cai-Lin noise, the increase of temporal
correlation induces a decrease of polarization probability,
whereas in the case of sine-Wiener noise one observes the
opposite phenomenon.

Moreover, in both cases, the passing from white to spatially
correlated noise induces a loss of polarization. However, in the
simulations where we employed a spatially constant noise we
again obtained a large probability of polarization.

In other words, the WPP model exhibits a sort of contrast
of colors (the spatial and the temporal) and of noise types.

Concerning the possible use of the WPP model to describe
the spontaneous cellular polarization emerging from random
initial conditions, in addition to the polarized and global
oscillating states, we observed (in line with Ref. [20]) the
emergence of “nonpolar” patterns that are characterized by
a hump in the density of A, located in the center of the
cell. Moreover, the effect of the amplitude of the noise
(and of the spatial coupling) is “nonmonotone.” Indeed, it
is possible to find an intermediate amplitude of the noise
(or spatial coupling strength) by which both the probabilities

FIG. 9. (Color online) Random initial conditions and spatially white Cai-Lin perturbation of ω. Scatterplot (�t,〈x〉) and corresponding
histograms of the distributions P (�t ) and P (〈x〉). Other parameters: τc = 10 s. �t is measured in μM.
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of unpolarized oscillating states and of “humped” states are
low.

Summarizing the above observations, we may say that the
answer to the main substantive question—Is the WPP model
robust?—is “It depends on the context in which the cell is
embedded.” In other words, the amplitude of the external
perturbations being equal, the robustness of the wave-pinning-
based mechanism of cellular polarity strongly depends on the
kind of extrinsic stochasticity that affects the WPP network.
Note also that the ability of this mechanism to describe
a spontaneous cellular polarization is questionable (as also
stressed in Ref. [22]) because of the presence of humped
solutions. Nonetheless, in the presence of extrinsic noise the
hump may disappear; however, in such cases the onset of
noise-induced spatially homogeneous states is observed.

Regarding the onset of wave-pinning-induced polarization
in the case of a low number of molecules, studied in Ref. [21],
we remind the reader that for a moderate number of molecules
a stochastic reaction system may be approximated by the cor-
responding deterministic system plus suitable multiplicative
external white Gaussian noises. This is a well-known result in
statistical and chemical physics [59], also known in systems
biology as the “chemical Langevin equation” method [60].
Thus, here we might be tempted to interpret the results of
Ref. [21] as fragility of the WPP mechanism to white noise
perturbations. However, we stress here that for computational
reasons the simulations of Ref. [21] were performed by assum-
ing that the number of molecules of the species B is spatially
homogeneous. Moreover, we recall that it is Eq. (8) that guar-
antees the robustness of WPP model. This might imply that the
stochastic version of WPP model could be more robust than
has been reported in the numerical simulations of Ref. [21].

Thus, our aim is, in a future work, to explore the full discrete
stochastic version of Eqs. (7) and (8), also including extrinsic
noises. Indeed, the interplay of intrinsic and bounded extrinsic
noise may be of interest in the field of systems biology, as
stressed in Ref. [27].

Finally, it is important to note that the experimental study of
the role of stochastic fluctuations in the onset of intracellular
patterns is in its infancy. Indeed, to the best of our knowledge
only a limited number of works have been published in
this field. For example, in Ref. [16] some experimental
data were used to validate their mathematical model, which
included extrinsic stochasticity. Recently, in Refs. [61,62]
some experiments were performed to validate the prediction
of two mathematical models that takes into account the spatial
stochasticity in the gradient to be followed by the cells. The role
of the stochastic receptor-ligand interaction during chemotaxis
has been recently experimentally investigated in Ref. [63]. No
experiments have been performed so far in order to investigate
the role of extrinsic noise in the reaction-diffusion mechanisms
determining cellular polarization. As a consequence, we have
to stress that our work must be assumed to be speculative and
therefore needs experimental confirmation. The aim of our
work is to trigger such investigation.
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