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Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes
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A recently proposed ternary mixture model is used to predict fluctuation domain lifetimes in the one phase
region. The membrane is made of saturated, unsaturated, and hybrid lipids that have one saturated and one
unsaturated hydrocarbon chain. The hybrid lipid is a natural linactant which can reduce the packing incompatibility
between saturated and unsaturated lipids. The fluctuation lifetimes are predicted as a function of the hybrid lipid
fraction and the fluctuation domain size. These lifetimes can be increased by up to three orders of magnitude
compared to the case of no hybrids. With hybrid, small length scale fluctuations have sizable amplitudes even
close to the critical temperature and, hence, benefit from enhanced critical slowing down. The increase in lifetime
is particularly important for nanometer scale fluctuation domains where the hybrid orientation and the other lipids
composition are highly coupled.
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I. INTRODUCTION

The recent discovery that cell membranes contain nan-
odomains of uniform composition (lipid “rafts”) that are
believed to mediate cellular function [1–9] has motivated
numerous experiments on model systems. The study of self-
assembled giant unilamelar vesicles (GUVs) whose compo-
sition (i.e., lipids, cholesterol) can be controlled [10–16] or
extracted from cell membranes [10,17,18] provides useful
information regarding the interactions among membrane con-
stituents since they are not subject to other types of interactions
present in real cells (i.e., coupling with the cytoskeleton and/or
active processes).

Recent experiments on GUVs assembled from cell mem-
brane extracts [17] reported critical composition fluctuations
that are consistent with scaling laws [19] of the two-
dimensional (2D) Ising model with a critical temperature
of Tc ≈ 23 ◦C. The large fluctuation domain sizes observed
close to Tc were extrapolated to T = 37 ◦C (physiolog-
ical temperature) and predicted a correlation length of
ξ ≈ 20 nm, which is of the order of estimated raft sizes.
At such a temperature (≈5% above Tc), fluctuation domains
of 20 nm can be shown to have lifetimes of the order of
τ ≈ 1 ms. This will be shown later using the scaling laws
of model B [20,21] and assuming small fluctuation amplitudes
(Gaussian fluctuations). It has recently been proposed that
some biochemical reactions can be facilitated by rafts with
<0.1 ms lifetime [22], but those that are believed to participate
in cell signaling are expected to be stable over several
minutes [23]. This does not eliminate the possibility that the
mechanism for lipid raft stabilization may benefit from the
fact that real cell membranes are close enough to a miscibility
critical point. In fact, in real cells, the phase behavior may
be significantly coupled to hydrodynamic modes [21,24],
the cytoskeleton [25], and/or membrane proteins [23,26–28].
Using a continuum description of the single phase regime,
we show how fluctuation lifetimes are strongly dependent on
the membrane composition. In particular, a simple ternary
mixture model membrane made of saturated, unsaturated, and
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line active “hybrid” lipids predicts that nanoscale composition
fluctuations can have a much larger lifetime compared to the
case with no hybrids.

The model was introduced in a recent paper [29]. It
assumes that the phase separation is driven by the chain
packing incompatibility between “straight” saturated and
“bent” unsaturated hydrocarbon chains. The permanent bend
is due to the presence of one or more double bonds in the chain.
Our hypothesis is that hybrid lipids can reduce the line tension
when they assemble at a saturated-unsaturated interface with
the proper orientation [see Fig. 1(a)]; the hybrid lipid has one
chain of both types and it can act as a linactant (2D analog of
a surfactant) [30]. The phase separation in model membranes
made of saturated, unsaturated, and hybrid lipids has been
studied experimentally in Refs. [15,31,32]. Such systems can
be described by our model and some comparisons between
theory and experiments were presented in [29]. Note that
real cell membranes contain numerous types of saturated and
hybrid lipids, but almost no unsaturated lipids. Nevertheless,
our model could be used to describe real cell membranes
since one subclass of hybrid lipids may effectively behave as
unsaturated lipids with respect to packing compatibility with
other subclasses of hybrid and saturated lipids.

Other models based on the coupling between membrane
curvature [33–35] and/or membrane elastic properties [36]
with the lipid phase separation have been proposed as possible
mechanisms for the formation of small domains in model
membranes. Such effects are not included in our model
since they would obscure our main objective, which is to
demonstrate that the interplay between the hybrid orientation
degrees of freedom and the membrane composition alone can
increase the dynamical stability of composition fluctuations.

In Ref. [29], we focused on the static properties of
membranes in the single phase and showed that at relatively
large hybrid fractions, nanoscale fluctuation domains can
be observed even if the temperature is close to the critical
temperature. Small length scale fluctuations have sizable
amplitudes even close to the critical temperature, where large
correlation lengths are usually expected.

Our continuum theory extends the lattice model proposed
by Matsen and Sullivan [37], the continuum model of Hirose
et al. [38], and other early microemulsion models [39,40].
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FIG. 1. (Color online) (a) Example of how hybrid lipids can
reduce the packing incompatibility between saturated and unsaturated
lipids. (b) Examples of local lipid configurations that minimize
(i) Eφσ , (ii) first term of Eσσ , and (iii) second term of Eσσ in Eqs. (2.1)
and (2.2).

The unique features of our model are that it contains a single
parameter (specified by the demixing temperature) and that
the composition dependence of the system is fully taken into
account. The latter will allow us to predict how the fluctuation
dynamical properties vary as hybrid lipids are added to the
membrane. Hirose et al. [38] reported the dynamic structure
factors of composition fluctuations for a system with hybrids
using a phenomenological approach in which the hybrid
composition is not explicitly taken into account. They further
assumed that the lipid reorientation occurs on a much shorter
time scale than the lipid lateral diffusion. We will show that
this is not necessarily true for nanoscale fluctuations.

Considering fluctuation domains of a given size, we
predict the dependence of their lifetimes on the hybrid lipids
fraction. The results are as follows: (i) With increasing hybrid
fractions, the amplitude of small length scale (≈10 nm) fluc-
tuations is relatively large even near Tc; critical slowing down
affects even small length scale fluctuations. (ii) The smaller
the fluctuation length scale, the larger the coupling between
orientation fluctuations of the hybrids and the composition
fluctuations of the other lipids. Combined, these effects predict
that the lifetime of fluctuations of all length scales, including
the nanoscale relevant to lipid rafts, can increase by orders of
magnitude in a temperature range of the order of 10 ◦C above
Tc, which is easily accessible experimentally.

Please note that the main body of the paper focuses on the
physics and that all mathematical details are presented in the
Appendices.

II. RESULTS AND DISCUSSION

A. Review of static properties

This section reviews some of the results we obtained in [29],
which set the stage for the analysis of the fluctuation lifetimes.
The model extends previous ones proposed by Brewster et al.
[41] and Yamamoto et al. [42,43] by including the orientation
degrees of freedom of the hybrid lipid. In [29], the following
coarse-grained theory for the mixed phase fluctuation free
energy is derived from a reduced set of nearest-neighbor
chain-chain interactions,

FFluct = Eφφ + Eφσ + Eσσ − T S, (2.1)

where T is the temperature, S is the entropy of the fluc-
tuations, and Em,n describes the interaction energies due
to saturated-unsaturated-hybrid composition (m,n = φ) and

hybrid orientation (m,n = σ ) fluctuations. A full expression
for the entropic free-energy cost associated with local fluc-
tuations is reported in Eq. (A3). It depends explicitly on
the average membrane fraction of saturated, unsaturated, and
hybrid lipids (φ(0)

s , φ(0)
u , and φ

(0)
h = 1 − φ(0)

s − φ(0)
u ) and it is

a quadratic function of the local saturated (unsaturated) lipid
composition fluctuations [δφs[u](x)] and of the local hybrid
lipid orientation fluctuation vector [σ̄ (x) = x̂σx(x) + ŷσy(x);
not to be confused with lipid tilting, which is not included
in our model]. The composition fluctuations are defined as
a local deviation from the membrane average; δφs[u](x) =
φs[u](x) − φ

(0)
s[u] [δφh(x) = −δφs(x) − δφu(x) by conservation

of mass]. Note that σ̄ (x) [like φs,u,h(x)] is a coarse-grained
degree of freedom and, hence, it assumes continuous values
(in contrast to the lattice model orientation unit vector from
which it originates; see Ref. [29]).

The complete expressions for the interaction terms are given
in Eqs. (A4)–(A7). For illustration purposes, we report them
to second order in a gradient expansion,

Eφφ ≈ −2J

a2

∫
dx
[
�(x)2 − a2

4
|∇�(x)|2

]
,

Eφσ ≈ 2J

a2

∫
dx
[
a

2
σ̄ (x) · ∇�(x)

]
, (2.2)

Eσσ ≈ −2J

a2

∫
dx
[
a2

8
|∇ · σ̄ (x)|2 − a2

8
|∇ × σ̄ (x)|2

]
,

where �(x) = δφs(x) − δφu(x), a is a molecular size, and J is
the interaction parameter. The term Eφφ accounts for saturated-
unsaturated composition interactions. It favors (is negative for)
saturated and unsaturated lipids phase separation. The term
Eφσ is a composition-orientation interaction that favors local
interactions such as the one illustrated in Fig. 1(b)(i). The
line active property of the hybrids is due to that interaction
term [note that in Fig. 1(b)(i), if the hybrid had the opposite
orientation, the line tension would not be reduced]. Eσσ are
hybrid lipid orientation-orientation interaction terms that favor
orientation fluctuations that change sign on the smallest length
scale, a, in the direction parallel to the local orientation vector
[first term of Eσσ and Fig. 1(b)(ii)] or that favors uniform
orientation fluctuations in the direction perpendicular to the
local orientation vector [second term of Eσσ and Fig. 1(b)(iii)].

Reference [29] showed that a line of critical points is found
along φ(0)

s = φ(0)
u and φ

(0)
h < 2/3 such that

Tc = 4J
(
1 − φ

(0)
h

)
. (2.3)

This indicates that the hybrids decrease Tc (increase the
stability of the mixed state) and shows the one-to-one corre-
spondence between the system parameter J and the demixing
temperature. Because we want to analyze the lifetime of
critical fluctuations, we restrict ourselves to φ(0)

s = φ(0)
u and

φ
(0)
h < 2/3. Note that φ

(0)
h = 2/3 defines a Lifshitz point

above which anisotropic “stripelike” fluctuations dominate
the uniform and isotropic fluctuations. These are discussed
in detail in Ref. [29] and are due to the Eσσ terms.

One main prediction made in [29] is that the correlation
length ξ of lipid composition fluctuations (“domain size”)
decreases significantly as the fraction of hybrids increases
toward the Lifshitz point. A full expression for ξ is given
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by Eq. (A16) and reduces to(
ξ

a

)2

= θ−1

[
1 − 3φ

(0)
h /2

4
(
1 − φ

(0)
h

)
]

, (2.4)

when φ
(0)
h < 2/3 and θ = (T − Tc)/Tc � 1. As expected in a

mean-field approximation, ξ/a diverges as θ−1/2 as the critical
temperature is approached as long as φ

(0)
h < 2/3. Exactly at the

Lifshitz line (φ(0)
h = 2/3), a different scaling law is obtained,

ξ/a ∝ θ−1/4 as θ → 0 (see Appendix A or Chap. 4.6 in
Ref. [44]). Here, we restrict our attention to φ

(0)
h < 2/3 and

do not consider the Lifshitz point.

B. Dynamical predictions

The composition fluctuations of each species are conserved
[the membrane average of δφs,u(x) vanishes]. Hence, the
simplest dynamics that describes their time dependence is

∂δφs,u(x)

∂t
= D0∇2 DFFluct

Dδφs,u(x)
, (2.5)

where D0 is related to the lipid diffusion coefficient, D (D0 =
a2D/T ), and D is a functional derivative. The orientations
are not conserved so their dynamics can be described by a
relaxation equation,

∂σx,y(x)

∂t
= −


DFFluct

Dσx,y(x)
, (2.6)

where 
 is related to the reorientation time scale γ −1 (
 =
γ a2/T ). It determines the time a hybrid takes to change its
local orientation due to fluctuations. This set of dynamical
equations is in the class of model C defined in Ref. [20] (or
Sec. 8.6 of Ref. [44]), where it is also shown how thermal
noise can be included. Note that with no hybrids, the system
of dynamical equations reduces to model B.

The role of the hybrid orientation degrees of freedom on the
composition fluctuation dynamics depends on a dimensionless
parameter, η = τ0/γ

−1 (see Appendix B), which is the ratio
of the time scale for a lipid to diffuse over a distance equal
to its own size, τ0 = a2/D, to the reorientation time scale
γ −1. Honigmann et al. [45] reported D ≈ 20 μm2/s and
γ ≈ 108 s−1 for various fully saturated lipid probes in a
model membrane made of saturated and unsaturated lipids
and cholesterol. Taking their values with a ≈ 0.5 nm gives
η ≈ 1. Thus, the diffusion and reorientation time scales are
of the same order. Others [17,46–48] have reported slightly
different D and γ for different lipid probes or lipid analogs. We
also expect the characteristic time scales of unsaturated lipids
to exceed those of the saturated lipids probes used in [45].
Hence, we assume that physically relevant values for η lie in
a range close to η = 1.

Insight into the dynamic stability of fluctuation domains
of fixed length scales in the presence of hybrid lipids can be
obtained from the following analysis. We consider a fluctuation
in the single phase of the form

�̄(x) = �̄(a) cos (2πx/λ) + �̄(b) sin (2πx/λ), (2.7)

where �̄(x) = [δφs(x),δφu(x),σx(x),σy(x)] is a one-
dimensional array containing the composition and orientation
fluctuations. �̄a and �̄b are arrays containing the fluctuation

amplitudes. The fact that the system is rotationally invariant
allows us to arbitrarily set x = xx̂ (no components along
ŷ) with no loss of generality. Equation (2.7) is inserted
in Eqs. (2.5) and (2.6) to obtain the lifetime of such a
fluctuation. The procedure is detailed in Appendix B where
an exact expression for the mode with the longest lifetime
[Eq. (B4)] is reported. The nonzero components of the
fluctuation amplitude, �̄(a) and �̄(b), are δφ(a)

s , δφ(a)
u (in fact,

δφ(a)
s = δφ(a)

u ), and σ (b)
x . For that mode, this implies that

(i) φs(u)(x) are out of phase with σx(x) such that the hybrid
lipid orientation fluctuation is maximized (strongly correlated)
at the interface between fluctuation domains rich in either
saturated or unsaturated lipids, and (ii) the hybrid lipid
composition does not fluctuate (δφ(a)

h = 0).
For long fluctuation wavelengths λ � a, small reduced

temperatures θ � 1, and small η � 1, the lifetime reported
in Eq. (B4) simplifies to

τ
(
θ,φ

(0)
h

)
τ0

≈
⎧⎨
⎩4θ

λ̃2
+ 1 − 3φ

(0)
h

2

λ̃4
(
1 − φ

(0)
h

) − τη

(
θ,φ

(0)
h

)⎫⎬⎭
−1

, (2.8)

where

τη

(
θ,φ

(0)
h

) = φ
(0)
h

2
θ

2ηλ̃6
(
1 − φ

(0)
h

)2 , (2.9)

and λ̃ = λ/2πa. The second term on the right-hand side
of Eq. (2.8) shows that the lifetime increases as the hybrid
fraction is increased toward the Lifshitz point. For long
wavelength fluctuations, the dimensionless parameter η (the
ratio of the diffusion timescale to the reorientation timescale)
has only small effects, as can be seen from Eq. (2.9). This is
expected because local reorientation is much faster than the
diffusion over large length scales. In such a case, λ̃ � 1 and
the separation of time scales approximation used by Hirose
et al. [38] is appropriate. On the other hand, Eq. (2.9) shows
that the effect of η becomes increasingly important for smaller
values of η, smaller fluctuation domains, and larger hybrid
fractions. Note that for a system with no hybrids, Eq. (2.8)
predicts that a 20 nm fluctuation at θ = 0.01–0.05 will have a
lifetime τ ≈ 1 ms, as stated in Sec. I. The 20 nm scale is the
correlation length extrapolated at T = 37 ◦C from the lower
temperature measurements in Ref. [17].

Figure 2 reports τ (θ,φ
(0)
h ) vs θ for various length scales

and hybrid fractions. The results demonstrate that (a) for
λ = 40a (≈20 nm), critical slowing down manifests itself
as far as 5% above Tc. The θ axis translates into a 3–15 K
range for typical Tc values and is easily accessible exper-
imentally. In fact, the lifetime of such fluctuations reaches
the millisecond range not too close to Tc and at moderate
hybrid fractions. (b) Small length scale (λ = 10a) fluctuations
have a smaller fluctuation lifetime than larger length scale
fluctuations. On the other hand, the relative increase in lifetime
due to hybrids at small length scales is much larger; it
can reach 1–2 orders of magnitude and increases when η

decreases (saturated and unsaturated fluctuation domains are
stabilized by slow orientation fluctuations correlated with their
interface).
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FIG. 2. (Color online) The lifetime of a fluctuation of the form
of Eq. (2.7) with λ = 40a (left) and λ = 10a (right) as a function of
the reduced temperature θ . In each panel, the bottom (short dashes)
curves are for φ

(0)
h = 0.01, the middle (large dashes) curves are for

φ
(0)
h = 0.4, and the top (full line) curves are for φ

(0)
h = 0.66 (close

to the Lifshitz point). For λ = 40a, the lifetimes are insensitive to
the parameter η. Effects of η are clearly observed for λ = 10a and
φ

(0)
h = 0.66 where the blue (bottom), magenta (middle), and black

(top) curves were obtained using η = 10, 1, and 0.1, respectively.
The lifetime is reported in units of τ0 = a2/D ≈ 10−6–10−7 s.

At a given temperature, not all fluctuation domain sizes
are equally probable. Hence, it gives more physical insight to
focus on fluctuation domains with the characteristic size (i.e.,
root mean squared average size). This is what we do next by
setting the fluctuation length scale λ equal to the correlation
length ξ . Hence, we set λ = ξ in Eq. (2.7) and recalculate the
lifetime τ (ξ,φ

(0)
h ) and the fluctuation amplitudes �̄(a,b). The

temperature θ depends implicitly on the values of the hybrid
fraction and the correlation length [Eqs. (2.4), (A16), and Fig. 4
show how close one must be to Tc to observe a given ξ ].

The lifetime τ (ξ,φ
(0)
h ) is shown in Fig. 3 as a function

of the hybrid fraction for ξ/a = 10 and ξ/a = 4 and for
η = 0.1 (which gave the largest lifetimes in Fig. 2). It increases
smoothly by about two orders of magnitude as the hybrid
lipid fraction approaches the Lifshitz point. For ξ/a = 10,
this large increase in lifetime only occurs very close to
the Lifshitz point (as φ

(0)
h → 2/3). On the other hand, for

ξ/a = 4, a significant increase (one order of magnitude) is
observed even at moderate hybrid fractions (φ(0)

h ≈ 0.3–0.4).
Appendix B shows that as the hybrid composition approaches
the Lifshitz point (φ(0)

h ≈ 2/3), the increase in long wavelength
(ξ � a) fluctuation lifetime due to hybrids scales with the
following power law: τ (ξ,φ

(0)
h )/τ (ξ,φ

(0)
h = 0) ∝ (ξ/a)2.

The insets in Fig. 3 show a measure, κ2 = σ (b)
x

2
/(δφ(a)

s

2 +
δφ(a)

u

2
), of the coupling between orientation and composition

fluctuations. As the hybrid fraction increases, κ increases
significantly. The physical origin of the increased lifetime is
directly related to the orientation fluctuations that stabilize
the interface region between saturated and unsaturated rich
fluctuation domains [29]. For ξ/a = 4, a significant coupling
between composition and orientation fluctuations is observed
at lower hybrid fractions compared to ξ/a = 10. This is consis-
tent with Eqs. (2.2) and (A5) [illustrated in Fig. 1(b)(i)], which
show that the coupling between orientation and composition
fluctuations is stronger at small wavelengths. Experiments
confirming that hybrid lipids are orientationally correlated with
the composition gradient at the interface remain to be done, but
recent molecular dynamics studies with realistic force fields
support this hypothesis [49].

III. CONCLUDING REMARKS

In summary, we have shown that with increasing hybrid
fraction, the reduced temperature that corresponds to a given
correlation length is smaller. Hence, critical slowing down has
larger effects in systems with hybrids and longer lifetimes are
predicted. Moreover, the predicted increase in lifetime occurs
in a broad region above Tc (as large as 15 K; see Fig. 2). Of
course, our analysis is not appropriate for large amplitude
fluctuations very close to the critical point. In this case,
model B (applied to 2D membranes) predicts that τ ∝ θ−3.75

[20], while our Gaussian fluctuation analysis predicts t ∝ θ−2

(this can be seen by replacing λ̃ in Eq. (2.8) by the mean-field
correlation length given in Eq. (2.4)). Nevertheless, we expect
that the effect demonstrated here, i.e., an increase in fluctuation
lifetime due to hybrids, will manifest itself regardless of the
scaling law as long as the correlation length is small enough.

The predicted effect on the lifetime is particularly important
for fluctuating nanodomains where the hybrid orientation and
composition degrees of freedom are highly coupled and where
the reorientation time scale of the hybrids can be of the order
(perhaps even longer) of the time scale for the diffusion over
one molecular size: η � 1. This contrasts with the experiment
of Honerkamp-Smith et al. [21] (inspired by the theoretical
proposition made in Refs. [50,51]), who showed how coupling
the hydrodynamics modes in the membrane with those of the
surrounding solvent can also increase composition fluctuation
lifetimes. They report that the scaling law for the lifetime
crosses over from τ ∝ θ−2 to τ ∝ θ−3 when the correlation
length is in the 1–5 μm range. Interestingly, the τ ∝ θ−2

scaling law observed for the smaller correlation lengths studied
in their experiment agrees with our Gaussian fluctuation
analysis, although their claim is that this arises when the
hydrodynamics of the bulk solvent plays a negligible role
compared with the hydrodynamics of the membrane itself.

Finally, note that the two mechanisms are not mutually
exclusive: the hydrodynamic effects are important at much
larger length scales compared with the effect we predict, which
becomes important at smaller length scales (≈10 nm). We
hope that further dynamical experiments that measure the time
scales that determine η as well as the dynamic structure factor

10 4ξ/a  = ξ/a  =

FIG. 3. (Color online) The increase in lifetime due to hybrid
lipids, τ (φ(0)

h )/τ (φ(0)
h = 0), for a fluctuation of length scale equal to

the fixed correlation length and η = 0.1. The lifetime associated with
that particular length scale is obtained by setting the temperature
θ so that the correlation length ξ/a = 10 (left panel) or ξ/a = 4
(right panel). The dashed lines are limiting expressions valid for
small [Eq. (B9)] and large [Eqs. (B10)] φ

(0)
h . Inset: The measure of

the coupling κ (dimensionless units; see text for definition) between
composition and orientation fluctuations increases with increasing
hybrid fractions and decreasing fluctuation domain sizes.
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as a function of the hybrid fraction at different length scales
will be carried out to test (and possibly lead to modification
of) the theory.
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APPENDIX A: FLUCTUATION FREE ENERGY,
CORRELATION FUNCTION, AND

CORRELATION LENGTH

We first recall the mixed phase free energy proposed in
Ref. [29],

F = FMF + FFluct, (A1)

where

FMF = −2J
(
φ(0)

s − φ(0)
u

)2 + T
[
φ(0)

s ln
(
φ(0)

s

)+ φ(0)
u ln

(
φ(0)

u

)
+ (

1 − φ(0)
s − φ(0)

s

)
ln
(
1 − φ(0)

s − φ(0)
u

)]
(A2)

is the mean-field part of the free energy and where FFluct is the
fluctuation part. The various contributions to FFluct defined by
Eq. (1) in the main text are given by

S = − 1

a2

∫
dx

{
1 − φ(0)

u

2φ
(0)
s φ

(0)
h

δφs(x)2 + 1 − φ(0)
s

2φ
(0)
u φ

(0)
h

δφu(x)2

+ 1

φ
(0)
h

δφs(x)δφu(x) + 1

φ
(0)
h

|σ̄ (x)|2
}

, (A3)

Eφφ = −2J

a2

∫
dx

∫
d�̄ g(�)�(x)�(x + �̄), (A4)

Eφσ = 2J

a2

∫
dx

∫
d�̄ g(�)�̂ · σ̄ (x)[�(x + �̄)−�(x−�̄)],

(A5)

E (1)
σσ = 2J

a2

∫
dx

∫
d�̄ g(�)[�̂ · σ̄ (x)][�̂ · σ̄ (x + �̄)],

(A6)

E (2)
σσ = −2J

a2

∫
dx

∫
d�̄ g(�)[�̂ × σ̄ (x)] · [�̂ × σ̄ (x + �̄)],

(A7)

where a is a nearest-neighbor distance between lipid
molecules, J is the unique interaction parameter, and �(x) =
δφs(x) − δφu(x). δφs(x), δφu(x), σ̄ (x), φ(0)

s , φ(0)
u , and φ

(0)
h are

defined in the main text. There, an approximate expression
for Eσσ = E (1)

σσ + E (2)
σσ is reported, rather than for E (1)

σσ and E (2)
σσ

individually. g(�) is a kernel that accounts for the finite range
of the interactions. We will use the nearest-neighbor form for
g(�) given by

g(�) = 1

2πa
δ(� − a). (A8)

The fluctuation part of the free energy [Eq. (2.1)] is
conveniently written in a Fourier representation where all the
wave-vector fluctuation modes decouple. Using the following
definition for the Fourier transform:

A(k) = 1

2π

∫
dx e−ik·xA(x), (A9)

we obtain an expression for FFluct in k space,

FFluct = 1

a2

∫
dk �̄T

−kMk�̄k. (A10)

Here, �̄k is an array that contains the Fourier components of
the composition and orientation fields,

�̄k = [δφs(k),δφu(k),σx(k),σy(k)], (A11)

and the coupling matrix Mk is given by

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎝

T
1−φ

(0)
u

2φ
(0)
s φ

(0)
h

− 2JJ0(ka) T 1
2φ

(0)
h

+ 2JJ0(ka) −i2J kx

k
J1(ka) −i2J

ky

k
J1(ka)

T 1
2φ

(0)
h

+ 2JJ0(ka) T
1−φ

(0)
s

2φ
(0)
u φ

(0)
h

− 2JJ0(ka) i2J kx

k
J1(ka) i2J

ky

k
J1(ka)

i2J kx

k
J1(ka) −i2J kx

k
J1(ka) T 1

φ
(0)
h

− 2J
k2
x−k2

y

k2 J2(ka) −4J
kxky

k2 J2(ka)

i2J
ky

k
J1(ka) −i2J

ky

k
J1(ka) −4J

kxky

k2 J2(ka) T 1
φ

(0)
h

− 2J
k2
y−k2

x

k2 J2(ka)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A12)

where J0, J1, and J2 are the zeroth, first-, and second-order
Bessel functions of the first kind.

Any correlation function can be obtained from the following
correlation matrix:

〈
�̄−k�̄

T
k′
〉 = δk+k′

a2T

2
M−1

k . (A13)

In particular, the size and shape of saturated-rich fluctuation
domains in the mixed phase is characterized by the saturated

lipid autocorrelation function,

Css(k) ≡ 〈δφs(−k)δφs(k)〉 = a2T

2

[
M−1

k

]
11, (A14)

where the subscript 11 means that we refer to the 11 part of
the matrix inverse of Mk. In Ref. [29], we showed that Css(k)
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is a function of |k| = k only that is peaked at k = 0 below

the Lifshitz line [φ(0)
h < 2(1 − φ

(0)
d

2
)/3]. Hence we perform a

small k expansion,

Css(k) ≈ Css(k = 0) + 1

2

∂2Css(k = 0)

∂k2
k2

≈ Css(k = 0)

(1 + ξ 2k2)
, (A15)

where ξ 2 = −[∂2Css(k = 0)/∂k2]/[2Css(k = 0)], which
determines the width of the correlation function in k
space. That width is related to the real-space decay
of the correlation function. Hence, we identify ξ

as the correlation length. The resulting expression
for ξ is

ξ

a
=
⎧⎨
⎩

(
1 − φ

(0)
d

)2(
1 + φ

(0)
d − φ

(0)
h

)(
1 − φ

(0)
d

2 − 3φ
(0)
h

2 + θ̃
)

4θ̃
[
1 − φ

(0)
d − φ

(0)
h + 2φ

(0)
h φ

(0)
d + (

1 − φ
(0)
d + φ

(0)
h

)(
θ̃ − φ

(0)
d

2)]
⎫⎬
⎭

1/2

, (A16)

where θ̃ = (1 − φ
(0)
d

2 − φ
(0)
h )(T − TS)/TS and where TS =

4J (1 − φ
(0)
d

2 − φ
(0)
h ) is the spinodal temperature. When φ

(0)
d =

0, TS = Tc where Tc is the critical temperature given by
Eq. (2.3). Further, when θ = (T − Tc)/Tc → 0, ξ/a reduces
to Eq. (2.4). Figure 4 plots the value of θ for φ

(0)
d = 0 and a

fixed correlation length (chosen to be ξ = 10a and ξ = 4a)
as a function of the hybrid lipid fraction. As the amount of
hybrid is increased towards the Lifshitz point, the temperature
corresponding to small length scale fluctuation domains gets
closer to the critical temperature.

Note that Eq. (A16) is only valid if φ
(0)
h < 2(1 − φ

(0)
d

2
)/3.

Exactly at this value (at the Lifshitz line), higher order terms in
the small k expansion must be kept as θ → 0. In other words,
Css(k = 0) ∝ θ−1, ∂2Css(k = 0)/∂k2 ∝ θ−1, and ∂4Css(k =
0)/∂k4 ∝ θ−2 as θ → 0. Hence, at the Lifshitz line, the
correlation length is determined by the fourth-order derivative,
ξ 4 ∝ −[∂4Css(k = 0)/∂k4]/[4!Css(k = 0)]. The result is that
the correlation length diverges like θ−1/4 as θ → 0, as stated
in the main text.

APPENDIX B: FLUCTUATION LIFETIME:
FOURIER REPRESENTATION

The dynamics are conveniently written in the Fourier
representation of the fluctuations described in Appendix A.

ξ/a  4

(T
 - 

T
S
)/

T
S

10

=

ξ/a  =

FIG. 4. (Color online) The temperature, θ = (T − Tc)/Tc, at
which the correlation length is ξ = 10a (blue, bottom curve) and
ξ = 4a (magenta, top curve) as a function of the hybrid lipid fraction.

In that representation, Eqs. (2.5) and (2.6) are written as

∂�̄k(t)

∂t
= −2D0

a4
�kMk�̄k(t), (B1)

where �k is a diagonal matrix that contains the dynamical
coefficients,

�k = diag[(ak)2,(ak)2,η,η], (B2)

where η = a2
/D0 is the ratio of the time scale for a lipid to
diffuse one molecular size over the reorientation time scale. D0

is related to the lipid diffusion coefficient, D (D0 = a2D/T ,)
while 
 is related to the inverse orientation relaxation time
scale, γ (
 = a2γ /T ). Values for D, γ , and a are reported
in the main text and they give η ≈ 1. Note that D0 and 


are assumed to be independent of temperature so that D and
γ depend on T linearly. Hence, the temperature that relates
D0 with D (and 
 with γ ) is the temperature at which the
experimental determination of D (γ ) was performed. Here,
we assume that this temperature can be written as T = αJ

where α is a proportionality factor of the order of one. For
the ratio of lifetimes reported in the main text (with and
without hybrids), this parameter is irrelevant. Hence, we will
set α = 1 for the remainder of the calculation. We can finally
write

∂�̄k(t)

∂t
= −2D

a2
T −1

k �̄k(t), (B3)

where T −1
k = �kMk/J .

The decay rate of any fluctuation can be obtained from
the matrix T −1

k . The eigenvalues νk of T −1
k are inversely

proportional to the fluctuation lifetimes, τ (k) = a2ν−1
k /2D.

The corresponding eigenvectors V̄k determine the relative
amplitudes of the fluctuation components [δφs(k), δφu(k),
σx(k) and σy(k)] for a mode that decays on a time scale
τ (k). To get the lifetime of fluctuations of length scale λ

such as the one given by Eq. (2.7), we need to choose the
magnitude of k to be k = 2π/λ. The fact that the system is
rotationally invariant allows us to arbitrarily set kx = 2π/λ

and ky = 0 with no loss of generality. With this choice, T −1
k
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becomes

T −1
λ =

⎛
⎜⎜⎜⎜⎜⎝

8π2a2

λ2φ
(0)
h

[
θ+ − φ

(0)
h J0(2πa/λ)

]
8π2a2

λ2φ
(0)
h

[
θ− + φ

(0)
h J0(2πa/λ)

] −i 8π2a2

λ2 J1(2πa/λ) 0
8π2a2

λ2φ
(0)
h

[
θ− + φ

(0)
h J0(2πa/λ)

]
8π2a2

λ2φ
(0)
h

[
θ+ − φ

(0)
h J0(2πa/λ)

] −i 8π2a2

λ2 J1(2πa/λ) 0

i2ηJ1(2πa/λ) −i2ηJ1(2πa/λ) 2η

φ
(0)
h

[
2θ− − φ

(0)
h J2(2πa/λ)

]
0

0 0 0 2η

φ
(0)
h

[
2θ− + φ

(0)
h J2(2πa/λ)

]

⎞
⎟⎟⎟⎟⎟⎠ ,

where θ+ = (1 + φ
(0)
h )(1 + θ ) and θ− = (1 − φ

(0)
h )(1 + θ ). The simple structure of this matrix allows one to obtain the eigenvalues

and eigenvectors analytically. In the following and in the analysis presented in the main text, we assume that the lifetime of the
fluctuation given by Eq. (7) is determined by the smallest eigenvalue, νλ,min, alone. Accordingly, the fluctuation amplitudes �̄(a,b)

are determined by the eigenvector, V̄λ,min, corresponding to that eigenvalue. This approximation is accurate as long as there is a
large difference in the magnitude of the eigenvalues (i.e., when one is much smaller than all others). We have checked that the
smallest eigenvalue is at least tenfold smaller than the others in the regime of interest (θ � 1, φ

(0)
h < 2/3, and η ≈ 1). Under

these conditions, the minimum eigenvalue is given by

νλ,min = g + ηf

φ
(0)
h

− 1

φ
(0)
h

[
(g − ηf )2 + 32ηπ2a2φ

(0)
h

2

λ2
J1(2πa/λ)2

]1/2

, (B4)

where

f = 2
(
1 − φ

(0)
h

)
(1 + θ ) − φ

(0)
h J2(2πa/λ) (B5)

and

g = 8π2a2

λ2
φ

(0)
h [1 + θ − J0(2πa/λ)]. (B6)

Equation (B4) was used to plot τ (θ,φ
(0)
h ) = a2ν−1

λ,min/2D in Fig. 2. Expanding Eq. (B4) around θ = 0 and λ−1 = 0 results in
Eq. (2.8) reported in the main text. The eigenvector associated with the smallest eigenvalue, V̄λ,min, can also obtained analytically,

V̄λ,min = (−h,h,i,0)T , (B7)
where

h = 4π2a2

λ2φ
(0)
h

×
⎛
⎝2ηφ

(0)
h

2J1(2πa/λ)2 − [(
1 − φ

(0)
h

)
(1 + θ ) + φ

(0)
h J0(2πa/λ)

]{
g − ηf − [

(g − ηf )2 + 32ηπ2a2φ
(0)
h

λ2 J1(2πa/λ)2
]1/2}

ηJ1(2πa/λ)
{

16π2a2

λ2 (1 + θ ) − (g + ηf ) + [
(g − ηf )2 + 32ηπ2a2φ

(0)
h

λ2 J1(2πa/λ)2
]1/2}

⎞
⎠ .

(B8)

Note that the second smallest eigenvalue is usually associated with the eigenvector V̄λ = (0,0,0,1)T and, hence, is not relevant
to the composition fluctuations; it describes the fluctuation of σy decoupled from everything else.

For the special case where the fluctuation length scale matches the correlation length, λ is set to ξ in Eq. (2.7) where θ

is written in terms of ξ and φ
(0)
h by inverting Eq. (A16) for φ

(0)
d = 0. The resulting expressions for the smallest eigenvalues,

νλ=ξ,min, and the corresponding eigenvector, V̄λ=ξ,min, were used to generate Fig. 3. Here, for simplicity, we report approximate
expressions for the eigenvalues only and that are valid for important limiting cases. The results are

νλ=ξ,min = 4π2a4

ξ 4
{1 + 4(ξ 2/a2)[1 − J0(2πa/ξ )]} − φ

(0)
h

4π2a4

ξ 4[1 + 4(ξ 2/a2)]
{1 + 2(ξ 2/a2)[1 + 4(ξ 2/a2)J1(2πa/ξ )2]}, (B9)

valid for small hybrid fraction, φ
(0)
h � 1, and

νλ=ξ,min = 8π2a2

ξ 2
[1 − J0(2πa/ξ )] + η[1 − J2(2πa/ξ )]

−
(

32ηπ2a2J1(2πa/ξ )2

ξ 2
+
{

8π2a2

ξ 2
[1 − J0(2πa/ξ )] − η[1 − J2(2πa/ξ )]

}2)1/2

+ 3ξ 2
(
2 − 3φ

(0)
h

)
4ξ 2 − a2

{(
2η + 4π2a4

ξ 4

)
+

(
2η − 4π2a4

ξ 4

){
8π2a2

ξ 2 [1 − J0(2πa/ξ )] − η[1 − J2(2πa/ξ )]
}

( 32ηπ2a2J1(2πa/ξ )2

ξ 2 + {
8π2a2

ξ 2 [1 − J0(2πa/ξ )] − η[1 − J2(2πa/ξ )]
}2)1/2

}
,

(B10)
valid for 0 < 2/3 − φ

(0)
h � 1. These approximate expressions were used to generate the dashed lines in Fig. 3.
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