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Anomalous diffusion of proteins in sheared lipid membranes
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We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid
membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane
diffusion of lipids in all flow conditions. Protein embedded membranes behave quite differently: by imposing a
simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters
becomes strongly superdiffusive in the shear direction. In such a circumstance, the subdiffusion regime is
predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions
of protein-lipid complexes within the membrane voids, which are generated by hydrophobic mismatch or the
transport of lipids by proteins.
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I. INTRODUCTION

Lipid bilayers are the essential parts of any living cell. They
constitute the main body of the cell membrane while being
found in different organelles inside the cell. The cell membrane
hosts collections of proteins and lipid rafts, and it is crowded
with a variety of biomolecules. In such nonhomogeneous and
diverse environments, the diffusion of protein molecules in
lipid bilayers plays a vital role in different biological processes
like cell signaling. The diffusion of lipids and proteins is not
a distinct phenomenon and depends on the environment and
neighboring molecules [1] and even changes from cell to cell
[2]. Transmembrane proteins diffuse as dynamic complexes
with lipids [3,4], and their interactions with lipid molecules
mediates traffic in cell membranes. Experiments show that the
hydrophobic mismatch between proteins and lipids controls
the diffusion coefficient of molecules inside a bilayer [5,6].

Anomalous sub- and superdiffusion processes are more
efficient scenarios for finding a nearby target than normal
diffusion [7,8], and they enhance the formation of protein
complexes and signal propagation. According to experiments,
the mean square displacement (MSD) of membrane channel
proteins of the human kidney cell exhibits subdiffusion [9].
The addition of cholesterols to lipid membranes [10] and the
augmented area coverage of membrane proteins [11] also lead
to subdiffusion of lipids and proteins. Superdiffusivity has been
observed in several physical systems and is often associated
with Lévy flights. Prominent examples are the chaotic motion
of particles in a rotating laminar flow [12] with long-range
flights and horizontally vibrated grains which exhibit Lévy
flight with small jumps compared to their diameter [13].
Nevertheless, an active component such as molecular motor
can also be the source of superdiffusivity. A recent study
by Köhler et al. [14] shows that in a gel composed of
actin filaments, fascin molecules, and myosin-II filaments, the
diffusion of small actin and fascin clusters is superdiffusive
because of the work done by molecular motors.
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In many conditions membranes are under shear. When a red
blood cell (RBC) migrates through vessels smaller in diameter
than itself, the RBC membrane is under shear. The blood flow
exerts tangential shear stresses on vascular endothelia and
initiates cellular processes like activating G protein-coupled
receptors. These receptors are able to sense the fluid shear
stress as an increase in the lateral membrane tension and
subsequently go through conformational changes [15]. The
temporal and spatial changes in the membrane fluidity, in
response to shear flow, have been observed experimentally
[16,17].

In this study we are interested in the diffusivity of lipid
and protein molecules in flat membranes under shear flow
and attempt to answer three fundamental questions using
molecular dynamics (MD) simulations: (i) Do lipid molecules
have different diffusion coefficients parallel and perpendicular
to the flow direction? (ii) How does a simple shear flow
influence the random motions of transmembrane proteins?
(iii) Is there any correlation between the population of proteins
and their diffusion in the membrane?

II. MODEL AND METHODS

We simulate lipid membranes utilizing a flexible lipid
model [18] and triple-strand rigid proteins [19] [Fig. 1(a)].
Although different coarse grained models have been developed
over the years [20], the model adopted here has the ability
to mimic the physical properties of lipid membranes. The
model is not a true coarse grained model but can qualitatively
describe phenomena related to lipid membranes and associated
transmembrane proteins as we will compare some of our
results with true coarse grain and atomistic models. Our goal
is to explore the effect of shear flow on the motion of lipid and
protein molecules over nanosecond time scales. We perform
MD simulations of an NVT ensemble, where the number of
particles N , the volume V , and the temperature T are held
constant. The Lees-Edwards boundary condition is employed
to generate simple shear flow with the shear rate γ̇ [21]. Other
boundary conditions are periodic. The temperature is set to
324 K so that the system is safely above the gel to liquid phase
transition temperature of different phosphatidylcholine lipid
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FIG. 1. (Color online) (a) The models of lipid and protein molecules. Red (dark gray) and yellow (light gray) spheres are hydrophilic and
hydrophobic particles, respectively. (b) Velocity profile of a sample solvent-membrane system under simple shear flow with γ̇ = 0.03τ−1. The
dashed lines mark the average boundaries of the solvent columns and the membrane.

bilayers. A detailed description of the model can be found in
Khoshnood et al. [19].

We express the position and velocity vectors of particles
in the Cartesian (x,y,z) coordinate system whose origin is
located at the center of our cubic simulation box. The x

and y axes lie in the membrane plane, and the z axis is
perpendicular to that. MD scales of length, time, mass, and
energy are σ = 1/3 nm, τ = 1.4 ps, Navo m = 36 g/mol, and
Navo ε = 2 kJ/mol, respectively. Navo is Avogadro’s number. In
all simulations, the dimensions of the box along the coordinates
axes, Lx , Ly and Lz, are set to Lx = Ly = Lz = 28.71σ . The
total number of particles equals N = 15 625, which gives a
fixed number density, ρ = 2/(3σ 3), and a constant average
fluid pressure of (1.7 ± 0.1)εσ−3 for all simulations. Here, we
note that isotropic pressure control is not appropriate in the
simulation of lipid membranes since their volume is constant
in the laboratory and biological conditions. However, a fixed
number density will give a constant average pressure, and
physical properties of lipid membranes with different number
of lipids and proteins can be compared. Physical quantities
are measured using a run time of ≈5000τ . An important
mechanical property of every membrane is the surface tension
ζ , which mainly affects the diffusion of lipid molecules. We
compute the tension of our model membranes from

ζ = [Pzz − (Pxx + Pyy)/2]Lz, (1)

where Pαα (α ≡ x,y,z) are the components of the pressure
tensor [21].

In this study we apply MSD to determine the diffusion prop-
erties of randomly moving particles. The diffusion coefficient
is thus calculated using the Einstein expression

Dαα = lim
t→∞

1

2Nt

〈
N∑

i=1

[qiα(t) − qiα(0)]2

〉
, (2)

where α ∈ {x,y,z} and qiα is the displacement due to the
random motion of the ith particle in the α direction. The
summation in Eq. (2) is taken over the particles of the same

type. From here on, we will drop the summation sign for
brevity. The operator 〈· · ·〉 denotes the canonical average.
Equation (2) describes the regular Brownian motion when
the MSD is linearly proportional to t . The diffusion process is
anomalous should the MSD deviate from the linear form and
obeys the relation

〈[qα(t) − qα(0)]2〉 = 2Da
ααta, (3)

where a is the diffusion exponent and Da
αα is the fractional

diffusion coefficient. The regimes with 0 < a < 1 and a > 1
are subdiffusive and superdiffusive, respectively. To obtain
smooth MSD curves, we evolve systems of 80 different
initial conditions and report their ensemble-averaged diffusion
coefficients and MSDs. The diffusion of lipids is investigated
by tracing the motion of their head groups. Proteins are traced
using their centers of mass.

In equilibrium models without external shearing, there is
no streaming in the solvent-membrane system. Therefore, the
flux of particles is associated with their random motions, and
any displacement is due to thermal fluctuations. In sheared
membranes, however, there is a combination of streaming and
diffusive fluxes. We thus need to distinguish and eliminate
the streaming flux when calculating the MSD. Let us define
the actual velocity components of the j th particle as vjα =
〈vα〉 + ṽjα , where 〈vα〉 is the average streaming velocity and
ṽjα is the peculiar velocity whose time integral gives the
displacements in Eqs. (2) and (3). In equilibrium models, the
average velocities 〈vα〉 vanish, and we obtain qjα = ∫

vjαdt =∫
ṽjαdt . With external shearing, the flow is always imposed

in the x direction. Therefore, vjy = ṽjy and vjz = ṽjz are
directly integrated to find the corresponding displacements.
When the simulation box is uniformly filled with one type
of particles (let us say solvent particles), one readily finds
ṽjx = vjx − zγ̇ . In the presence of a lipid bilayer, the vertical
velocity profile in the z direction is no longer linear [see
Fig. 1(b)]. Therefore, to obtain the MSD of lipids, we define
〈vx〉 as the average velocity of the layer where the head groups
of phospholipids reside and obtain qjx = ∫

(vjx − 〈vx〉)dt . It
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FIG. 2. (Color online) MSD of lipid molecules for the membrane
with 600 lipids and for 	t = 0.01τ . The membrane is under simple
shear flow with γ̇ = 0.03τ−1, and each lipid molecule has been
hydrated by almost 20 solvent particles. The coordinate axes are
in logarithmic scale.

is remarked that transmembrane proteins do not experience
streaming movements, 〈vα〉 = 0, because the shear forces
exerted on their end points from the upper and lower solvent
columns are equal and in opposite directions.

III. DIFFUSION OF LIPIDS

The lateral diffusion of lipids under equilibrium conditions
is enhanced as the membrane tension increases. This has been
observed in simulations by atomistic [22] and coarse grained
models [23] and is because, by stretching the membrane,
the area per lipid increases and more space is provided
for the free motion of lipids. Our simulations with this
very simple model show the same pattern. By turning on
the shear flow, lipid molecules undergo an initial ballistic
motion that transforms into an interval of subdiffusion with
a = 0.7 (Fig. 2). The transient anomalous state has been
observed in atomistic simulations [24] as well. After the
transient anomalous diffusion and over longer time scales
a normal diffusion with a = 1 is observed (Fig. 2). It is
noted that we have found similar MSD profiles for lipid
molecules in equilibrium and sheared systems, and in both
cases lipids ultimately develop normal diffusion. Although
Kneller et al. [25] reported a permanent subdiffusive behavior
by the atomistic simulation of lipid membranes in equilibrium,
experiments support a final regular diffusion regime, as we
do, even in the presence of obstacles [26]. We conclude that
the diffusion regime of lipid molecules is invariant with and
without external shearing.

The diffusion coefficients obtained from the normal diffu-
sion region of MSD plots are larger for smaller shear rates.
For example, for a membrane of Nl = 600 lipid molecules,
we find ζ = (1.4846 ± 0.2624)ε/σ 2, Dxx = 0.0338σ 2/τ , and
Dyy = 0.0334σ 2/τ . For the same system under a shear
flow of γ̇ = 0.03τ−1, the membrane tension drops to ζ =
(0.8163 ± 0.2727)ε/σ 2, and the diffusion coefficients reduce
to Dxx = 0.0318σ 2/τ and Dyy = 0.0332σ 2/τ . The reason is
that the membrane thickness increases for higher shear rates
and the tension decreases without any change in the area

per lipid [19]. Consequently, the fluidity of the membrane
decreases and slows down the diffusion process. After applying
the shear force, we find that Dxx drops by about 6%, while
Dyy remains almost constant with only 0.4% change, which
is not statistically significant since it is less than the mean
standard error for diffusion coefficients, which is less than
1%. The difference between Dxx and Dyy is indistinguishable
in Fig. 2. We speculate that the alignment of lipid chains
with the flow breaks the isotropy and yields Dxx 	= Dyy .
Atomistic simulation of the lipid membrane [22] has shown
that increasing the tension of the membrane, induced by
altering the area per lipid, results in larger lateral diffusion
coefficients. This change is not linear with tension, and
Muddana et al. [22] have reported a 4%–28% increase in
the lateral diffusion coefficient. Coarse grained simulations
[23] showed that for larger tensions the increase in diffusion
coefficient slows down and depends on the range of tension.
In our simulation, shear flow induces a 45% change in tension
and, consequently, results in a different diffusion coefficient
in the flow direction. In the z direction, perpendicular to the
membrane plane, our MSD plots always show a confined
motion, as is expected.

IV. DIFFUSION OF PROTEINS

We add rod-like proteins to the membrane and simulate
models with different protein concentrations that vary signifi-
cantly from cell to cell. Since proteins increase the membrane
tension as they perturb the distribution of lipids [19], we
increase the number of lipids (proportional to proteins)
to keep the membrane almost tensionless. In equilibrium
and for a membrane with a single embedded protein with
ζ = (0.1153 ± 0.1742)ε/σ 2, we can measure the diffusion
coefficients Dαα since the MSD of protein shows an ul-
timate regular diffusion. We find Dxx = 0.0253σ 2/τ and
Dyy = 0.0254σ 2/τ , which are equivalent to Dxx ≈ Dyy ≈
2 × 10−9m2/s with less than 1% error. These values are
larger than experimental values by two orders of magnitude.
The obvious reason is the effect of coarse graining that has
reduced the interdigitation and friction between molecules and
allows for faster movements of particles. The reduced friction
affects both the membrane component and solvent motion and,
consequently, decreases both solvent and membrane viscosity.
Viscosity of a fluid is a determinant of mobility or diffusion
in that medium. Another minor source of discrepancy is the
smaller size of our model proteins compared to real integral
proteins.

We note that the average diffusive behavior of lipids is
unaffected by the presence of proteins. We computed the
average MSD profile of lipids for the above system and
found the same pattern of initial ballistic regime, transient
subdiffusive region, and final normal diffusion. The diffusion
coefficients for our model proteins are smaller than model lipid
molecules by a factor of 0.75. This is expected because of the
larger size and mass of proteins compared to lipids.

The same initial ballistic motion as observed for lipids is
recovered for proteins by using a time step as small as 	t =
0.0005τ for t < 0.01τ . This regime is shared by all the systems
regardless of the shear rate and the number of proteins. By
putting the system under simple shear flow, proteins undergo
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FIG. 3. (Color online) MSD of protein molecules in a protein-embedded model with (a) 2 and (b) 4 proteins, which corresponds to 640
and 660 lipids, respectively. We have used 	t = 0.0005τ up to t = 0.02τ and 	t = 0.01τ for t > 0.02τ . In both (a) and (b) the membrane
is under simple shear flow with γ̇ = 0.03τ−1, and each lipid molecule has been hydrated by almost 20 solvent particles. The coordinate axes
are in logarithmic scale. (c) Close-up of the upper parts of the MSD profiles, with the green (light gray) and black lines corresponding to the
systems in (a) and (b), respectively. The profiles with square symbols correspond to the y direction.

Brownian motion when only two proteins are used [Fig. 3(a)].
One could anticipate this result, for single proteins cannot
remarkably perturb the distribution of lipids and change the
diffusion properties of the membrane.

However, we observe that four proteins form two double-
protein clusters (due to the depletion force) and exhibit a strong
superdiffusive motion parallel to the flow. Figure 3(b) shows
how after t ∼ 100τ the normal diffusion regime transforms
to strong superdiffusion with a = 1.7 in the x direction.
Interestingly, this exponent is the same as the superdiffusion
exponent found by Köhler et al. [14] for active diffusion of
protein clusters by molecular motors. Because of the crowding
effect and an increase in the concentration of proteins [1],
our results show a subdiffusive behavior along the y axis
with a = 0.7. Weigel et al. [9] observed a = 0.8 ± 0.1 in
experiments with channel proteins of a human kidney cell,
and Javanainen et al. [27] found a = 0.75 ± 0.15 by molecular
simulations of aggregating NaK channel proteins. For clarity,
the upper parts of the MSD profiles in Figs. 3(a) and 3(b) are
plotted together in Fig. 3(c).

To rule out the effect of statistical errors in the development
of anomalous behavior, we have divided the MSD profiles
of the system with four proteins into smaller intervals and
separately calculated a and its error over each interval using the
curve fitting toolbox of MATLAB. We then assigned the mean
value to the center of the time interval and plotted the calculated
diffusion exponent versus time in Fig. 4. For instance, over
the initial ballistic zone, we have obtained a = 1.989 ± 0.006
from t = 0.005τ to t = 0.01τ and assigned this value to t =
0.0075τ . Figure 4 shows that a approaches 1.7 and 0.7 in the
x and y directions, respectively.

To understand the physical mechanism behind the observed
anomaly, we conduct the following analysis. Let us define
the local concentration of the head particles of lipid and
protein molecules at the position r and time t as f =

1
Nh

∑Nh
i=1 [H (δi) − H (δi − 	)], where δi(t) = |ri(t) − r| and

ri(t) is the position vector of the ith head particle. Nh denotes
the total number of head particles in the monolayer, H (ξ ) is
the Heaviside step function, and 2	 is the typical size of the
cross section of a protein cluster (or a protein-lipid complex).

Our numerical experiments show 	 = 4σ is the best choice.
We examine the trajectories of protein molecules and the
spatial variation of the normalized distribution f̂ (r,	,t) =
(f − fmin)/(fmax − fmin) to explain the physics of observed
superdiffusion. Here fmin and fmax are the minimum and
maximum values of f at a given time t . Figure 5 demonstrates
contour plots of f̂ for the upper and lower monolayers at a
randomly chosen time.

Figure 6(a) demonstrates the trajectories of a single protein
molecule and two double-protein clusters in equilibrium
and sheared systems, respectively. The equilibrium trajectory
corresponds to regular diffusion because it covers a definite
area. In the sheared system the trajectories are elongated and
aligned with the flow direction, indicating a fractional random
walk: local isotropic wanderings followed by small-step jumps
mainly in the flow direction. These successive jumps can
be interpreted by inspecting the contour plots of f̂ (r,	,t)
over a long duration of time. The hydrophobic mismatch
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FIG. 4. The variation of the diffusion exponent a for the system
in Fig. 3(b). Solid lines correspond to the mean values, and dashed
lines show the error. For the y direction, a has been plotted only for
t > 30τ because for t < 30τ the diffusion exponents of the x and y

directions are almost identical. The horizontal coordinate axis is in
logarithmic scale.

032705-4



ANOMALOUS DIFFUSION OF PROTEINS IN SHEARED . . . PHYSICAL REVIEW E 88, 032705 (2013)

x/σ

y/
σ

-10 -5 0 5 10

-10

-5

0

5

10

0 0.25 0.5 0.75 1
fUpper monolayer ^

x/σ

y/
σ

-10 -5 0 5 10

-10

-5

0

5

10

0 0.25 0.5 0.75 1
fLower monolayer ^

FIG. 5. (Color online) The local concentration f̂ (r,	,t) of head
groups in the (top) upper and (bottom) lower leaflets of a sheared
membrane at a randomly selected time for 	 = 4σ . The head particles
of proteins are shown by solid circles. Drawn circles have radii
of 	, and their centers lie at the centroid of the head particles of
proteins. The flow with the shear rate γ̇ = 0.03τ−1 is in the x+

and x− directions for the upper and lower leaflets, respectively [cf.
Fig. 1(b)]. The model has 660 lipids and 2 double-protein clusters.
Since proteins are longer than the bilayer thickness, they are aligned
in the shear flow, and their upper and lower head particles do not have
the same coordinates.

between protein clusters (which have asymmetric big cross
sections) and the membrane disturbs the bilayer thickness and
the arrangement of nearby lipids. Moreover, proteins are able
to transport their neighboring lipids with them and behave
as dynamic complexes [3,4]. These two effects collaborate
to create transient voids whose distribution can be described

by ĝ = 1 − f̂ (light shades in Fig. 5). When the bilayer is
sheared, protein-lipid groups are pushed into the voids created
by themselves or other groups or complexes and experience ac-
celerated, and therefore superdiffusive, movements. It should
be noted that during our simulations, the center of mass of
the membrane and embedded proteins remains almost at the
center of the coordinate system.

None of our samples show long-step straight motions of
protein clusters. What we have seen are small-step jumps,
which are comparable to the mean distance between protein
clusters and voids [compare Figs. 5 and 6(a)]. We have
computed the probability distribution function (PDF) of
protein displacements and plotted it in Fig. 6(b). A Gaussian
function has been fitted to the data by setting its maximum
to the maximum of PDF, and its variance is found using the
full width at half minimum of the PDF. The PDF exhibits a
deviation from normal distribution and it has tails. We have
also applied the Kolmogorov-Smirnov test [28] to confirm that
the PDF is not a normal Gaussian. This is a clear indication of
anomalous diffusion.

As we noted before, the ends of proteins are pulled in
opposite directions by the two sheared solvent columns. An
important question is why do protein clusters prefer to jump
into the voids when the membrane is sheared? We have a
simple explanation for this behavior: Two ends of proteins
attract lipids from two different layers of the membrane.
Thus, the symmetry in the distribution of the upper and
lower protein-bound lipids is likely to break. Moreover, the
shear force is exerted by the solvent on both the lipid and
protein heads. The mentioned symmetry breaking thus leads
to different force components at the upper and lower ends of
protein-lipid complexes, and they will jump into a void in the
direction specified by the broken symmetry. To quantify this
process, we take a sample two-protein cluster and define ru

and rl as the centers of mass of its protein heads in the upper
and lower leaflets, respectively. We then compute

ξ (ti) = f̂ (ru,	,ti) − f̂ (rl ,	,ti), (4)

which is proportional to the net shear force exerted on the
cluster at the time step ti : the local effective area in contact
with a solvent column is determined by the number of head
particles, and the shear force is calculated by multiplying the
effective contact area by the shear rate and viscosity. ξ (ti) will
be zero if the concentrations of the head particles of lipids are
identical around the two heads of the cluster. Defining ξ̄ as the
average of ξ (ti), the autocorrelation function

A(tlag) =
∑

i[ξ (ti + tlag) − ξ̄ ][ξ (ti) − ξ̄ ]∑
i[ξ (ti) − ξ̄ ]2

, (5)

plotted in Fig. 6(c) carries interesting information about the
shear force experienced by the cluster: the correlation time tc ≈
23τ shows a sustained accelerated motion of the cluster over
t0 < t � t0 + tc, independent of the initial time t0. Moreover,
the oscillatory decaying profile of A(tlag) shows a random
symmetry breaking in the sense of deterministic chaos ( [29],
Sec. 5.3.4). The existence of a correlation time can also be
verified by studying the cross-correlation function

C(tlag) =
∫

dt

∫
dr f̂ (r,	,t + tlag)ĝ(r,	,t) (6)
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FIG. 6. (Color online) (a) Trajectories of a single protein in equilibrium and two double-protein clusters under shear flow as indicated
by arrows. (b) PDF for the displacements of a sample two-protein cluster. The solid line shows the best Gaussian function fitted to the data.
(c) Autocorrelation function A(tlag) for the difference between the head particle populations near the two ends of a protein cluster. The correlation
time tc ≈ 23τ is defined at the point where A(tlag) abruptly drops below 10% of its maximum. We have taken 1000 successive samples in the
time domain, with increments of 1τ , to compute A. (d) Cross-correlation function C(tlag) between the distribution of protein-lipid complexes
and their neighboring voids. The integrals in C have been taken using a grid of 29 × 29 in the xy plane and 1000 successive points, with steps
of 1τ , in the time domain.

over one of the leaflets. Figure 4(d) shows that C(tlag) of the
upper leaflet steeply rises from tlag = 0 and peaks at tlag ≈ 21τ ,
which is the earliest time span that protein-lipid complexes
need to occupy their nearest voids. This is quite consistent
with the acceleration time scale of protein clusters predicted by
the autocorrelation function A(tlag). For tlag � 21τ the cross-
correlation function remains almost flat because the size of a
void is always bigger than the distance that a protein cluster
travels during t ∼ O(tc).

V. CONCLUSIONS

In this work, we use a toy model of proteins and lipids to
simulate the dynamics of cell membranes undergoing shear
flow. We calculate the MSD profile of lipids and proteins in
equilibrium and a sheared system and compare our result
with existing works in the literature. This simple model
beautifully captures the basic regimes in the diffusive behavior

of lipid molecules: the short initial ballistic regime, transient
subdiffusive regime, and final normal diffusion. All-atom MD
simulations show the same diffusive regions in the MSD
profile of a lipid molecule [24]. Moreover, we show that shear
flow reduces the tension of the membrane and consequently
decreases the diffusion coefficient in the direction of flow.
The fact that reducing membrane tension slows down lipid
movement has been reported as the result of all-atom MD
simulations [22] and experimental measurements [16].

Since there were a small number of protein molecules in
the system, we did extensive MD simulations to obtain the
final MSD profiles for proteins. Our C++ code, which has
already been calibrated [19] for membranes under simple
shear flow, is not parallel and allows only for small-scale
simulations. We have recovered our results by LAMMPS for
models in equilibrium conditions. However, LAMMPS does not
have the capability of imposing simple shear flow conditions,
and we could not use it to run our sheared systems over
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longer time scales. Despite these limitations, the smooth MSD
profiles obtained from our numerous samples clearly show the
distinction between the regular diffusion of single proteins
and anomalous diffusion of protein clusters. We explain
this anomaly by deliberately examining the distribution of
head particles of lipids and proteins and introducing a void
generation mechanism. Our simulations cover time scales of
the order of nanoseconds.

Cell responses to stimuli are fast due to the enhanced
mobility of protein receptors. Considering our findings, su-
perdiffusion of proteins under shear flow can play a dominant
role in the process of signaling in endothelium cells, RBCs,
liposomes used for targeted drug delivery, and other sheared
membranes. We note that since the length and shape of
proteins and their ability to attract neighboring lipids control
the sizes of voids (there was no other mechanism in our

models for void generation), the superdiffusion properties
reported in this study are not universal and they highly correlate
with the properties of embedded proteins. Simulations using
detailed structures of lipids and proteins are needed to better
assess the superdiffusive behavior in realistic cell membranes.
Experimental exploration of our results can be done using
single particle tracking [30], which can give the MSD of
proteins directly.
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