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Elasticity of cross-linked semiflexible biopolymers under tension
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Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two
weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links)
represented by harmonic springs. Within this model, we compute the force-extension curve and the differential
stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing
thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links
increases both with growing number and with growing strength of the cross-links, and is most prominent for
small force f . For large f , the additional, cross-link-induced extension is subdominant except for the case of
linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically
the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in
differential stiffness can be as large as 100% for small f or large numbers of cross-links.
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I. INTRODUCTION

Many important biopolymers, such as DNA, the cytoskele-
tal filaments [filamentous (F-)actin, microtubules, intermedi-
ate filaments], as well as collagen in the extracellular matrix are
fluctuating macromolecules with a bending stiffness interme-
diate between that of a random coil (Gaussian chain) and a rigid
rod. Polymers whose elastic behavior is dominated by their
bending rigidity are known as semiflexible. Numerous experi-
ments probing their elasticity have become available [1,2] with
the advances in single-molecule manipulation, particularly for
DNA. Intriguing and qualitatively novel mechanical behavior
arises if semiflexible polymers are pairwise permanently cross-
linked. The elasticity of cross-linked biopolymers is widely
studied experimentally via force-extension measurements. In
this article, we study analytically the force-extension relation
of an irreversibly cross-linked pair of semiflexible polymers
within a mesoscopic theoretical model.

Ubiquitous as extracellular mechanical support is the
connective-tissue protein collagen, whose fibrils achieve their
strength via covalent intermolecular cross-links between
triple-helical molecules [3,4]. Atomic force microscopy [5–7]
has been used to analyze single collagen fibrils, which
themselves consist of many microfibrils and hence can be
modeled as anisotropic networks of irreversibly cross-linked
semiflexible polymers [8]. Cell shape and stability is provided
by the actin cytoskeleton, a network of cross-linked F-actin
ranging in morphology from a dilute mesh to bundles of
parallel filaments [9]. The special elastic properties due to
cross-linking, closely related to biological function, thus have
become a subject of increasing interest and vigorous research
activity [10]. Yet the theoretical understanding is incomplete
and explanations based on semimicroscopic descriptions are
rare.

Crucial experimental results such as the strong stretching of
double-stranded DNA [11] have been successfully explained
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by the theoretical force-extension relation for a weakly
bending wormlike chain [12]. The wormlike chain (WLC)
[13–15] maps the conformations of an inextensible semiflexi-
ble polymer to one-dimensional paths whose statistical weight
penalizes curvature and is determined by two length scales
only: the total contour length L and the directional correlation
or persistence length Lp, proportional to the bending rigidity κ .
The weakly bending approximation of a WLC [12] simplifies
the analytical treatment by assuming that the tangent vector at
any arc-length position and the end-to-end vector make a small
angle. This approximation applies to polymers with a large
persistence length Lp (compared to L) or subjected to strong
stretching. Inhomogeneities or intermolecular interactions
have been the subject of several modifications and extensions
of the weakly bending WLC: In [16], the force-extension
relation of two parallel aligned, weakly bending WLCs
with a single irreversible cross-link and the elasticity of an
anisotropic network of aligned chains have been analyzed.
Double-stranded biopolymers have been studied previously
employing the railway-track model [17] or variants thereof
[18]. In its simplest version, the railway-track model reveals
a scale-dependent stiffness, which is renormalized on large
length scales as compared to the local (bare) value [17]. In [18],
a semiflexible ribbon was shown to exhibit twisted structures.
In the wormlike bundle model, an arbitrary number of regularly
arranged parallel filaments is effectively cross-linked by a
coarse-grained, continuous interaction [19]. The effect of
spontaneous polymer curvature has been studied by the authors
of [20,21]. Weak extensibility of semiflexible polymers at
strong stretching has been addressed with a combination of
a WLC and a Gaussian chain, the semiflexible harmonic chain
(SHC), in [22].

In this work, we consider the elasticity of two identical
weakly bending WLCs connected by an arbitrary number
of cross-links regularly spaced along the polymer contour.
The cross-links are represented by entropic harmonic springs,
which allow for a finite extent of the interpolymer distance
at the cross-link sites. In the case of infinite spring strength,
we obtain the limit of hard cross-links (strong topological
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constraints). By introducing infinitely many cross-links at
fixed contour length, we can also model a continuous cross-
linking or an attractive intermolecular interaction. The ladder
structure of our system is reminiscent of the base-pair sequence
of double-stranded DNA, but for the reversible hydrogen
bonding. This obvious modification of our model to reversible
and/or sectional cross-linking may prove versatile for future
studies of, e.g., the denaturation of DNA.

The paper is organized as follows. In Sec. II, we introduce
the model and the observable. In Sec. III, we present the
main steps in calculating the canonical partition function, from
which all equilibrium quantities can be derived. Details of this
calculation are given in Appendixes A and B. In Sec. IV, we
present the central result which is the force-extension relation.
After presenting the general result, we particularly focus on
the limit of hard cross-links, of continuous cross-linking, the
linear elasticity for small forces, and the strong stretching limit.
For the limit of continuous cross-linking, the general result
and a short comparative discussion are given in Appendix
C. We conclude and discuss further extensions of this work
in Sec. V.

II. MODEL

We consider two weakly bending, semiflexible chains of
equal bending rigidity and contour length, aligned parallel
along a preferential direction x and cross-linked at equidistant
arc-length positions specified below. The chain configurations
are described by paths r1(s), r2(s), with s ∈ [0,L] the
arc-length parameter, and tangential vectors tj (s) = ∂s rj :=
∂ rj /∂s.

Our setup, first shown for space dimension d = 2, is
sketched in Fig. 1 for three cross-links. The detailed de-
scription of our approach will focus on the case d = 2 for
reasons of transparency, given that the generalization to d = 3
is straightforward within the weakly bending approximation
(without taking into account torsions). As indicated, we
assume hinged-hinged boundary conditions, implying confine-
ment of the vertical positions (here, to y = 0) and vanishing
curvature at the ends. These boundary conditions are motivated
by the following situation: Experimentally, a tensile force can
be applied via optical or magnetic tweezers that control the
position of beads attached to the polymers’ ends, cf., e.g., [23].
Optical tweezers usually restrict the bead’s transverse motion,
but not the rotation, so that no moments are exerted at the ends.
Additionally, we assume x1(0) = x2(0) to exclude an overall
x shift between the chains.

y

x
−f

−f

f

f

r1(s) t1(s)

r2(s)

s = 0 s = L

cross-links

FIG. 1. (Color online) Stretched, weakly bending (see main text
for explanation) chain pair connected by three cross-links.

The effective bending potential of semiflexible chains is
given by

Hbend = κ

2

∫ L

0
ds

2∑
j=1

|∂s tj (s)|2, (1)

with the bending rigidity κ , related to the persistence length
Lp via

κ = d − 1

2
kBT Lp, (2)

and with the local inextensibility constraint

|tj (s)| ≡ 1, s ∈ [0,L], j = 1,2. (3)

To account for inextensibility in a mathematically tractable
way, we consider the weakly bending approximation: The
chains’ tangents preferentially align with a given direction,
here x. A stretching force of strength f , acting on both ends
of the chains (cf. Fig. 1), is described by the potential

Hstretch = −f ex ·
2∑

j=1

[rj (L) − rj (0)]

= −f

2∑
j=1

∫ L

0
ds ∂sxj (s). (4)

For sufficiently large stretching forces or bending rigidities,
the tilt of the tangent vector away from the x axis is small, so
that the condition Eq. (3) reads approximately

∂sxj (s) = 1 − 1
2 [∂syj (s)]2 + O([∂syj (s)]4). (5)

Inserting this expansion into Eqs. (1) and (4) and discarding
all but quadratic terms in derivatives of y, we arrive at the
weakly bending approximations of the bending and stretching
potentials.

Cross-links between the two chains are introduced at N − 1
sites regularly spaced along the contours

sb = bL

N
, b = 1,2, . . . ,N − 1, (6)

dividing the contour length L into N sections, cf. Fig. 1.
Explicitly, we model cross-links as entropic, harmonic springs
of strength g = 2 kBT/a2

c , where a2
c is the temperature-

independent squared equilibrium length of one cross-link.
Finally, the total effective Hamiltonian is

H =
2∑

j=1

∫ L

0
ds

(
κ

2

(
∂2
s yj

)2 + f

2
(∂syj )2

)
− 2f L

︸ ︷︷ ︸
H0

+ g

2

N−1∑
b=1

[y1(sb) − y2(sb)]2, (7)

where H0 is the Hamiltonian of the system without cross-
linking, and the last term ∝kBT describes the entropic cross-
links in the weakly bending approximation.

Starting from the concept of harmonic cross-links at
discrete sites sb = bL/N , we will also consider the limit of
continuous cross-linking, achieved by taking N → ∞ and
�s := L/N → 0. In this case, the strength g of a single
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cross-link has to go to zero, such that the total strength g̃ := Ng

remains finite. Replacing
∑N−1

b=1 → N
L

∫ L

0 ds in the cross-link
part of Eq. (7) gives a continuous, harmonic interchain
attraction of strength g̃/L,

H(c) = g̃

2L

∫ L

0
ds [y1(s) − y2(s)]2. (8)

It is our aim to study the effect of cross-links on the chain
elasticity and hence to compute the force-extension relation
exactly for an arbitrary number of irreversible cross-links.
Thus, the relevant quantity is the average end-to-end extension
of one chain in force direction x,

〈x〉 := 〈x(L) − x(0)〉H = L − 1

2

〈∫ L

0
ds(∂sy)2

〉
H

, (9)

where 〈·〉H denotes the canonical average with the Hamiltonian
of Eq. (7).

The force-extension relation of one weakly bending WLC
without cross-links (Hamiltonian H0), first addressed by
Marko and Siggia [12], is

〈x〉H0

L
= 1 − L

2Lp

{
coth

√
fr√

fr

− 1

fr

}
, (10)

in terms of the dimensionless variable

fr := f L2/κ, (11)

which is the ratio of stretching energy f L and bending energy
κ/L. The force-extension curve displays a linear regime for
small forces f and in the limit of strong stretching approaches
the maximal end-to-end extension L with a characteristic
saturation ∝f −1/2.

III. PARTITION FUNCTION

In this section, we detail the calculation of the canonical par-
tition function, Z = ∫

D[y(s)] e−βH[y(s)] (the configurational
integral for both chains denoted by D[y(s)]), which provides
access to all equilibrium observables. For the purpose of this
work, the end-to-end extension defined in Eq. (9) is obtained
from lnZ or the free energy [24] by differentiation with respect
to the force f :

〈x〉 = kBT

2

∂ lnZ
∂f

. (12)

The first step is to expand the chain configurations yj (s) in
appropriate eigenfunctions. As mentioned above, we impose
hinged-hinged boundary conditions, which for our system
translate into [y ′′

j (s) := ∂2
s y(s)]

yj (0) = yj (L) = 0, y ′′
j (0) = y ′′

j (L) = 0, j = 1,2. (13)

According to these boundary conditions, our Fourier-series
ansatz is

y1(s) =
M∑

m=1

Am sin(qms),

(14)

y2(s) =
M∑

m=1

Bm sin(qms),

with wave numbers

qm := mπ

L
, m the mode number, (15)

and M the largest undulation mode considered within our con-
tinuum model (roughly, the wave-length resolution is bounded
by molecular distances). With this ansatz, the Hamiltonian H
can be written as a quadratic form in the coefficient vector

� := (A1,B1,A2,B2, . . .)
T . (16)

Omitting the constant −2f L,

H[�] =
M∑

�,�′=1

��[C��′ + (UUT )��′]��′, (17)

where C, due to H0 of the uncross-linked system, is a diagonal
matrix (⊗ denotes the Kronecker product),

C = diag(c1,c2, . . .) ⊗
(

1 0
0 1

)
,

(18)

cm := L

4

(
f + κq2

m

)
q2

m,

and UUT the matrix due to the cross-link Hamiltonian, cf. the
second line of Eq. (7) or Eq. (8).

The partition function follows as a generalized Gaussian
integral over the mode coefficients normalized by L,

Z = e2βf L

∫
D[�] e−βH[�],

(19)

D[�] :=
M∏

m=1

d

(
Am

L

)
d

(
Bm

L

)
.

Returning to the end-to-end x extension introduced in
Eqs. (9) and (12), we wish to focus primarily on the cross-link
contribution, i.e.,

〈�x〉 := 〈x(L) − x(0)〉H − 〈x(L) − x(0)〉H0 , (20)

since the extension 〈x(L) − x(0)〉H0 due to thermal fluctua-
tions of uncross-linked weakly bending WLCs only is known
[12]. To that end, we write the partition function as Z =
ZrelZ0, whereZ0 is the partition function of the uncross-linked
system and address the relative partition function [cf. Eq. (17)],

Zrel :=
∫
D[�] e−βH[�]∫
D[�] e−βH0[�]

= [det(1 + C−1UUT )]−1/2. (21)

This yields the cross-link-induced extra displacement

〈�x〉 = kBT

2

∂ lnZrel

∂f
. (22)

A. Finite number of cross-links

First, we address a finite number N − 1 of equidistant
harmonic cross-links, for which the cross-link Hamiltonian
is quadratic, but not diagonal in the modes. The matrix UUT
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is a sum of N − 1 projectors,

UUT = g

2

N−1∑
b=1

(
ub ⊗ uT

b

) ⊗
(

1 −1
−1 1

)
,

(23)
uT

b := [sin(q1sb), sin(q2sb), . . .].

Using the identity det exp A = exp tr A to expand the determi-
nant in Eq. (21), Zrel is accessible via traces of powers of the
matrix C−1UUT ,

Zrel = exp

{
−1

2
tr

∞∑
k=1

(−1)k+1

k
(C−1UUT )k

}
. (24)

In the trace of a power k of C−1UUT , the 2 × 2 matrices in
the Kronecker products, Eqs. (18) and (23), merely produce a
factor 2k , which can be computed separately before performing
the trace operation over the mode indices mj . Hence, we
are left with handling the nondiagonal mode-index structure
of the projector sum Eq. (23). The corresponding matrix of
rank (N − 1),

P := 2

N

N−1∑
b=1

ub ⊗ uT
b , (25a)

with mode indices m1,m2 has entries

Pm1m2 = 2

N

N−1∑
b=1

sin

(
bm1π

N

)
sin

(
bm2π

N

)
= δm1−m2,2ZN − δm1+m2,2ZN, (25b)

where Z denotes the set of integers, such that P is a sparse
matrix of block form: In each quadratic block of dimension
2N , nonzero entries appear on the diagonal (+1) and on
one antidiagonal (−1) only. For the explicit form of P , see
Appendix A. The rows and columns display the occupation
structure of the N − 1 eigenvectors (labeled by l in the
following) in the Fourier basis, each with nonzero amplitudes
only for a subset of modes, which at all cross-link sites are
pairwise in-phase or phase-shifted by π . Modes indexed by
multiples of N have nodes at all cross-link sites, thus do not
contribute to the cross-link energy, and constitute the kernel
of P .

Due to this special form of the matrix C−1UUT , we are
able to derive a closed expression for the trace of any power
of C−1UUT (cf. Appendix B), viz.(

gN

2

)−k

tr(C−1UUT )k

=
N−1∑
l=1

⎡
⎣ ∞∑

μ=1

(
c−1

2(μ−1)N+l + c−1
2μN−l

)⎤⎦k

. (26)

Here, due to the fast decay with mode number of the
inverse coefficients c−1

m from Eq. (18) (basically inverse elastic
constants for the undulation modes) we have extended the
summation over modes to a series. Combining Eqs. (24) and
(26), we find that the relative partition function Zrel factorizes

into N − 1 different “eigenvector” factors, or equivalently,

lnZrel = −1

2

N−1∑
l=1

ln

⎧⎨
⎩1 + gN

2

∞∑
μ=1

(
c−1

2(μ−1)N+l + c−1
2μN−l

)⎫⎬⎭
= :

N−1∑
l=1

ln Zl. (27)

By inserting the c−1
m into the series, we obtain for the factors

of the partition function, Eq. (27),

Zl =
{

1 + gL

Nf
[ψl(0) − ψl(δf )]

}−1/2

,

(28)

ψl(δf ) = sinh δf

δf (cosh δf − cos φl)
.

Herein, we employ the dimensionless variable

δf := L
√

f

N
√

κ
, (29)

which is the ratio of two lengths: The arc-length spacing
L/N between cross-links and the directional “memory” length√

κ/f of the stretched WLC, or the penetration depth of
boundary conditions [20]. The dependence of the partition
function on the bending rigidity κ is via this ratio only.
Additionally, we define the phases specific to the N − 1
eigenvectors,

φl := πl

N
. (30)

We note that the Gaussian statistical weights and the regular
cross-link spacing simplify enormously, if not enable at all,
analytical calculations.

In fact, Eqs. (27) and (28) are a central result of our paper,
yielding the exact free energy of two cross-linked, weakly
bending WLCs as F = F0 + �F , where F0 is the free energy
of the chain pair without cross-links,

F0 = −kBT ln Z0 = kBT

M∑
m=1

ln
L2cm

πkBT
− 2f L (31)

[leading to the force-extension relation Eq. (10)], and the free
energy increment �F due to cross-links is the sum of the Fl =
−kBT ln Zl from Eq. (28). Via δf , this free energy depends
on the dimensionless energy ratio fr = N2δ2

f introduced in
Eq. (11). As already mentioned, the use of the weakly bending
approximation requires the transverse fluctuations to be small
and hence that either the work done by the external force
f or the bending energy is large compared to the thermal
energy. The dependence on the free parameter fr will be further
discussed for the cross-link contribution to the force-extension
relation. In addition, the free energy depends on the ratio of
cross-link energy to stretching energy

εg := gL

Nf
(32)

and, of course, on the number of cross-links, N − 1.
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B. Continuous cross-linking via harmonic interchain attraction

Here, we sketch the derivation for an infinite number of
regularly spaced cross-links N → ∞ at finite total strength
g̃ := Ng, and for finite contour length L. With the continuous
cross-link Hamiltonian Eq. (8) in normal-mode representation

H(c) = g̃

2L

M∑
m1,m2=1

(
Am1 − Bm1

) (
Am2 − Bm2

)

×
∫ L

0
ds sin

(
qm1s

)
sin

(
qm2s

)
= g̃

4

M∑
m=1

(Am − Bm)2, (33)

the total Hamiltonian is diagonal with respect to the mode
indices. Thus, we find for the excess free energy due to the
interchain attraction a closed expression, again extending the
sum over the modes to a series,

�F (c) = −kBT lnZ (c)
rel

= kBT

2

∞∑
m=1

ln

(
1 + g̃

2
c−1
m

)
, (34)

in agreement with performing the limit N → ∞ at finite g̃ in
Eq. (27).

IV. FORCE-EXTENSION RELATION

Using Eqs. (27) and (28), straightforward yet tedious
differentiation with respect to f yields the force-extension
relation

〈�x〉
L

= kBT g

8Nf 2

N−1∑
l=1

nl(δf )

dl(δf ,εg)
, (35)

with numerator

nl(δf ) = 2(cosh δf − cos φl) − (1 − cos φl)

×
[

3
sinh δf

δf

− 1 − cos φl cosh δf

cosh δf − cos φl

]
(36a)

and denominator

dl(δf , εg) = (1 − cos φl) (cosh δf − cos φl)

+ εg

[
cosh δf − cos φl − (1 − cos φl)

sinh δf

δf

]
(36b)

in terms of the length ratio δf from Eq. (29), the ratio εg from
Eq. (32), and the phases φl from Eq. (30) [25].

Since a direct interpretation of the expressions in
Eqs. (35) and (36) is difficult, in Fig. 2 we show the calculated
force-extension relation for several numbers and strengths of
cross-links, as a function of the dimensionless force variable
fr , Eq. (11). The dimensionless parameter for the cross-link
strength is

ga := gL2

kBT
= 2

L2

a2
c

, (37)
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FIG. 2. (Color online) Force-extension relation at a ratio of
persistence length to contour length Lp/L = 10: For different
numbers of cross-links of strength ga = 50 (top) and for 10 cross-links
of varying strength (bottom).

which, by virtue of our entropic-spring model for the cross-
links, can be expressed as the squared ratio of the WLC contour
length and one cross-link’s length at rest.

First, in the upper part of Fig. 2, the force-extension curve
is plotted for different numbers of cross-links, at constant
strength of a single cross-link. The overall form of the
saturation curve is reminiscent of an unconstrained weakly
bending WLC [12]. Evidently, the general effect of cross-
linking is to increase the extension in force direction relative
to an uncross-linked weakly bending chain because cross-links
effectively suppress thermal fluctuations perpendicular to the
aligning force. The growth of the extra alignment with the
number of cross-links is nonlinear, the increase relative to
a chain pair with less cross-links being largest for a few
cross-links, and for weak stretching. The limit of continuous
cross-linking, cf. Sec. (III B), is discussed in Sec. IV B.

Enforcing a smaller and smaller cross-link length (increas-
ing the cross-link strength) also enhances the alignment or
effective stiffness, as visible in the lower part of Fig. 2, in
which the cross-link strength is varied at a fixed number of
cross-links. The limit of strong topological constraints at the
cross-link sites (hard or inextensible cross-links) is presented
in Sec. IV A.

Cross-links are most effective in suppressing transverse
fluctuations and aligning the chain pair at small reduced
stretching forces, at which the directional memory length√

κ/f is still large compared to the cross-link spacing L/N .
For these relatively weak pulling forces, there is a regime
of linear elasticity for all numbers and strengths of cross-
links, taken a closer look upon in Sec. IV C. For increasing
force, the incremental extension due to cross-links decreases

032701-5



VON DER HEYDT, WILKIN, BENETATOS, AND ZIPPELIUS PHYSICAL REVIEW E 88, 032701 (2013)

 0.986

 0.988

 0.99

 0.992

 0.994

 0  10  20  30  40  50

re
l. 

ex
te

ns
io

n 
〈x

〉/L

dim.-less force fr = fL2/κ

space dim.:

d=2
d=3

FIG. 3. (Color online) Force-extension relation for 10 cross-links
of strength ga = 50 at Lp/L = 10, in d = 2 and d = 3.

since, at strong stretching, the dominant contribution to the
saturating extension arises from “pulling out” the remaining
length reserves stored in thermal undulations. The asymptotic
decay of the cross-link contribution with force is computed in
Sec. IV D.

In Fig. 2, we have chosen a ratio of persistence to contour
length Lp/L = 10 sufficiently large as to give for all fr relative
extensions close to 1, to explore the entire range of stretching
forces and yet keep the weakly bending approximation. A
ratio Lp/L of this order would apply to long microtubules
[26]. The persistence length of actin is about 15 μm [26,27],
thus for typical lengths of actin filaments in solution, the ratio
Lp/L is of order 1. For smaller ratios, e.g., Lp/L ∼ 0.1 for
type I collagen fibrils [28,29], or Lp/L ∼ 0.01 for 10 μm of
double-stranded DNA [11], our predictions are reasonable at
strong stretching only.

As mentioned above, the embedding space dimension
d can be easily generalized to d = 3 within the weakly
bending approximation. Without accounting for twist, the
two coordinates transverse to the stretching force decouple
both in the bending or stretching as in the cross-link part
of the Hamiltonian, so that for d = 3 we obtain the square
of the partition function from Sec. III and a factor of 2 in
the incremental free energy. Note, however, that the factor
in the relation between bending rigidity κ , featuring in the
dimensionless force fr , and persistence length Lp, cf. Eq. (2),
changes also. In Fig. 3, one set of parameters is evaluated for
d = 2 and d = 3, respectively. The extension in force direction
is slightly decreased in d = 3 since, independently for each
transverse direction, the deviation from maximal extension due
to thermal fluctuations is larger in modulus than the aligning
cross-link contribution. In the following results, we return to
the two-dimensional case.

A. Limit of hard cross-links

In the limit of infinite cross-link strength or vanishing ratio
of cross-link to contour length, ac/L → 0, we have

〈�x(h)〉
L

= kBT

8f L

N−1∑
l=1

nl(δf )

d
(h)
l (δf )

, (38)
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FIG. 4. (Color online) Force-extension relation for different
numbers of hard cross-links, at persistence length Lp = L.

with nl(δf ) from Eq. (36a), and

d
(h)
l (δf ) = cosh δf − cos φl − (1 − cos φl)

sinh δf

δf

. (39)

The corresponding force-extension curves are shown in Fig. 4,
for more flexible weakly bending chains (with Lp = L) than
the rather rod-like chains in Figs. 2 and 5. Since hard cross-
links completely eliminate relative motion of the filaments
transverse to stretching at the cross-linking sites, the relative
alignment effect due to cross-links is seen to be stronger.

B. Continuous cross-linking

In this section, we discuss the limit of continuous cross-
linking from Sec. III B, N → ∞ at total strength g̃ := Ng. The
incremental extension of one chain due to continuous cross-
linking is computed from �F (c), Eq. (34), by differentiation,
cf. the general expression for all values of g̃ and further remarks
in Appendix C. In the case of continuous and rigid cross-
linking (ac → 0), the force-extension relation is

〈x(c,h)〉
L

= 1 − L

4Lp

{
coth

√
fr√

fr

− 1

fr

}
. (40)

Comparing this result to Eq. (10), we observe that the squared
thermal y fluctuations, cf. Eq. (9), are reduced by 1/2 relative
to the uncross-linked case. This does, however, not imply that
the two chains attached to each other rigidly can be treated as
unconstrained weakly bending WLCs with just one effective
persistence length or bending stiffness κeff since fr itself
depends on the bending stiffness κ . The different apparent
persistence lengths in the force regimes of linear elasticity and

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50

el
as

t. 
co

ns
t. 

E
0 

[k
B
T

 L
p2 /L

4 ]

number of cross-links N-1

X-link strength:

ga = 50

hard X-links

FIG. 5. (Color online) Linear elastic constant as a function of the
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of strong stretching are discussed in the next two sections.
The extension for rigid, continuous cross-linking for arbitrary
force, Eq. (40), is shown as the topmost curve in Fig. 4,
corresponding in Fig. 2 to the asymptotic case of both infinite
number and strength of cross-links.

For continuous cross-linking of any strength g̃, the mode-
diagonal structure of the total Hamiltonian cf. Eq. (33), allows
us to extract a length-scale-dependent apparent stiffness as
discussed by the authors of [17,30]. The extensions of the
uncross-linked and the continuously cross-linked, weakly
bending filament, cf. Eqs. (31) and (34), are, respectively,

〈x〉H0 = L − kBT

2

∞∑
m=1

∂f cm

cm

, (41)

〈x(c)〉 = L − kBT

2

∞∑
m=1

(
∂f cm

cm

)
g̃ + 4cm

2 (g̃ + 2cm)
,

(42)

with cm = Lq2
m

(
f + κq2

m

)
4

and wave numbers qm = mπ/L. For large qm (small length
scales) and finite g̃, the apparent stiffness is the bare local
bending stiffness. For small qm (or g̃ → ∞), the apparent
stiffness is modified by cross-linking and indeed becomes
independent of g̃, so that we recover the force-extension
relation of Eq. (40).

C. Force-free extension and linear response regime

Knowing the exact extension curve for all values of the
force f , we can address the equilibrium extension in the
limit f → 0 and the linear elasticity for small f (assuming a
large persistence length Lp, so that weakly bending holds).
This linear response or weak-perturbation regime may be
the best accessible for stretching experiments on sensitive
biopolymers. Moreover, the force-extension curves computed
within our model suggest that the chain pair’s extension at
moderate or zero force, cf. Fig. 2, is most indicative of the
degree of cross-linking. Without cross-links, the equilibrium
extension of a weakly bending WLC parallel to alignment for
f → 0 is, following Eq. (10),

〈x0〉H0

L
:= lim

f →0

〈x〉H0

L
= 1 − L

6Lp

, (43)

cf. [23]. The deviation from the maximal extension is inversely
proportional to the persistence length. Cross-links increase the
equilibrium extension according to

〈�x0〉
L

= gaL
2

20N5L2
p

N−1∑
l=1

[
x2

l + 13xl + 16
]
/ (1 − xl)

6 (1 − xl)2 + 2gaL

N3Lp
(2 + xl)

, (44)

with xl := cos φl . For large Lp and finite ga , this expression is
O(L/Lp)2 and hence small. For hard cross-links, Eq. (44) is
linear in L/Lp, so that an effective persistence length Lp,eff >

Lp of the cross-linked chains can be defined, viz.,

Lp

Lp,eff
= 1 − 3

20N2

N−1∑
l=1

x2
l + 13xl + 16

(1 − xl) (2 + xl)
. (45)

In the limit of continuous, rigid cross-linking discussed in
Sec. IV B, the increase in equilibrium extension is〈

�x
(c,h)
0

〉
L

= L

12Lp

. (46)

Upon comparison with Eq. (43), we thus find the zero-force
extension of one weakly bending WLC with twice the original
persistence length or κeff = 2κ .

In Fig. 5, we show the dependence of the linear elastic
constant E0,

E−1
0 := ∂f 〈x〉|f =0, (47)

on the number of cross-links. For extensible cross-links, a large
increase with cross-link number up to N ≈ 10 is followed by
a saturation to twice the elastic constant of an uncross-linked
weakly bending WLC. For hard cross-links, the increase in
the elastic constant caused by introducing only a few cross-
links is even more drastic, and the curve approaches a step
function. The elastic constant of an uncross-linked weakly
bending WLC, E0 = 45kBT L2

p/L4 in d = 2, scales with the
contour length L as L−4. Asymptotically for large L, this
remains the dominant contribution also with a finite number
of extensible cross-links since the lowest order of ∂f 〈�x〉 in L

is ∝gL7/L3
p, cf. Eq. (35). For hard cross-links, in contrast, the

derivatives of the cross-link terms are ∝L4/L2
p, so that their

contribution to the elastic constant is no longer subdominant
in 1/L. As mentioned earlier, the limit of continuous, rigid
cross-linking yields twice the elastic constant of an uncross-
linked weakly bending WLC and thus shows the same scaling
with L−4.

D. Strong stretching limit

Here, we consider the limit of strong stretching, i.e.,
fr � 1, or for finite N ,

√
fr/N � 1, which means that the

directional memory length introduced after Eq. (29) is much
smaller than the cross-link spacing,√

κ

f
� L

N
. (48)

At finite cross-link strength and for a finite number of cross-
links, the dependence on the individual eigenvector phases
remains in the limit of strong stretching, yet the asymptotic
scaling with fr is the same for all summands,

〈�x〉
L

= gaL
2

NL2
p

f −2
r

N−1∑
l=1

1

1 − cos φl

+ O
(
f −5/2

r

)
. (49)

The same asymptotic decay ensues for continuous cross-
linking at finite total strength g̃a := 2NL2/a2

c , cf. Eq. (C1),
but with a simpler coefficient,

〈�x(c)〉
L

= g̃aL
2

3L2
p

f −2
r + O

(
f −5/2

r

)
. (50)

In the presence of a finite number of hard cross-links, strong
stretching asymptotically results in an extension increment,
which is independent of the individual eigenvector phases and
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decays proportional to f −1
r ,

〈�x(h)〉
L

= (N − 1)L

2Lp

f −1
r + O

(
f −3/2

r

)
. (51)

Hence the asymptotic decay of the extra alignment with force
is markedly slower than for extensible cross-links. In all cases
mentioned so far, the impact of cross-linking diminishes fast
for strong stretching, and the extension curve displays the
saturation ∝f −1/2 of the uncross-linked chain’s extension to
the contour length.

Obviously, the asymptotic behavior computed for hard
cross-links in Eq. (51) cannot apply in the limit N → ∞ of
continuous, rigid cross-linking, due to the diverging prefactor
∝ (N − 1). Indeed, in this case, the asymptotic decay of the
inter-chain contribution to the extension is even slower, viz.

〈�x(c,h)〉
L

= L

4Lp

f −1/2
r + O

(
f −1

r

)
. (52)

This is the same scaling as the saturation of the uncross-linked
chain’s extension, hence the stabilizing effect of continuous,
rigid cross-linking is manifest even for large stretching forces.
Moreover, in the strong stretching limit, a continuously and
rigidly linked chain behaves effectively like a weakly bending
WLC with fourfold original persistence length or κeff = 4κ .

Of course, the WLC picture is oversimplified at very strong
stretching, at which inextensibility is clearly violated for many
semiflexible biopolymers [2,31].

E. Differential stiffness

A quantity of interest related to the x extension is the
differential stiffness: In the corresponding experiment for our
system, both fibers are prestressed by longitudinal stretching,
subsequently, the strain response to a small change in the
applied stress is measured. From the force-extension relation,
we can readily compute the differential stiffness as the quotient
of force and extension increment at a given prestretching
force

E−1(f ) := ∂f 〈x〉, (53)

generalizing the elastic constant discussed in Sec. IV C.
In an effort to highlight the effective stiffening due to

cross-links, we show in Fig. 6 the increase in differential
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FIG. 6. (Color online) Increase in differential stiffness due to hard
cross-links relative to a weakly bending WLC without cross-links, at
Lp/L = 10.

stiffness relative to uncross-linked weakly bending WLCs for
the case of hard cross-links. Again, for a few cross-links,
the differential stiffness is particularly enhanced at weak
stretching. Already for a single, hard cross-link, the linear
elastic constant is increased by more than 80% compared to
the uncross-linked case. Upon approaching the limit of rigid,
continuous cross-linking, cf. Eq. (40), the differential stiffness
is increased by a factor of 2 for all values of fr .

V. DISCUSSION AND OUTLOOK

Within a transparent mesoscopic model of cross-linked
polymers, the elasticity of two irreversibly cross-linked WLCs
subjected to a tensile force has been studied in the weakly
bending approximation. The validity of the later is granted by
assuming either a large tensile force or a large bending rigidity.
For an arbitrary number of cross-links with given strength,
we have calculated the free energy and, derived thereof,
the force-extension relation exactly. Both with increasing
number N and with increasing strength g of the cross-
links, the effective stiffness of the chain pair increases since
cross-links stabilize the chains against thermal undulations.
Particularly for weak stretching, the enhancement in alignment
is considerable, such that in corresponding weak-perturbation
experiments on biopolymers, the increase in the linear elas-
tic constant may be a useful indicator of (partial) cross-
linking. As expected, the effect is most pronounced for hard
cross-links.

In the limit of strong pulling forces, the additional extension
〈�x〉 due to cross-linking decreases, and the elasticity of an
uncross-linked WLC [12] dominates. However, the asymptotic
behavior for large stretching forces is different for hard and
extensible cross-links, as well as for discrete and continuous
cross-linking, and is summarized in Table I. For extensible
cross-links, the cross-link contribution decays as f −2, for a
finite number of hard cross-links, as f −1. A slower decay
is found in the limit of both cross-link number N → ∞
and cross-link strength g → ∞, in which the two chains are
linked continuously and rigidly along their contour: For strong
stretching, the asymptotic form of the force-extension relation
reflects the behavior of one uncross-linked weakly bending
chain with effective persistence length 4Lp and with the known
f −1/2 scaling.

From the exact extension for all stretching forces, we have
computed another experimentally relevant observable, viz., the
differential stiffness of the (prestretched) cross-linked chains.
Even a small number of cross-links enhances the differential
stiffness dramatically. Again, the impact is largest for small
stretching forces, which can be considered within the weakly

TABLE I. Exponents of the asymptotic scaling of 〈�x〉 with force
fr = f L2/κ in the strong stretching limit fr � 1.

Number of cross-links

Finite Infinite

Extensible −2 −2
Hard −1 −1/2
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bending approximation for WLCs with a large persistence
length Lp/L.

Several generalizations of our approach are possible: As
alluded to in [16], our model is not in principle restricted
to a pair of cross-linked filaments, but should be gen-
eralizable to describe the tensile elasticity of a stretched
weakly bending WLC bundle, possibly with random and/or
reversible cross-links. To take into account the nonaffine
deformation of cross-linked bundles, we may have to consider
also the shearing of cross-links. Detailed analysis of bundles
exists due to the relevance for actin networks, mostly for
reversibly cross-linked and extensible, semiflexible polymers
[30,32]. Particularly for bundles, the effect of excluded
volume interaction, neglected in this work, remains to be
explored.

Apart from the activities in this realm, major recent research
efforts are devoted to the impact of structural inhomogeneities
caused by the (local) breaking of complimentary base-pair
bonds (“unzipping” or denatured “bubbles”) on the elasticity
of double-stranded DNA [33,34]. A class of semimicroscopic
models convenient for analyzing the thermal denaturation
transition, as well as the “bubble” statistics and dynamics [35],
focuses on the form of the base-pairing interaction, but does not
account for the polymers’ conformational degrees of freedom,
which determine certain DNA properties [36]. In the breathing
DNA model [37], two discrete chains (consisting of interacting
“beads”) with bending and stretching rigidity interact via
the pairing energy of complimentary bases, represented by
a Morse potential. Another semimicroscopic model, amenable
to a transfer matrix method, considers a discrete WLC model
for the chain conformations, coupled to an one-dimensional
Ising model describing the internal base-pair states [38]. In
the context of denaturation of DNA, it would be interesting
to extend our model to reversible cross-linking to study the
coexistence of “ladders” (cross-linked strand sections) and
“bubbles” (open sections). Since the persistence length of
single-stranded DNA is comparatively small, the model of
weakly bending chains can be employed in the case of large
longitudinal pulling forces only.

A first, obvious step towards this direction will be to address
with our method two parallel aligned WLCs whose arc length is
sectioned into cross-linked and disconnected parts. In the setup
we have considered here, all ingredients, viz. cross-linking,
bending stiffness, and longitudinal forcing, act to decrease
transverse fluctuations of the chains. An unzipping transition
could presumably be studied in an altered situation, e.g., one,
in which the cross-linked filaments are teared apart at one end.
More complicated refinement of our model might account for
twist and overstretching, effects shown to be essential for the
elasticity of DNA [39].
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APPENDIX A: STRUCTURE OF THE PROJECTOR SUM P

The matrix representation of the cross-link projector sum
P , cf. Eqs. (25), has the following structure:

P =

⎛
⎜⎝1 1 . . .

1 1
...

. . .

⎞
⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . . 0 −1 0

0
. . .

... . .
.

0
...

... 0 1 −1 0
...

0 . . . 0 . . . 0
... 0 −1 1 0

...

0 . .
. ...

. . . 0
−1 0 . . . 0 . . . 0 1
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

. (A1)

APPENDIX B: TRACE OF POWERS OF
THE PROJECTOR SUM

By decomposing mode indices m ∈ {1,2, . . .} according to
the block structure into

m = 2μN − r, with the definitions

μ :=
⌈ m

2N

⌉
∈ {1,2, . . .} (block index),

(B1)
r ∈ {0, . . . ,2N − 1} (index within a block),

ρ(r) :=
⌊ r

N

⌋
∈ {0,1} (quadrant within a block),

the entries of P , cf. Eqs. (25) and (A1), can be encoded in
product form, the first two factors indicating the location of
nonzero entries, the last factor the sign

Pm1m2 = δm1−m2,2ZN − δm1+m2,2ZN

= (
δr1,r2 + δr1,2N−r2

)(
1 − δr1,ZN

)
(−1)ρ1+ρ2 . (B2)

Then, with the diagonal matrix C, cf. Eq. (18), we write the
trace of a power k of C−1UUT , cf. Eq. (23), as(

gN

2

)−k

tr(C−1UUT )k

=
∞∑

m1,...,mk=1

c−1
m1

(
δm1−m2,2ZN − δm1+m2,2ZN

) · . . .

× c−1
mk

(
δmk−m1,2ZN − δmk+m1,2ZN

)
=

∞∑
μ1,...,μk=1

2N−1∑
r1,...,rk=0

(B3)

× c−1
2μ1N−r1

(
δr1,r2 + δr1,2N−r2

)(
1 − δr1,ZN

)
(−1)ρ1+ρ2

× c−1
2μ2N−r2

(
δr2,r3 + δr2,2N−r3

)(
1 − δr2,ZN

)
(−1)ρ2+ρ3

× . . .

× c−1
2μkN−rk

(
δrk,r1 + δrk,2N−r1

)(
1 − δrk,ZN

)
(−1)ρk+ρ1 .

Due to the symmetry of the constraints, we are left with the
summation over one of the rj without 0 and N . If we split
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this sum according to the constraints and to the eigenvector
structure mentioned above as

2N−1∑
r=0

fr (1 − δr,ZN ) =
N−1∑
l=1

(fl + f2N−l) , (B4)

we finally arrive at(
gN

2

)−k

tr(C−1UUT )k

=
∞∑

μ1,...,μk=1

N−1∑
l=1

(
c−1

2(μ1−1)N+l + c−1
2μ1N−l

) · . . .

× (
c−1

2(μk−1)N+l + c−1
2μkN−l

)
=

N−1∑
l=1

⎡
⎣ ∞∑

μ=1

(
c−1

2(μ−1)N+l + c−1
2μN−l

)⎤⎦k

. (B5)

APPENDIX C: CONTINUOUS CROSS-LINKING

Here, we present the general result for the limit of
continuous cross-linking dealt with in Secs. III B and IV B.
The incremental extension due to this kind of cross-linking
computed from Eq. (34) is

〈�x(c)〉
L

= L

4Lp

{ sin g−
g− − sinh g+

g+

cosh g+ − cos g− + coth
√

fr√
fr

− 1

fr

}
, (C1)

as a function of the dimensionless force fr , Eq. (11), and the
dimensionless parameters

g− :=
√

2
√

2g̃L3/κ − fr,
(C2)

g+ :=
√

2
√

2g̃L3/κ + fr,

which apart from fr contain the ratio of total interchain
attraction g̃L2 = 2NkBT L2/a2

c to bending energy κ/L.
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FIG. 7. (Color online) Cross-link-induced extension increment at
total cross-link strength g̃a = 500 and Lp/L = 10.

[The function in Eq. (C1) is a continuous, real-valued function
of fr independently of the sign of the outer square root’s
argument.]

Comparing the force-extension curves for finite numbers
of cross-links to each other and to those for continuous
cross-linking, we find an approximate collapse of all curves
with the same total inter-chain attraction g̃a = 2NL2/a2

c , as
shown in Fig. 7. Except for the case of a single cross-link, the
force-extension relation is over a large range of forces to high
numerical precision determined by the product of cross-link
number +1 and strength of a single cross-link only. On the
basis of Eqs. (34) and (27), this apparent scaling can be traced
back to the rapid decay of the coefficients c−1

m with mode
index m. The sum over eigenvectors l in Eq. (27) for finite
N is dominated by those with entries at the lowest modes,
and of the set of modes represented by one eigenvector, only
the lowest mode gives an appreciable contribution. Thereby,
the “missing” modes m = ZN and, finally, the deviation
from the series in Eq. (34) are negligible but for very small
N . According to the slower decay ∝m−2 of the stretching
contribution to the coefficients c−1

m , the approximate scaling
must break down for strong stretching (and small persistence
lengths). In this regime, however, the additional extension due
to cross-links is a small quantity anyway.
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