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Acousto-optic effect in nematic liquid crystals: Experimental evidence of an elastic regime

Carlindo Vitoriano
Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Avenida Bom Pastor S/N, 55296-901 Garanhuns, PE, Brazil

(Received 10 July 2013; published 5 September 2013)

We show that the experimental data for the action of ultrasonic waves on homeotropically aligned nematic-
liquid-crystal cells reported by Kapustina, in Akust. Zh. 54, 900 (2008) [Acoust. Phys. 54, 778 (2008)] can be
explained in the framework of the director-density coupling theory in the regime of low acoustic intensity. This
result therefore provides support for the hypothesis that the interaction between sound and nematic liquid crystals
is dominated by an elastic energy.
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I. INTRODUCTION

The acousto-optic effect in nematic liquid crystals [1–4] has
been the focus of intense experimental and theoretical research.
Shortly after its discovery [5], the effect was interpreted as a
result of sound stresses [6,7]; nevertheless, the prediction of a
threshold intensity for distorting the director orientation was
soon recognized as a serious drawback of the theory. The
model put forward by Dion and Jacob [8–10] relies on the
anisotropy of ultrasonic absorption; the problematic nature
of the theory, however, is manifested by the way in which
the alignment torque is obtained. In parallel, a mechanism
involving streaming due to gradients of acoustic radiation
pressure was proposed and investigated [11–16].

Currently, two interesting scenarios are being invoked to
explain the underlying physics of the acousto-optic effect. In
the first one, the mechanism of molecular reorientation is a
consequence of acoustical streaming arising from convective
stresses [17–20], and a systematic study has been conducted
to verify this possibility [4,21]. In the other possible scenario,
the alignment action of ultrasound is of elastic nature and
accordingly the action of the acoustic field upon the director
is not mediated by flow. This hypothesis was first elaborated
in Refs. [22,23], and was followed by extensive experimental
and theoretical work [24–31]. More recently, a variant of this
theory, in which liquid crystals are regarded as anisotropic
Korteweg fluids, is being intensively investigated [32–37]. In
particular, the theory has been applied to a flowless situation
where the nematic is under the action of acoustic waves [35].

Within the framework of the director-density coupling
theory [22], the optical transparency M of a homeotropically
aligned nematic-liquid-crystal cell in the regime of low
acoustic intensity J behaves as M ∝ J 2 [30,31], which gives
a good fit to experimental data (see also Fig. 1 below). The
correctness of this behavior poses a difficulty to a theory based
on the mechanism of streaming [17–20], since it predicts
M ∝ J 4. Despite this, in an effort to give support to the
streaming theory, the quantity Jmax(ϕ) [defined by the smallest
root of M(J ) = 1] for small angle of incidence ϕ was measured
[21]. The agreement between theory and experiment was good
but, and this is a point to be explored later, the significant
deviations from the streaming-theory prediction, namely,

Jmax = H

ϕ
, (1)

where H = 2.468 rad mW/cm2 is the best-fitting parameter
obtained according to the least-squares method (see below),

are entirely explained by the director-density coupling theory.
As a consequence, we have come to the conclusion that
the interaction between ultrasonic wave and nematic liquid
crystals is in fact dominated by an elastic energy in the regime
of low J . This is the main result of the paper and for this reason
we invert the order of presentation; i.e., we derive the term of
O(J 3) for M(J ) in Sec. III but anticipate the use of Jmax(ϕ) in
Sec. II. Finally, we present our concluding remarks in Sec. IV.

II. ELASTIC REGIME

In this section, we should like to make an attempt to
conciliate both scenarios presented in the Introduction. To
accomplish this, we have extended our previous analysis
[30,31] one step forward to obtain

M = AJ 2 + BJ 3 + O(J 4), (2)

where

A = A1 sin4(2ϕ), (3)

B = B1 sin4(2ϕ) + B2 sin3(2ϕ) sin(4ϕ)

+ B3 sin2(2ϕ) sin2(4ϕ) + B4 sin6(2ϕ). (4)

Here the coefficients A1 and Bi’s do not depend on ϕ

and therefore we need not specify their dependence on
other variable factors. However, we note in passing that the
coefficient A1 can be inferred from Eq. (43) of Ref. [30].
Equation (2) formalizes the hypothesis of the purely aligning
effect of ultrasound on liquid crystals in the limit of low
acoustic intensity [22]. What makes this expansion special is
that it differs considerably from the signature coming purely
from the streaming theory [17–20]:

M = sin2(B�J 2) = CJ 4 − 1
3C2J 8 + O(J 12), (5)

where C ≡ (B�)2.
Armed with these expansions for M(J ), we have revisited

the experimental data referred to above (see Table I) in order
to explain the curve M versus J up to J = Jmax (see, however,
below). In Fig. 1 we plot Eqs. (2) and (5) with their parameters
obtained by the method of least squares for i = 1,2,3,4, and
5. The coefficients are given by

A = 4.132 × 10−3 (mW/cm2)−2, (6)

B = 1.115 × 10−4 (mW/cm2)−3, (7)

C = 1.436 × 10−4 (mW/cm2)−4. (8)
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FIG. 1. (Color online) Optical transparency versus ultrasonic
intensity in units of mW/cm2. The solid (dashed) curve is the plot
of M = AJ 2 + BJ 3 (M = CJ 4 − 1

3 C2J 8). The dots displayed were
obtained from Table I. The best-fitting parameters are given in the
text.

The agreement between theory, Eq. (2), and experiment
displayed in this figure is impressive. Therefore, there can be
no doubt regarding the elastic regime from the experimental
point of view.

In the following, we show that the director-density cou-
pling theory also provides the framework, via Eq. (2), for
explaining the experimental data for Jmax versus ϕ (see
Table II). Keeping only terms of O(ϕ4), one gets

ϕ4
(
A′J 2

max + B ′J 3
max

) = 1, (9)

where we have absorbed the constants arising from the use of
Taylor expansion for sin(· · ·) into the new constants A′ and B ′.
The solution of the above equation reads

Jmax = − A′

3B ′ + W − p

3W
, (10)

where

W = 3

√
−q

2
−

√
q2

4
+ p3

27
, (11)

TABLE I. Experimental data for optical transparency versus
ultrasonic intensity in units of mW/cm2 [from Ref. [21], Fig. 2(a)].
The first five values of Mi in the fourth and fifth columns are
calculated using the coefficients given by Eqs. (6)–(8).

i Ji Mi Mi [Eq. (2)] Mi [Eq. (5)]

1 3.93 0.0735 0.0706 0.0338
2 4.49 0.0941 0.0934 0.0572
3 4.94 0.109 0.114 0.0831
4 5.48 0.144 0.142 0.124
5 6.04 0.176 0.175 0.179
6 7.04 0.353
7 8.07 0.541
8 9.09 0.788
9 9.66 0.882
10 10.11 0.941
11 10.57 1.00

TABLE II. Experimental data for Jmax in units of mW/cm2 versus
angle of incidence ϕ in radians [from Ref. [21], Fig. 3(a)]. In the third
and fourth columns we show the calculated values for Jmax.

ϕ Jmax Jmax [Eq. (1)] Jmax [Eq. (10)]

0.07913 33.68 31.19 37.26
0.07183 39.79 34.36 39.47
0.06288 45.05 39.26 43.31
0.05366 49.47 46.00 49.29
0.04425 58.95 55.78 59.01
0.03523 75.37 70.06 74.81
0.02668 89.26 92.52 102.48
0.01757 134.1 140.49 169.89

p = −1

3

(
A′

B ′

)2

, (12)

q = 2

27

(
A′

B ′

)3

− 1

B ′ϕ4
. (13)

The plot of Eq. (10) is shown in Fig. 2 for A′/B ′ = −30.2
and B ′ = 2.60 (obtained manually). For the sake of compar-
ison, we plot together Eq. (1) and highlight the experimental
data. For Jmax � 75 mW/cm2 ≡ JS , the agreement between
theoretical prediction and experimental results is remarkable.
On the other hand, for J > JS , i.e, high acoustic intensity, the
agreement is poor, indicating that the mechanism of streaming
dominates the physics. Therefore, the validity of describing
the acousto-optic effect using an elastic energy is restricted to
the regime J � min(Jmax,JS), where min(· · ·) is the notation
for the minimum value between Jmax and JS .

III. OPTICAL TRANSPARENCY

In this section, we are interested in obtaining the term of
O(J 3) in Eq. (2) from the director-density coupling theory.
In Fig. 3, it is shown a homeotropically aligned nematic-
liquid-crystal cell of thickness a under the action of an
incident monochromatic ultrasonic plane wave of wave vector
k (making an angle ϕ with the z direction) and frequency
ω. Under the same conditions described in Ref. [30], the
dynamics of the liquid-crystal director n̂(r) = ŷ sin θ + ẑ cos θ
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FIG. 2. (Color online) First maximum of M(J ) in units of
mW/cm2 as a function of incidence angle in radians. The solid
(dashed) curve is the plot of Eq. (10) [Eq. (1)]. The dots displayed
were obtained from Table II.
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FIG. 3. (Color online) Cell of thickness a containing homeotrop-
ically aligned nematic liquid crystal in the presence of an incident
ultrasonic wave. On the right, the coordinate system defines the angles
θ and ϕ.

is determined by the equation

γ
∂θ

∂t
= (K1 sin2 θ + K3 cos2 θ )

(
∂2θ

∂z2

)

+ 1

2
(K1 − K3)

(
∂θ

∂z

)2

sin(2θ )

+ u1(�ρ)k2 sin 2(θ − ϕ) sin(ωt)

+ u2(�ρ)2k2 sin 2(θ − ϕ) cos2(ωt), (14)

where γ is the rotational viscosity coefficient; K1 and K3 are,
respectively, the Frank constants for splay and bend [38];

J = v3(�ρ)2

2ρ0
(15)

is the acoustic intensity (here, ρ0 is the average density and v

is the sound velocity); and, finally, u1 and u2 are parameters
of the theory. We are assuming strong-anchoring boundary
conditions:

θ (0,t) = θ (a,t) = 0. (16)

In the steady state and for ϕ �= 0, θ (z,t) is expressed as a
power series in �ρ [30]:

θ (z,t) = (�ρ)θ (1)(z,t) + (�ρ)2θ (2)(z,t)

+ (�ρ)3θ (3)(z,t) + O(�ρ)4. (17)

We have already calculated the expressions for θ (1) and θ (2).
For our purpose, it suffices to underline their dependence on ϕ

and t :

θ (1)(z,t) = sin(2ϕ)[f1(z) cos(ωt) + f2(z) sin(ωt)], (18)

θ (2)(z,t) = sin(2ϕ)f3(z) + sin(4ϕ)f4(z)

+ [sin(2ϕ)f5(z) + sin(4ϕ)f6(z)] cos(2ωt)

+ [sin(2ϕ)f7(z) + sin(4ϕ)f8(z)] sin(2ωt). (19)

Notwithstanding, the exact expressions for the functions fi’s
can be easily obtained from Eqs. (21)–(23) and Eqs. (26)–
(29) of Ref. [30] and further comparison with the expressions
written above. We note that this expedient method will be used
in order to simplify the calculation of θ (3). In the stationary
state, this function satisfies

γ
∂θ (3)

∂t
= K3

∂2θ (3)

∂z2
+ (K1 − K3)(θ (1))2 ∂2θ (1)

∂z2

+ (K1 − K3)θ (1)

(
∂θ (1)

∂z

)2

+ 2u1k
2[θ (2) cos(2ϕ) + 2(θ (1))2 sin(2ϕ)] sin(ωt)

+ 2u2k
2θ (1) cos(2ϕ) cos2(ωt). (20)

We now insert Eqs. (18) and (19) into Eq. (20) and, after a
little algebra, find that it can be cast in the form

γ
∂θ (3)

∂t
= K3

∂2θ (3)

∂z2
+ [h1(z) sin3(2ϕ)

+h2(z) sin(4ϕ) + h3(z) cos(2ϕ) sin(4ϕ)] cos(ωt)

+ [h4(z) sin3(2ϕ) + h5(z) sin(4ϕ)

+h6(z) cos(2ϕ) sin(4ϕ)] sin(ωt)

+ [h7(z) sin3(2ϕ) + h8(z) sin(4ϕ)

+h9(z) cos(2ϕ) sin(4ϕ)] cos(3ωt)

+ [h10(z) sin3(2ϕ) + h11(z) sin(4ϕ)

+h12(z) cos(2ϕ) sin(4ϕ)] sin(3ωt), (21)

where the function hi’s are related to the functions fi’s. It will
be sufficient, however, to observe that they can be expanded
as Fourier series:

hi(z) =
∞∑

n=1

B(i)
n sin

(nπz

a

)
. (22)

We now write θ (3) in the steady state as

θ (3)(z,t) =
∞∑

n=1

[Jn cos(ωt) + Ln sin(ωt)

+ Mn cos(3ωt) + Nn sin(3ωt)] sin
(nπz

a

)
(23)

and substitute this expression, together with Eq. (22), into
Eq. (21). After some calculation, we find that

Xn = X(1)
n sin3(2ϕ) + X(2)

n sin(4ϕ)

+X(3)
n cos(2ϕ) sin(4ϕ). (24)

Here, X stands for J,L,M, and N . Inserting these formulas
back into Eq. (23), it is easy to verify that

θ (3)(z,t) = [f9(z) sin3(2ϕ) + f10(z) sin(4ϕ)

+ f11(z) cos(2ϕ) sin(4ϕ)] cos(ωt)

+ [f12(z) sin3(2ϕ) + f13(z) sin(4ϕ)

+ f14(z) cos(2ϕ) sin(4ϕ)] sin(ωt)

+ [f15(z) sin3(2ϕ) + f16(z) sin(4ϕ)

+ f17(z) cos(2ϕ) sin(4ϕ)] cos(3ωt)

+ [f18(z) sin3(2ϕ) + f19(z) sin(4ϕ)

+ f20(z) cos(2ϕ) sin(4ϕ)] sin(3ωt). (25)

We are now in a position to calculate the optical trans-
parency, which is defined by [38]

M(t) = sin2(�/2), (26)

where

�(t) = 2π

λ

∫ a

0
(�neff) dz (27)

032501-3



CARLINDO VITORIANO PHYSICAL REVIEW E 88, 032501 (2013)

is the retardation; λ is the wavelength of the light;

�neff = none√
n2

o sin2 θ + n2
e cos2 θ

− no

= no

(
n2

e − n2
o

)
2n2

e

×
[

sin2 θ + 3
(
n2

e − n2
o

)
4n2

e

sin4 θ + O(sin6 θ )

]
(28)

is the effective birefringence; and no and ne are, respectively,
the ordinary and extraordinary refractive index. In this expres-
sion, one has

sin2 θ = (�ρ)2(θ (1))2 + 2(�ρ)3θ (1)θ (2)

+ (�ρ)4 [
2θ (1)θ (3) + (θ (2))2 − 1

3 (θ (1))4
] + O(�ρ)5,

(29)

sin4 θ = (�ρ)4(θ (1))4 + O(�ρ)5. (30)

In the following we insert Eq. (28) into Eq. (27) and evaluate
the integration with respect to z. Thus by keeping the aim of
neglecting irrelevant information, the final result is

�(t) = (�ρ)2�1(ϕ,t) + (�ρ)3�2(ϕ,t)

+ (�ρ)4�3(ϕ,t) + O(�ρ)5, (31)

where

�1(ϕ,t) = sin2(2ϕ)[γ1 + γ2 cos(2ωt) + γ3 sin(2ωt)],

(32)

�2(ϕ,t) = [γ4 sin2(2ϕ) + γ5 sin(2ϕ) sin(4ϕ)] cos(ωt)

+ [γ6 sin2(2ϕ) + γ7 sin(2ϕ) sin(4ϕ)] sin(ωt)

+ [γ8 sin2(2ϕ) + γ9 sin(2ϕ) sin(4ϕ)] cos(3ωt)

+ [γ10 sin2(2ϕ) + γ11 sin(2ϕ) sin(4ϕ)] sin(3ωt),

(33)

�3(ϕ,t) = γ12 sin4(2ϕ) + γ13 sin2(4ϕ)

+ γ14 sin2(2ϕ) + γ15 sin(2ϕ) sin(4ϕ)

+ [γ16 sin4(2ϕ) + γ17 sin2(4ϕ) + γ18 sin2(2ϕ)

+ γ19 sin(2ϕ) sin(4ϕ)] cos(2ωt)

+ [γ20 sin4(2ϕ) + γ21 sin2(4ϕ) + γ22 sin2(2ϕ)

+ γ23 sin(2ϕ) sin(4ϕ)] sin(2ωt)

+ [γ24 sin4(2ϕ) + γ25 sin2(4ϕ) + γ26 sin2(2ϕ)

+ γ27 sin(2ϕ) sin(4ϕ)] cos(4ωt)

+ [γ28 sin4(2ϕ) + γ29 sin2(4ϕ) + γ30 sin2(2ϕ)

+ γ31 sin(2ϕ) sin(4ϕ)] sin(4ωt). (34)

The knowledge of �(t) allows us to calculate M(t) via Eq. (26):

M(t) = 1
4

[
(�ρ)4�2

1 + 2(�ρ)5�1�2

+ (�ρ)6
(
2�1�3 + �2

2

) + O(�ρ)7
]
. (35)

All we need do now is to take the time average of this quantity,
which is defined by

〈M〉 ≡ lim
T →∞

1

T

∫ T

0
M(t) dt. (36)

Using this definition, we find〈
�2

1

〉 = γ 1 sin4(2ϕ), (37)

〈�1�2〉 = 0, (38)〈
2�1�3 + �2

2

〉 = γ 2 sin4(2ϕ) + γ 3 sin3(2ϕ) sin(4ϕ)

+ γ 4 sin2(2ϕ) sin2(4ϕ) + γ 5 sin6(2ϕ).

(39)

We thus conclude the proof by eliminating �ρ in favor of J ,
Eq. (15), and by expressing the result in terms of the constants
defined by Eqs. (3) and (4).

IV. CONCLUDING REMARKS

In conclusion, the aim of this paper is to confirm the
assumption that the acousto-optic effect in nematic liquid
crystals can be modeled by an elastic energy in the regime
of low acoustic intensity. To fulfill this task, we have derived
a Taylor expansion for M(J ) up to third order in J within
the framework of the director-density coupling theory and
stressed that it differs greatly from the corresponding version
obtained under streaming condition. Next we have made use of
experimental data for validating the theoretical prediction that
M ∼ J 2 and consequently for verifying that the mechanism
of streaming plays minor role in the limit J → 0. Moreover,
we have used experimental data for Jmax versus ϕ in order to
investigate the range of validity of a purely elastic description
of the acousto-optic effect. Thus we have found that above
a certain critical value of the acoustic intensity, the under-
lying physics is dominated by the mechanism of streaming.
Finally, we also have tentatively estimated the critical value
of J at min(Jmax,JS). However, we note that JS cannot
be obtained in the context of the director-density coupling
theory.
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[31] C. Vitoriano and C. Sátiro, Phys. Rev. E 86, 061702 (2012).
[32] E. G. Virga, Phys. Rev. E 80, 031705 (2009); A. M. Sonnet and

E. G. Virga, Dissipative Ordered Fluids: Theories for Liquid
Crystals (Springer, New York, 2012).

[33] G. De Matteis and E. G. Virga, Phys. Rev. E 83, 011703
(2011).

[34] G. De Matteis, Mol. Cryst. Liq. Cryst. 549, 43 (2011).
[35] G. De Matteis, Acta Appl. Math. 122, 205 (2012).
[36] G. De Matteis and L. Martina, J. Math. Phys. 53, 033101

(2012).
[37] G. De Matteis and G. Napoli, J. Appl. Math. 73, 882 (2013).
[38] D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal

Devices (Wiley, Hoboken, NJ, 2006).

032501-5

http://dx.doi.org/10.1063/1.89753
http://dx.doi.org/10.1063/1.326175
http://dx.doi.org/10.1063/1.88847
http://dx.doi.org/10.1103/PhysRevA.15.2471
http://dx.doi.org/10.1051/rphysap:0197700120102100
http://dx.doi.org/10.1051/rphysap:0197700120102100
http://dx.doi.org/10.1103/PhysRevA.15.1297
http://dx.doi.org/10.1103/PhysRevA.15.1297
http://dx.doi.org/10.1121/1.381694
http://dx.doi.org/10.1121/1.381694
http://dx.doi.org/10.1080/00268948008081981
http://dx.doi.org/10.1080/00268948008081981
http://dx.doi.org/10.1134/1.2130900
http://dx.doi.org/10.1134/1.2130900
http://dx.doi.org/10.1134/S1063771008060055
http://dx.doi.org/10.1134/S1063771008060055
http://dx.doi.org/10.1134/S1063771008060055
http://dx.doi.org/10.1134/S1063771008060055
http://dx.doi.org/10.1103/PhysRevE.66.051708
http://dx.doi.org/10.1103/PhysRevE.66.051708
http://dx.doi.org/10.1016/S0009-2614(02)00906-5
http://dx.doi.org/10.1016/S0009-2614(02)00906-5
http://dx.doi.org/10.1103/PhysRevE.69.021705
http://dx.doi.org/10.1103/PhysRevE.69.021705
http://dx.doi.org/10.1063/1.1628381
http://dx.doi.org/10.1080/02678290500191113
http://dx.doi.org/10.1063/1.1566735
http://dx.doi.org/10.1063/1.1566735
http://dx.doi.org/10.1103/PhysRevE.68.021703
http://dx.doi.org/10.1103/PhysRevE.84.041702
http://dx.doi.org/10.1103/PhysRevE.86.011701
http://dx.doi.org/10.1103/PhysRevE.86.061702
http://dx.doi.org/10.1103/PhysRevE.80.031705
http://dx.doi.org/10.1103/PhysRevE.83.011703
http://dx.doi.org/10.1103/PhysRevE.83.011703
http://dx.doi.org/10.1080/15421406.2011.581131
http://dx.doi.org/10.1063/1.3694250
http://dx.doi.org/10.1063/1.3694250



