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Localization and length-scale doubling in disordered films on soft substrates
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Wrinkling and folding are examined experimentally for three distinct types of disordered films on
polydimethylsiloxane (PDMS) substrates; diblock copolymers, glassy polymers, and single-wall carbon
nanotubes. All three of these systems exhibit localization and length-scale doubling at small strains, and we
qualitatively account for these observations with a simple physical argument related to the width of the stress
correlation function and the interaction of localization sites. Our results have relevance to wrinkling and folding
in a diverse array of disordered films on soft substrates, and the insights offered here should help guide the
development of theoretical models for the influence of structural disorder on thin-film wrinkling instabilities.
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I. INTRODUCTION

Thin films and coatings derived from complex materials
are both ubiquitous in nature and of tremendous technological
importance, and the deformation and durability of such films
are topics of considerable interest [1–4]. In this regard, a
significant body of recent work has focused on the surface
wrinkling instabilities that emerge when a thin film resting on
an elastic or viscous foundation is subjected to an in-plane
compressive stress [5–12]. On an elastic substrate, such a
coating undergoes a transition with increasing strain (ε) in
which the film eventually buckles above a critical strain, εc.
A balance of film bending and substrate stretching favors the
formation of a periodic pattern, with a wavelength that has a
simple and utilitarian relationship to the mechanical properties
of the adhered film.

Like many linear models, this formalism has been applied
with remarkable success well beyond the formal range of its
validity, yet the large-strain (nonlinear) regime is nonethe-
less of considerable practical importance and represents an
emerging area of research in thin-film mechanics [13–19].
Two themes of interest are “focusing” or localization [20–24],
whereby the deformation becomes strongly heterogeneous,
and doubling or bifurcation, where the characteristic length
scale doubles with increasing strain [15,19]. Many studies
have considered localization from a purely geometric point of
view, but it is easy to show that geometric nonlinearity is not
the only type of nonlinearity that can lead to localization, and
in fact localization often leads to material failure in the form
of banding, fracture, crazing, or delamination [25–28].

While most of the emphasis has been on wrinkling
in structurally homogenous films, a number of practically
relevant coatings can exhibit structural disorder and inho-
mogeneity over a broad range of length scales. These are,
most notably, films cast from complex fluids composed of
polymers, nanotubes, and colloids. Such materials can also
exhibit power-law “thinning” or “softening”, whereby the
moduli decrease markedly with increasing strain or strain rate.
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In this contribution, wrinkling and folding are examined
experimentally for three seemingly unrelated examples of thin
disordered films on polydimethylsiloxane (PDMS) substrates;
diblock copolymers, glassy polymers, and single-wall carbon
nanotubes. All three of these coatings are technologically
important, and as we demonstrate here, all three exhibit
localization and length-scale doubling at small strains. Al-
though several recent papers have observed localization and/or
bifurcation (most often in the context of large strains and
material nonlinearity), material heterogeneity has rarely been
considered in the analysis [29]. To qualitatively account for
these observations, we offer a simple physical argument related
to the width, interaction and spacing of localization triggered
by defects. Our approach offers an empirical and intuitive
picture of small-strain localization and length-scale doubling
that has relevance to a broad range of disordered films on soft
substrates.

II. EXPERIMENTS

We first experimentally examine the structural stability
of thin disordered films cast from three different materials;
diblock copolymers, glassy polymers, and single-wall carbon
nanotubes. We consider these three specific examples below,
focusing on the nature of the inhomogeneities and the onset of
localization and doubling at small strains.

A. Diblock copolymers

Recent work with thin block-copolymer films reveals an
interesting class of localized buckling triggered by controlled
variations in film thickness [29]. Block copolymers are a
surfactant like class of self-assembling materials comprised
of two chemically distinct polymers joined at one end. The
two polymers will phase separate if they are sufficiently
dissimilar, but the bond between the two blocks frustrates
the phase separation, which is then arrested on a length scale
proportional to the length of the two blocks. In the bulk, the
result is one of many intricate microstructures, determined
primarily by the ratio of block lengths and the energetic cost of
the interface [30]. A particularly simple lamellar morphology
emerges when both blocks have similar lengths, since no
intrinsic curvature is favored. When confined to a thin film,
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FIG. 1. (Color online) (a) Schematic of a spincast diblock
copolymer film, and (b) the same film after microphase separation.
The PDMS substrate is not shown, red/light represents the PS block,
and blue/dark represents the P2VP block. The film thickness h is
not commensurate with the lamellar spacing, L. (c) A typical laser
scanning confocal microscope (LSCM) image of an equibiaxially
stressed block copolymer film on PDMS (20 μm scale).

the lamellar state is faced with a challenge; the film thickness
is not typically an integer multiple of lamellae. This constraint
can only be satisfied when the topmost layer is incomplete,
and the result is surface roughness exactly one lamellae in
amplitude (Fig. 1).

The ability to finely tune surface roughness makes
the diblock system ideal for exploring the influence of
inhomogeneities on wrinkling. When a thin block copolymer
film on a soft substrate is compressed, it will form either
“harmonic” wrinkles (as in a homogeneous film) or localized
“folds”, depending on the dominant Fourier component of the
surface roughness, λr . If λr is small, the film forms wrinkles
just like a homogeneous film of the average thickness (h) which
we refer to as “homogeneous” wrinkling [6]. This scenario is
well-studied, and the wavelength of the harmonic deformation
is

λ0 = 2πh

(
Ē

3Ēs

)1/3

, (1)

where Ē = E/(1 − ν2) is the plane-strain modulus of the
film or substrate (subscript s) and ν is the Poisson ratio [6].
When λr is large, the film wrinkles independently in thick and
thin regions in accordance with Eq. (1), where h is then the
respective mean thickness of the corresponding regions. If λr

is similar to λ0, however, the film focuses the deformation
into localized folds, which can be a dramatic effect when the
amplitude of the roughness is large [29]. The spacing between
such folds has been measured to be twice the ‘homogeneous’
wavelength over more than a decade in λ0, implying that the
relation

〈λ〉 = 4πh

(
Ē

3Ēs

)1/3

(2)

can be used to determine the modulus of the film from the
mean spacing of folds, where h is again the mean thickness
[29]. When the roughness is removed, the film wrinkles
homogeneously in accordance with Eq. (1).

Here, we offer new experimental data with a reduced
strength of the thickness fluctuations, δh (r). In particu-
lar, we use polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP,
80 kg/mol, Polymer Source, Dorval) and spin coat films

FIG. 2. (Color online) (a) An overlay of threshold images of
single optical slices 320 nm above the average surface of the film
(peaks—green/white), at the average surface (wrinkles—blue/gray),
and 720 nm below the average surface (valleys—red/light gray, 10 μm
scale). (b) Radially averaged FFT highlighting the different average
spacing between wrinkles (blue squares), peaks (green triangles), and
valleys (red circles), where the arrows indicate the location of peaks.
The spacing of peaks and valleys is roughly twice that of the wrinkle
spacing. All of the data are for the sample depicted in Fig. 1 as
described in the text.

of approximately 160 nm thickness from toluene. The films
are transferred to PDMS elastomer substrates (Dow Corning
Sylgard 182), annealed at 140 ◦C and then quenched to room
temperature (25 ◦C). The thermal mismatch between the film
and the substrate imparts an equibiaxial compressive stress on
the film, and the smallness of this stress ensures that the film
is well within the linear-elastic regime. Annealing also allows
lamellar layers to form with a period of L = 48 nm, and the
surface breaks up to accommodate the incommensurability
between the spincast thickness and the preferred lamellar
spacing. The result is roughness of 48 nm on a 145 nm thick
film. Again, localization only occurs when the roughness has
a Fourier component similar to the homogeneous wavelength.
Because the amplitude of the roughness is small, the effect is
not as pronounced as in Ref. [29]. The wrinkling amplitude,
however, is far from uniform, as evidenced in Fig. 2 through
confocal microscopy. Fourier analysis reveals that the differ-
ence between the two length scales is again a factor of 2.

There are two important things to note here. First, the
amplitude is being driven into a period doubling mode by
noise, in agreement with what was demonstrated in a previous
publication [29]. Second, the effect can only be related to
the roughness of the copolymer film. This is because the
films are initially flat after the spin-coating step, and they
can be compressed and buckled in this as-spin-cast (non-
lamellar) state to yield ordinary biaxial “harmonic” wrinkling.
Only when microphase separation has occurred and the film
has developed roughness can the doubling be triggered.

032409-2



LOCALIZATION AND LENGTH-SCALE DOUBLING IN . . . PHYSICAL REVIEW E 88, 032409 (2013)

Furthermore, doubling is only realized when the roughness has
a characteristic frequency similar to the “harmonic” wrinkling
wavelength of the homogeneous film. Finally, the applied
thermal stresses are very small (the thermal mismatch is
2.2 × 10−4 K−1, meaning a quench of 100 K yields a strain of
∼2%), which rules out other possible nonlinearities [19].

B. Glassy polymers

Thin homopolymer films can exhibit a similar type of small-
strain behavior, but the subtle interplay between quenched
noise, film thickness, and strain in a glassy elastic film can give
rise to more complex behavior. Here, polystyrene films (PS,
192 kg/mol, Sigma-Aldrich) were spun cast from toluene onto
treated mica, floated on purified DI water, and then retrieved
on both stretched PDMS for compression experiments and
clean silicon wafers for characterizing unperturbed films. The
films were annealed for 1 hour above the glass transition at T =
110 ◦C to promote compliance to the substrate, and the pre and
post-wrinkling topography was studied using reflection optical
microscopy and atomic-force microscopy (AFM). Figure 3
shows how regions of pure harmonic wrinkling coexist with
regions of localization in compressed PS films on PDMS.
For the longer wavelength patterns, the spacing qualitatively
coincides with higher multiples of the measured pure wrinkling
harmonic, λ0. The modulus deduced from λ0 via Eq. (1) is
2 GPa, in reasonable agreement with anticipated values [28].

More quantitatively, Fig. 4 shows the correlation function
c(r) = 〈u(r)u(0)〉 computed from such images for varied mean
PS thickness at 5% strain. The projection along the strain
(x) direction is shown in the lower panel. The measured
fundamental wavelength λ0, 2λ0, and 4λ0 are indicated as red
hatch marks on the x axis. Interestingly, the prominent nearest-
neighbor peak in c(x) occurs at x = 4λ0 instead of λ0 or 2λ0.
Since c(x) is weighted by pixel intensity—which provides an
approximate measure of the deformation amplitude u(r)—this
implies that under certain conditions the dominant folds have
an average spacing of 4λ0 rather than 2λ0 or λ0. For the strains
of interest here (ε � 10%), nonlinear elastic effects will be
negligibly small [13].

Figure 5(a) shows an AFM image of the topography of an
unstrained PS film (light) on PDMS (dark), and Fig. 5(b) shows
thickness fluctuations obtained from projections of AFM
images for unstrained films on both silicon (solid) and PDMS
(dashed). The inset to Fig. 5(b) shows the digital structure
factor, S(q), for film roughness on PDMS, with a Gaussian fit
giving the correlation length ξ = 8.2 μm. Figure 5(c) shows
an AFM image of the topography of a compressed film on
PDMS with a projection along the direction of strain (shown
in red/dark with the indicated scale). We note that surface
roughness can originate from either thickness fluctuations in
the film or roughness in the underlying surface of the PDMS.
For the latter, the disorder then takes the form of quenched
deformation imposed on the film prior to the application of
strain. Although the PS films are smooth on silicon, the films
on rubber are rough due to the underlying roughness of the
PDMS. The amplitude of the fluctuations is comparable in
magnitude to h and the length scale is comparable to or above
λ0, which can be identified as the smallest spacing in Fig. 3.

FIG. 3. (Color online) PS films compressed at 5% strain on PDMS
at (a) h = 35 nm, (b) 50 nm, (c) 80 nm, and (d) 130 nm. The red (light)
bar is the measured λ0, the blue (dark) bar is twice this, and the width
of each image is 110 μm. The darkest features are “folds” or crests.

Figure 5(d) shows the location of the λ0, 2λ0, and 4λ0 peaks
in c(x) as a function of mean film thickness. All of the peak
positions scale linearly with h, which is anticipated. Physically,
when ξ is larger than both λ0 and 2λ0, the dominant neigh-
boring fold is forced to 4λ0 to accommodate the disorder but
still be commensurate with a multiple of 2λ0. A state diagram
in the plane of mean sample thickness (h) and strain (ε) is
shown in Fig. 5(e). The circles in the region at the left denote
pure harmonic (1x) wrinkling, the middle triangles indicate
localization behavior with 4x mean spacing, and the squares
in the region at the right indicate localization with 2x mean
spacing. The dashed lines indicate the approximate locations
of transitions. Pure harmonic (λ0) wrinkling is only favored
at small strains and thicker films, with doubling emerging
at larger strains for all thicknesses. In between, at moderate
strains, 4x behavior is favored. It is important to note, however,
that harmonic wrinkling always coexists with the other two
types of behavior. An example of c(x) measured in the
doubling region is shown in Fig. 5(f), where λ0 is around 2 μm.
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FIG. 4. (Color online) Correlation function c(r) for the images in Fig. 3, with the x-projection, c(x), in the bottom panel. The red hatch
marks on the x-axis indicate λ0, 2λ0, and 4λ0.

The measurements in Fig. 5 suggest that the disorder has the
largest impact for thinner films (where δh/h will be largest
in magnitude) and larger strains, since this is the region of
Fig. 5(e) where the 4x and 2x behavior emerges. We should
note, however, that the region of the state diagram labeled
as “1x” also exhibits long-wavelength folding, but typically
at length scales much larger (6 to 12 times) than λ0. In this
view, disorder always has a measurable impact on the films,
but length-scale doubling becomes more prominent at larger
strains. Again, the fact that the 2x behavior crosses over to 4x

behavior with decreasing strain at modest strains implicates
disorder and not some other nonlinear effect commonly
studied for homogeneous elastic films, which would predict
progressive bifurcations emerging at progressively higher
strains [15,19].

C. Single-wall carbon nanotubes

Thin films of single-wall carbon nanotubes (SWCNTs) have
potential applications as transparent conductive coatings and
p-type semiconducting layers in electronic and photovoltaic
devices. Applications with mechanical flexibility are particu-
larly well suited to these polymer-like materials, but pristine
SWCNT films can be inherently unstable in response to certain
types of deformation [31–33]. By depositing SWCNT coatings
of varied thickness on pre-stretched PDMS substrates, the de-
formation mechanics has been studied as a function of SWCNT
length, electronic type, film thickness, and strain [31–33].
These experiments are consistent with a pristine coating that
has a remarkably high plateau modulus—reflecting the 1 TPa
Young modulus of an individual SWCNT—but a very small
yield strain. Compression pushes the SWCNTs into van der
Waals bundles perpendicular to the direction of strain, which
is the source of the plasticity [34].

Light scattering suggests that these films are “fractal”
[31–33], and this inhomogeneity is reflected in the wrinkling
pattern that emerges in response to strain [Figs. 6 and 7(a)],
which bears a striking resemblance to the patterns exhibited by
the disordered PS films in the previous section. The SWCNT
films also exhibit significant fluctuations in thickness over
a broad range of length scales, from the nanoscale up to the
macroscale, as shown in Fig. 7(b), and by analogy with the
experimental results for PS in the previous section, we can
thus expect a mean spacing of either 2λ0 or 4λ0. A typical
comparison of half of the measured wavelength [red/light
bars, Fig. 7(b)] with the corresponding variations in thickness
suggests that there are strong variations in h on the scale of
wrinkling.

The use of Eq. (1) overestimates the plateau modulus of the
films, putting it above the modulus of an individual nanotube
(a physical impossibility). Previous studies thus analyzed
such data based on Eq. (2), where “wavelength” doubling
was qualitatively attributed to thickness fluctuations [31,32].
Figure 7(c) shows the typical behavior of the plateau modulus
as a function of percolation depth and Fig. 8 shows the strain
dependence of the modulus, which shows power-law strain
softening at larger strains. The simple constitutive relation
E(ε) = E0(1 + ε/ε0)−α has been used here (in combination
with a small background) to model the strain dependence
shown in Fig. 8, where the motivation for this expression in the
context of purified SWCNT networks is given in Refs. [31] and
[32]. Previous studies suggest that as the modulus increases,
the yield strain decreases, and typical values of the exponent α

are around 2 to 2.5 [31,32,34]. For complex fluids in general,
this type of strain dependence has recently been used, for
example, to model the nonlinear rheology of power-law gels
[35], while analogous yield-strain behavior has been observed
in glassy colloids [36].
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FIG. 5. (Color online) (a) AFM image near the edge of a PS
film on unstrained PDMS (2.5 μm scale) and (b) height fluctuations
obtained from AFM projections (at 2 μm intervals) for PS on silicon
(solid) and PS on unstrained PDMS (dashed). The inset is S(q) for
film roughness on PDMS with a Gaussian fit. (c) AFM image of a
wrinkled PS film on PDMS at 1% strain (2.5 μm scale) with a typical
projection (red/dark). (d) Peak position vs thickness for the 1x, 2x,
and 4x features at 5% strain. (e) “State diagram” in the plane of h and
ε, where the markers denote the morphologies described in the text.
(f) Measured c(x) for h = 50 nm at 10% strain, where λ0 = 2 μm.
The inset is an optical image (5 μm scale).

A physical value for the plateau modulus of a nanotube
film can be estimated from the theoretical work of Cox on 2D
fiber networks in the absence of a matrix, which gives E0 �
Etubeφ/3 where φ is the effective volume fraction of nanotubes
[37]. The data in Fig. 8 correspond to a SWCNT film of mean
thickness 22 nm and a surface mass density of 1 μg/cm2

assembled from length-purified CoMoCat nanotubes of mean

FIG. 6. (Color online) Wrinkling in a compressed SWCNT film
on PDMS (left, 3 μm scale, 2.5% strain) and the corresponding digital
power spectrum (right, 2 μm−1 scale).

FIG. 7. (Color online) (a) Optical image of wrinkling in a
SWCNT film of thickness 35 nm at 5% strain (20 μm scale).
(b) Height of an unstrained nanotube film on quartz, with the
corresponding AFM image (right inset, 3 μm width) and a typical
TEM image (left inset, 500 nm width). The blue/dark bars are the
measured wrinkling length scale at the indicated strain and the
red/light bars are half this. (c) Plateau modulus based on Eqs. (2)
(solid) and (1) (dashed) with the modulus of a nanotube (red/light).

FIG. 8. (a) Wavelength as a function of strain and (b) modulus as
a function of strain for a SWCNT film. Data are from Ref. [32] and the
fit is based on Eq. (2) with a strain-softening modulus as described in
the text. The upper dashed curve represents the overestimate obtained
from Eq. (1) and the lower dashed curve represents the underestimate
obtained assuming wavelength quadrupling (λ0 → 4λ0).
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length 950 nm, for which the effective volume fraction is
φ � 0.5 and Etube � 1 TPa [31,32]. This gives the estimate
E0 � 180 GPa, while the fit in Fig. 8 gives E0 � 200 GPa and
ε0 � 0.4%, in reasonable agreement. Using Eq. (1), in contrast,
gives the unphysical value E0 � 1.6 TPa, while assuming an
average spacing of 4λ0 gives the underestimate E0 � 25 GPa.

III. INHOMOGENEOUS FILMS

We suggest that the physical origin of folding and length-
scale doubling in disordered films on soft substrates resides
mainly in two effects. The first is the tendency for “defects”
(such as strong or weak points associated with thickness
fluctuations) to either locally enhance (for smaller local
thickness) or locally suppress (for larger local thickness) the
deformation u(x). Starting conceptually from a homogeneous
compressed film under harmonic deformation, the random
addition of more than one defect (in the form of a thickness
fluctuation or a quenched variation in modulus) will frustrate
the periodicity of the harmonic pattern such that the only option
for the film is to localize the deformation around the defects,
which gives rise to the characteristic pattern in the figures.

The second effect is how these localization sites interact
with one another. The deformation of a compressed film is
a balance of film bending and substrate stretching, and a
derivation of Eq. (1) is given in supporting Supplemental
Material [38]. Since the substrate stretching is proportional
to the deformation u(x), the magnitude of the stress-stress
correlation function can be simply approximated by the
correlation function c(x), which in Figs. 4 and 5(f) has a sharp
cutoff at x = λ0 and a secondary peak at x = 2λ0. Since the
stress must be distributed as uniformly as possible, regions
of localization cannot overlap within the width of their stress
correlation. Another way of stating this is that the “packing”
of localization sites (folds) is dictated by the width of their
stress correlation function. Based on the correlation lengths
λ0 and 2λ0, strongly interacting folds (those that approach
up to the central cutoff λ0) will thus have a disordered (as
opposed to periodic) arrangement dictated by the distribution
of defects, but with a mean spacing of twice the cutoff (2λ0).
Weakly interacting folds (those that approach to within the first
peak in the stress correlation function) will exhibit twice this

FIG. 9. (a) Relative spacing of folds when the width of the stress-
stress correlation function is 2λ0, and (b) when the width of the
stress-stress correlation function is 4λ0.

mean spacing, or 4λ0. The scenario is shown schematically
in Fig. 9, where the interacting profiles can equally represent
either localized folds or stress correlation functions.

IV. CONCLUSIONS

Wrinkling in three specific types of disordered films
on elastic substrates has been examined experimentally at
small strains, revealing a disordered pattern with a nonpe-
riodic arrangement of localized folds. The two elastic films
(diblock copolymers and glassy polymers) show clear dou-
bling of the characteristic length scale—and in certain in-
stances even quadrupling—with respect to a homogeneous
film of comparable modulus, while a “plastic” or strain-
softening film (SWCNTs) shows the same disordered pattern
in a manner consistent with length-scale doubling. Qualita-
tively, we attribute these observations to (i) localized defor-
mation triggered by structural inhomogeneities that frustrate
the underlying harmonic deformation, and (ii) the subsequent
interaction of neighboring folds or localization sites through
their local stress distribution. We suggest that adjacent folds
can only approach each other within the width of their
stress-stress correlation function. If the width of the stress
correlation function is 2λ0, the average spacing of folds will
be 2λ0. Conversely, if the folds can interact at longer length
scales through the secondary peak in the stress correlation
function, the mean spacing of folds will be 4λ0.

While the fact that these patterns are observed at small
strains would seem to suggest that material nonlinearity is not
important, care should be taken, since the strong deformation
implicit to localization might imply that nonlinear effects
could be required to quantitatively account for the profile
u(x) with a 1D model. We are currently working on a
nonlinear model of film wrinkling that accounts for this type of
disorder. The experimental evidence we offer here, however,
suggests that polystyrene, which has a well-characterized
plane-strain modulus and exhibits both harmonic wrinkling
and localization, can serve as a useful reference point for
characterizing the wrinkling of disordered films comprised
of more complex and poorly understood materials.

Our results have important implications for measuring
the mechanical properties of disordered thin films on elastic
substrates through the spatial and topographical distribution
of the surface features that emerge under compression. Since
1x (harmonic) behavior always appears to be present in an
elastic film, care should be taken to count all the features
independent of amplitude before using Eq. (1). The familiar
result for homogeneous or harmonic wrinkling should then
only be used for regions that show clear harmonic deformation.
Otherwise, the 2x model [Eq. (2)] should be used, with the
constraint that the modulus should be a smooth function of
strain. This will ensure that the results are not being biased by
the emergence of 4x behavior at small strains, which would
cause the modulus to appear artificially high by a factor of 23.

We suggest that for “plastic” or strain-softening films,
localized structural failure will prevent the type of long-
range fold-fold interactions that appear to give rise to the
intermediate 4x behavior observed in disordered elastic films.
Schematically, the scenario in Fig. 9(a) would be favored over
that depicted in Fig. 9(b) for a strain-softening film, since
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localization of the deformation can trigger plastic structural
changes that could diminish the ability of the folds to interact
at longer scales [31,32]. Based on the observations reported in
Sec. II B for PS films, it is reasonable to ask if the SWCNT
films would be better interpreted assuming 4x behavior. This
can be addressed through the results presented in Sec. II C.
At the highest strain of 20% in Fig. 8(b), an analogy with
the PS films suggests that we should assume 2x behavior for
any easily discernible structure. If a transition to 4x behavior
were to then occur below 10% in Fig. 8(b), as it does for
PS in Fig. 5(e), the strain-dependent modulus would exhibit a
discontinuous drop below 100 MPa with decreasing strain,
which would be unphysical. In addition, the extrapolated
low-strain modulus would then be too small to be reconciled
with the 1 TPa modulus of an individual nanotube.

Given the emerging importance of thin films and coatings
assembled from purified nanoparticles [39], and in light of
the similarities we demonstrate here between the morphology
of wrinkling in disordered polymer films and thin nanotube

films, a better theoretical understanding of the influence of
quenched disorder on the mechanics of wrinkling, folding
and localization is clearly warranted. We hope that the
experimental insights offered here will help guide such efforts.
Another interesting and relevant question, particularly for
SWCNT films, is the role of viscoelasticity, which has recently
emerged as a topic of potential importance [40,41]. In the
present study, we have tried to limit the influence of such
effects by always releasing the strain at the same rapid
rate, but future experiments will address the question of rate
dependence in greater detail.
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